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An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle

Jurassic) of King’s Dyke pit near Peterborough, UK, is examined. Despite post-mortem

residency on the seabed, some diagnostic features are preserved, including the presence

of a ventral keel, a ‘shoulder’ indicating a wing-like transverse process, along with a

possible prespinal lamina. This, together with an overall high complexity of the anterior

caudal transverse process (ACTP) complex, indicates that this caudal belonged to a

derived eusauropod, most likely a neosauropod. A second isolated middle-posterior caudal

from the Oxford Clay of Peterborough is also described, also showing some diagnostic

features, despite the neural spine and neural arch not being preserved and the

neurocentral sutures being unfused. The positioning of the neurocentral sutures on the

anterior 1/3rd of the centrum indicates a middle caudal position, and the presence of faint

ventrolateral crests, as well as a rhomboid anterior articulation surface, show neosauropod

affinities. The presence of possible nutrient foramina are only tentative evidence of a

neosauropod origin, as they are also found in Late Jurassic non-neosauropod eusauropods.

As the caudals from the two other known sauropods from the Peterborough Oxford Clay,

Cetiosauriscus stewarti and a brachiosaurid, do not show the features seen on either of the

new elements described, both isolated caudals indicate a higher sauropod species

diversity in the region than previously recognised. A reduced consensus tree using these

caudal characters shows a diplodocoid affinity for the anterior caudal, and a diplodocid

origin for the middle caudal. Together with Cetiosauriscus, and other material assigned to

different sauropod groups, this study indicates the presence of a high sauropod

biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and

Tendaguru formations. This study shows that it is still beneficial to examine isolated

elements, as these may be indicators for species richness in deposits that are otherwise
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27 An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle 

28 Jurassic) of King’s Dyke pit near Peterborough, UK, is examined. Despite post-mortem 

29 residency on the seabed, some diagnostic features are preserved, including the presence of a 

30 ventral keel, a ‘shoulder’ indicating a wing-like transverse process, along with a possible 

31 prespinal lamina. This, together with an overall high complexity of the anterior caudal transverse 

32 process (ACTP) complex, indicates that this caudal belonged to a derived eusauropod, most 

33 likely a neosauropod. A second isolated middle-posterior caudal from the Oxford Clay of 

34 Peterborough is also described, also showing some diagnostic features, despite the neural 

35 spine and neural arch not being preserved and the neurocentral sutures being unfused. The 

36 positioning of the neurocentral sutures on the anterior 1/3rd of the centrum indicates a middle 

37 caudal position, and the presence of faint ventrolateral crests, as well as a rhomboid anterior 

38 articulation surface, show neosauropod affinities. The presence of possible nutrient foramina 

39 are only tentative evidence of a neosauropod origin, as they are also found in Late Jurassic 

40 non-neosauropod eusauropods. As the caudals from the two other known sauropods from the 

41 Peterborough Oxford Clay, Cetiosauriscus stewarti and a brachiosaurid, do not show the 

42 features seen on either of the new elements described, both isolated caudals indicate a higher 

43 sauropod species diversity in the region than previously recognised. A reduced consensus tree 

44 using these caudal characters shows a diplodocoid affinity for the anterior caudal, and a 

45 diplodocid origin for the middle caudal. Together with Cetiosauriscus, and other material 

46 assigned to different sauropod groups, this study indicates the presence of a high sauropod 

47 biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and 

48 Tendaguru formations. This study shows that it is still beneficial to examine isolated elements, 

49 as these may be indicators for species richness in deposits that are otherwise poor in terrestrial 

50 fauna. 

51

52 Keywords: Sauropoda, Eusauropoda, Neosauropoda, Oxford Clay, caudal
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53

54

55

56

57 INTRODUCTION

58

59 The Middle Jurassic Oxford Clay has yielded many marine vertebrates (ichthyosaurs, 

60 plesiosaurs, pliosaurs, marine crocodiles, sharks, and fishes (Andrews, 1910, 1913)), as well as 

61 invertebrates (Leeds, 1956). Land-dwelling vertebrates, however, are rare from this marine 

62 setting. The Jurassic Gallery of the Vivacity-Peterborough Museum in Peterborough, and the 

63 New Walk Museum and Art Gallery in Leicester, however, house some dinosaur specimens 

64 from the  Oxford Clay of Peterborough. The material consists of isolated partial elements of a 

65 stegosaur, and several isolated sauropod fossils, including a partial anterior caudal and a partial 

66 middle caudal. The caudals have been submerged in seawater, however, they do display some 

67 characters which may be used for diagnosis.

68 Sauropods are represented in the Middle Jurassic of the UK by two species thus far: the 

69 Bajocian-Bathonian Cetiosaurus oxoniensis (Phillips, 1871; Owen, 1875) and the Callovian 

70 Cetiosauriscus stewarti (Charig, 1980, 1993). Cetiosauriscus is known from material found in 

71 the Peterborough Oxford Clay, and has thus far not been encountered from other localities 

72 (Woodward, 1905; Heathcote & Upchurch, 2003; Noè, Liston & Chapman, 2010). The type 

73 material comprises of a partial caudal axial column, a femur, and a partial pelvic girdle 

74 (Woodward, 1905). Another Cetiosauriscus, Cetiosauriscus greppini, is known from Switzerland, 

75 however, this specimen is from the Late Jurassic, and moreover, has recently been reidentified 

76 as a basal titanosauriform (Schwarz, Wings & Meyer, 2007). 

77 Next to Cetiosauriscus, four anterior caudal vertebrae (NHMUK R1984), ascribed to a 

78 brachiosaurid (Upchurch & Martin, 2003, Noè, Liston & Chapman, 2010, Fig.6), as well as a 
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79 partial distal tail segment including eight posterior(most) caudals, ascribed to a diplodocid 

80 (Upchurch, 1995), are described from the Oxford Clay material (Noè, Liston & Chapman, 2010). 

81 Finally, three undiagnosed ‘camarasaurid’ sauropod teeth are known from the Oxford Clay 

82 (Martill, 1988), which might tentatively be turiasaurid (Royo Torres & Upchurch, 2012; Mocho et 

83 al., 2015).

84 Despite the locality being a classic site for fossils, and many historical finds of marine reptiles 

85 having been described and redescribed, the sauropod fauna from the Oxford Clay has not 

86 received much attention thus far. Though associated material such as Cetiosauriscus is scarce, 

87 isolated material can be studied in detail and reveal information on both morphology and 

88 species diversity. This is especially important for material which has its provenance in the 

89 Middle Jurassic, as major sauropod radiation and evolution events happened during the Early 

90 and Middle Jurassic, with most major clades firmly established worldwide at the late Middle 

91 Jurassic, while sauropod material remains rare from this time, and not all evolutionary patterns 

92 are well understood. Moreover, caudal vertebrae have rarely been given appropriate attention, 

93 as only recently have caudal characters begun to be recognized as taxonomically diagnostic 

94 (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated 

95 sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the 

96 New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both 

97 previously indexed in collections under ‘Cetiosaurus’), and compare them to contemporaneous 

98 and other sauropod remains.

99

100 MATERIALS & METHODS

101

102 Institutional abbreviations

103 PETMG R.= Vivacity-Peterborough Museum, UK

104 LEICT G.= New Walk Museum, Leicester, UK
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105 NHMUK = Natural History Museum, London, UK

106

107 Systematic Palaeontology

108

109 Dinosauria (Owen, 1842)

110

111 Saurischia (Seeley, 1888)

112

113 Sauropoda (Marsh, 1878)

114

115 Eusauropoda (Upchurch, 1995)

116

117 ?Cetiosauridae (Lydekker, 1888) sensu (Upchurch, Barrett & Dodson, 2004)

118

119 ?Neosauropoda (Bonaparte, 1986a)

120

121 Geological setting

122

123 Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that 

124 it is recorded as being from the King‘s Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is 

125 from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The 

126 original label on the specimen dates back to 1956, however, a number of brick pits were open at 

127 that stage. The strata of King’s Dyke pit extend from the Kellaways Formation up to the 

128 Stewartby Member of the Peterborough Formation (see Hudson & Martill, 1994, for a more 

129 detailed geological setting), therefore date exclusively to the Callovian (Middle Jurassic, ~155 

130 Ma).
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131

132

133  

134

135

136

137

138

139 RESULTS

140

141 Morphology

142

143 The anterior caudal PETMG R272 (See Figure 2) measures a maximum of 27,2 cm 

144 dorsoventrally and 26,5 cm transversely.  It is covered in bivalves which are embedded in the 

145 bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine 

146 is missing, as well as the entire left transverse process; the right transverse process is partially 

147 preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the 

148 anterior side protrudes further ventrally than the posterior side. The relative axial compression of 

149 the centrum, together with the apparent connection between the neural arch and base of the 

150 transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most 

151 caudals.

152

153 In anterior view (Figure 2A), the articular surface of the centrum is oval to round, and is 

154 transversely wider than dorsoventrally high. The outer surface of the articular surface is convex 

155 and displays circular striations, as is common for weightbearing bones in sauropods. The 

156 internal ±1/3rd of the anterior articular surface is mildly concave. The entire articular surface is 
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157 'cupped' by a thick rim, which mostly follows the oval to round contour of the articular surface, 

158 however, it is flattened ventrally, and on the dorsal rim it shows a slight indent, rendering the 

159 dorsal rim heart-shaped. This rim is also seen in lateral view (Figure 2C). In posterior view 

160 (Figure 2B), the articular surface is heart-shaped to triangular: the ventral rim ends in a 

161 transversely pointed shape, whereas the dorsal rim shows a rounded depression on the midline, 

162 flanked by parallel convex bulges. The articular surface itself is concave, with an additional 

163 depression in the mid ±1/3rd part of the surface. The posterior articular surface is less rugosely 

164 'cupped' by its rim than the anterior one.

165

166 In ventral view (Figure 2D), the anterior rim of the centrum shows rudimentary semilunar shaped 

167 chevron facets, which are not seen on the posterior side. The transverse processes are visible 

168 as triangular protrusions that project laterally. Below each is a small oval depression. The lateral 

169 sides of the centrum are constricted, and flare out towards the anterior and posterior sides. A 

170 keel-like structure can be seen on the ventral axial midline of this vertebra. This keel is not 

171 visible as a thin protruding line, but more as a broad band protruding slightly ventrally from the 

172 ventral part of the centrum. It is possible this keel is formed by the close spacing of the 

173 ventrolateral rims of the centrum (Harris, 2006).

174

175 The anterior side of the neural canal and the base of the neural arch are set in a dorsoventrally 

176 high, anteroposteriorly flattened sheet of bone, consisting of the 

177 spinodiapophyseal/prezygodiapophyseal and centrodiapophyseal laminae, which give the 

178 neural arch (without transverse processes and neural spine) a roughly triangular shape (Figure 

179 2A). In particular, the high projection on the neural arch of the diapophyseal laminae suggest 

180 the existence of a ‘shoulder’, which would make the transverse processes wing-shaped. The 

181 neural canal is broadly arched  (measuring 3,3 cm by 3,8 cm). Its dorsal rim is overshadowed by 

182 a lip-like, triangular protrusion, which could be a remnant of the hypantrum (Figure 2A). Right 
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183 above this lip-like process, a rugosely striated lamina persists along the dorsoventral midline of 

184 the neural arch, up to the dorsal-most rim of the specimen. It is not entirely clear if this is a scar 

185 of a rudimentary single intraprezygapophyseal lamina or a prespinal lamina (Figure 2A). The 

186 posterior side of the neural canal is more teardrop-shaped, and is set within the neural arch, 

187 which displays shallow depressions on both sides of the neural canal; these could be small 

188 postzygapophyseal spinodiapophyseal fossae (pocdf, sensu (Wilson et al., 2011, Figure 2B)). 

189 Directly above it, the rami of the bases of the postzygapophyses are clearly visible. The 

190 postzygapophyses are rounded to triangular in shape (Figure 2B). A deep oval depression is 

191 seen between them; this could be the remnant of the spinopostzygapophyseal fossae (spof, 

192 sensu (Wilson et al., 2011, Figure 2B). Finally, a V-shaped striated process is seen between the 

193 two postzygapophyses, which could be the remnant of the hyposphene.

194

195 The transverse processes appear like rounded bulges, seen in anterior and lateral view (Figure 

196 2A,C). The ventral sides of the bases of both transverse processes are concave. In lateral view, 

197 the transverse process has a rounded to triangular shape, and is axially wider ventrally than 

198 dorsally. It is dorsally supported by a spinodiapophyseal lamina (Figure 2E), and seems to have 

199 an anterior centrodiapophyseal lamina; however, a posterior centrodiapophyseal lamina is not 

200 clearly visible. 

201

202 The middle caudal LEICT G.418.1956.21.0 (Figure 3) is an isolated element, and has no 

203 connection to the anterior caudal. Unlike the anterior caudal, this middle caudal centrum is well-

204 preserved, with minute details clearly visible. The neural arch and neural spine are not 

205 preserved, and as the unfused neurocentral sutures show, the animal this caudal belonged to, 

206 was not fully grown (Brochu, 1996) and probably in Morphological Ontogenetic Stage 2 (MOS 

207 2), rather than MOS 1, given the large size (sensu Carballido & Sander, 2014).

208
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209 The centrum is 12,9 cm long axially, its anterior tranverse width is 21,7 cm and its posterior 

210 width 18,6 cm, with posterior height at 15,2 cm. The centrum is rectangular in shape, seen in 

211 dorsal (Figure 3E) and ventral view (Figure 3F), with mildly flaring anterior and posterior lateral 

212 ends of the articulation surfaces. In lateral view (Figure 3B,D), the posterior ventral side 

213 protrudes further ventrally than the anterior ventral side. However, the anterior dorsal side 

214 projects further dorsally than the posterior side. Transverse processes are only rudimentarily 

215 present, as oval, rugose, lateral bulges.

216

217 The anterior articular surface is rhomboid (hexagonal to almost octagonal) in shape (Figure 3A); 

218 the dorsal 1/3rd shows a wide transverse extension of the articular rim, whilst the lower 1/3rd 

219 shows a much narrower width, with sharply beveled constrictions between them. The ventral 

220 side shows a rounded indent on the midline, giving this articular surface a heart-shaped ventral 

221 rim. The rim itself is about 2-3 cm thick, shows concentric striations, and protrudes slightly 

222 anteriorly. The inner articular surface is flat to concave, however, the kernel shows a rugose 

223 rounded protrusion of bone. The morphology of the posterior articular surface (Figure 3C) is 

224 much more simple, oval in shape, and is wider transversely than dorsoventrally high. The 

225 articular rim is less thick than anteriorly; about 1-2cm. The articular surface is mildly concave, 

226 with a dorsal slightly convex bulge, which is common in non-neosauropod eusauropods (e.g. 

227 Cetiosaurus, Patagosaurus). The dorsal side of the centrum (Figure 3E) shows well-preserved 

228 and unfused neurocentral sutures, which span approximately the anterior 2/3rds of the axial 

229 length of the centrum. The ventral half of the neural canal is clearly visible, and shows four 

230 axially elongate, deep nutrient foramina embedded within the posterior half of the centrum. A 

231 further two shallow nutrient foramina are visible. 

232

233 The ventral side of the centrum (Figure 3F) shows two sets of chevron facets, the posterior ones 

234 of which are more pronounced. Several rugose striations run along the axial length of the 
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235 ventral surface, probably for ligament attachments. Along the midline, a ventral hollow runs 

236 anteroposteriorly, braced on each lateral side by a rounded, slightly protruding beam. On each 

237 lateral side of these, shallow oval asymmetrical depressions are visible; these are caused by 

238 preparing away sediment and debris. Two faint ventrolateral crests are also possibly present, 

239 also visible in right lateral view (Figure 3B). The crests are not pronounced, and on the left 

240 lateral side (Figure 3D) the crest does not run for the entire anteroposterior length. The right 

241 lateral side (Figure 3B) furthermore shows a faint longitudinal ridge, however, in left lateral view 

242 (Figure 3D), this ridge does not persist on the entire lateral side of the centrum.The lateral side 

243 of the centrum further shows several small nutrient foramina. Finally, very shallow oval 

244 depressions, possibly pneumatic, are seen ventral to the bulges of the transverse processes.

245

246 Phylogenetic framework

247

248 To explore possible phylogenetic relationships, the caudals were used as separate Operational 

249 Taxonomic Units (OTU’s). The morphological characters of both caudals were coded in an 

250 existing matrix in Mesquite (Maddison & Maddison, 2010) using non-neosauropod eusauropods 

251 and neosauropods, from Tschopp et al., (2015). See supplementary material for Tschopp et al. 

252 (2015), for the character matrix, explanatory notes, and references therein. Only anterior caudal 

253 characters could be coded for PETMG R272, and only anterior to middle, and middle to 

254 posterior characters could be coded for LEICT G.418.1956.21.0. Next to these codings, the 

255 anterior and middle caudals of Cetiosauriscus stewarti were recoded, based on the descriptions 

256 of Woodward (1905), Charig (1980) and based on pictures of NHMUK R3078 which resulted in 

257 some character changes. See Supplemental file for our character matrix, adapted from Tschopp 

258 et al., (2015).

259 The matrix was analysed using TNT (Goloboff, Farris & Nixon, 2008; Goloboff & Catalano, 

260 2016) using TBR, which yielded 37156 trees with a best score of 2026. A strict consensus tree 
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261 rendered too many polytomies, therefore a 50% majority rule consensus analysis was 

262 performed. See Figure 4 for the simplified 50% majority consensus tree.

263

264 Cetiosauriscus is retrieved as a non-neosauropod eusauropod in this analyis, basal to Jobaria 

265 and more derived than Mamenchisaurids and basal non-neosauropod eusauropods, which is 

266 the same result as in Tschopp, Mateus and Benson, (2015), but see Heathcote & Upchurch 

267 (2003). The anterior caudal PETMG R272 is retrieved a a diplodocoid, more derived than 

268 Haplocanthosaurus, but basal to Zapalasaurus and all derived neosauropods. Characters that 

269 unite it with Diplodocoidea (sensu Tschopp, Mateus and Benson (2015)) are the presence of 

270 well-defined anterior diapophyseal laminae on transverse processes, as well as having an 

271 anterior neural arch base with a transverse width/anterioposterior length ratio higher than 1 

272 (Tschopp, Benson and Mateus, 2015).

273 The middle caudal LEICT G.418.1956.21.0 is retrieved as more derived than Galeomopus, 

274 basal to Barosaurus and all other diplodocids, and is firmly nested within Diplodocidae. 

275 Characters that unite it with Diplodocidae (sensu Tschopp, Mateus and Benson (2015)) are 

276 having a trapezoidal articular surface, a straight ventral surface in lateral view, and articular 

277 surfaces being wider than high (Tschopp, Benson and Mateus, 2015). Furthermore, it takes 4 

278 additional steps to force PETMG R272 outside of Neosauropoda, and it takes an additional 8 

279 steps to force LEICT G.418.1956.21.0 outside of Neosauropoda. 

280

281

282 DISCUSSION 

283

284 Systematics

285

286 Peterborough caudal PETMG R272
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287

288 The anterior caudal PETMG R272 shows characteristics shared with both non-neosauropod 

289 eusauropods, as well as neosauropods.

290 The slightly more rounded shape of the centrum in lateral view is shared with Apatosaurus. 

291 Anterior caudals of Cetiosauriscus are strongly axially compressed, as also seen in non-

292 neosauropod eusauropods such as Cetiosaurus and Patagosaurus (Woodward, 1905; Charig, 

293 1980; Bonaparte, 1986b; Upchurch & Martin, 2003).

294 The flat anterior articular surface and the mildly concave posterior articular surface of the 

295 centrum is a common feature, shared with non-neosauropod eusauropods (e.g. Cetiosaurus, 

296 Patagosaurus (Bonaparte, 1986b; Upchurch & Martin, 2003). The thick rim cupping the anterior 

297 surface is found in early Middle Jurassic non-neosauropod eusauropods (Cetiosaurus) but also 

298 in the (non-neosauropod eusauropod/potentially basal neosauropod) Callovian Cetiosauriscus 

299 (Woodward, 1905; Charig, 1980; Heathcote & Upchurch, 2003) and in the Oxfordian-

300 Kimmeridgian basal titanosauriform Vouivria damparisensis (Mannion, Allain & Moine, 2017). 

301 The morphology of the ventrally offset anterior articular surface, together with pronounced 

302 chevron facets, is seen in non-neosauropod eusauropods from the Late Jurassic of Portugal 

303 (Mocho et al., 2017), however, this type of assymmetry is also seen in Apatosaurus louisae 

304 (Harris 2006). 

305

306 The ventral keel is found in an Early Jurassic indeterminate sauropod caudal from York, UK 

307 (Manning, Egerton & Romano, 2015), however, it is also found in neosauropods, specifically in 

308 flagellicaudates and diplodocids Apatosaurus ajax, Apatosaurus louisae, and Suuwassea 

309 (Harris, 2006; Tschopp, Mateus & Benson, 2015). The former has a ventral keel which results 

310 from a transverse constriction of the ventral side of the centrum, forming a triangular protrusion 

311 on the ventral articular surface. This is also seen in non-neosauropod cervicals (such as 

312 Cetiosaurus, Patagosaurus, Spinophorosaurus, Amygdalodon, Tazoudasaurus (Bonaparte, 
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313 1986c; Rauhut, 2003; Upchurch & Martin, 2003; Allain & Aquesbi, 2008; Remes et al., 2009)). 

314 The latter keel-like form, which seems to match more the morphology of PETMG R272, forms 

315 when there is a very close association of the two ventrolateral ridges that run along the 

316 ventralmost side of the centrum, and is only seen in neosauropods. No keel-like structure is 

317 seen in Cetiosauriscus anterior caudals, nor on the ‘brachiosaurid’ caudals from the Oxford Clay 

318 (Upchurch & Martin, 2003, Noè, Liston & Chapman, 2010, Fig.6); the ventral surface of these 

319 anterior caudal vertebrae appearing to be smooth.

320

321 The triangular shape of the anterior caudal transverse process (ACTP) complex in PETMG 

322 R272 is seen to a lesser extent in non-neosauropod eusauropods, such as Tazoudasaurus,  but 

323 also in an unnamed anterior caudal from a titanosauriform from the Bajocian of Normandie, 

324 France, and in indeterminate non-neosauropod sauropods from the Late Jurassic of Portugal 

325 (Allain & Aquesbi, 2008; Läng, 2008; Mocho et al.). The pronounced shape, however, is more 

326 suggestive of ‘wing’-shaped transverse processes, due to the possible existence of a ‘shoulder’ 

327 (see Figure 2). This is used as a caudal character to define diplodocids (Whitlock, 2011; 

328 Tschopp, Mateus & Benson, 2015), and is found neither in non-neosauropod eusauropods nor 

329 the Bajocian French titanosauriform. However, it is also seen in other neosauropods, such as 

330 Camarasaurus and titanosauriforms (Gallina & Otero, 2009). To a lesser extent, a triangular, 

331 sheet-like ACTP is seen in Cetiosauriscus, as well as the ‘brachiosaurid’ caudals from the 

332 Oxford Clay, however, the anterior caudals of Cetiosauriscus do not show a pronounced 

333 ‘shoulder’. Moreover, the transverse processes of PETMG R272 are robust, and rounded to 

334 triangular in cross-section, whereas those of Cetiosauriscus are gracile, dorsoventrally 

335 elongated and axially compressed, providing a more oval cross-section. 

336 Furthermore, the presence of clearly defined anterior centrodiapophyseal laminae (acdl) is 

337 considered to be an autapomorphy in the Late Jurassic titanosauriform Vouivria, together with 
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338 posterior centrodiapophyseal laminae (pcdl). Unfortunately, in PETMG R272 no pcdl is clearly 

339 visible, however, the acdl shows a possible derived state.

340 If the rugosity dorsal to the prezygapophyses is indeed a prespinal lamina (prsl) and not the 

341 single intraprezygapophyseal lamina (stpol), then this is yet another neosauropod feature on 

342 PETMG R272 (Wilson, 1999; Gallina & Otero, 2009; Tschopp, Mateus & Benson, 2015). 

343 Cetiosauriscus has both a prespinal and postspinal lamina (prsl and psl), however, the prsl in 

344 Cetiosauriscus is not rugose, but rather thin and gracile.

345

346 To summarize, more characters indicative of a neosauropod origin of this caudal are present, 

347 than those indicative of a non-neosauropod (eu)sauropod origin. However, due to the lack of 

348 complete transverse processes and neural spine, several morphological characters remain 

349 ambiguous.

350

351

352 Leicester caudal LEICT G.418.1956.21.0

353

354 The middle caudal LEICT G.418.1956.21.0 also shows characters both shared with non-

355 neosauropod eusauropods, as well as neosauropods.

356 The rhomboid, hexagonal to octagonal shape of the anterior articular surface is not seen in 

357 Cetiosauriscus; the middle caudal articular surfaces of the latter are rather round to oval in 

358 shape. Hexagonal articular surfaces are a derived condition found in neosauropods, such as 

359 Apatosaurus ajax, Suuwassea, but also in Camarasaurus, Demandasaurus and Dicraeosaurus 

360 (Upchurch & Martin, 2002; Tschopp, Mateus & Benson, 2015). Octagonal articular surfaces are 

361 also a derived feature seen in Dicraeosaurus and the potential neosauropod Cetiosaurus 

362 glymptoniensis (Upchurch & Martin, 2003; Harris, 2006).
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363 The ventrolateral crests seen on the ventral side of this caudal are a neosauropod feature, 

364 found in many Late Jurassic neosauropods (Harris, 2006; Mocho et al., 2017). The ventral 

365 hollow seen in LEICT G.418.1956.21.0 is also found in several neosauropods, such as 

366 Tornieria, Diplodocus, Supersaurus, but also Demandasaurus and Isisaurus (Tschopp et al., 

367 2017). However, it is also seen in an unnamed caudal vertebra from the Bajocian-Bathonian of 

368 Skye, UK 

369 (Liston, 2004). The ventral hollow is also present in Cetiosauriscus, though not as pronounced 

370 as in LEICT G.418.1956.21.0.

371 The longitudinal ridge is another neosauropod feature, though it may also have been present in 

372 non-neosauropod eusauropods. A longitudinal ridge is seen on both Cetiosauriscus and LEICT 

373 G.418.1956.21.0, as are the lateral pneumatic foramina on the centra, and the ventrolateral 

374 crests.

375 Nutrient foramina are seen on the Late Jurassic diplodocid Suuwassea, but also on Late 

376 Jurassic Portuguese non-neosauropod eusauropods; small foramina on the ventral surface of 

377 the centrum are also seen in the anterior caudals of non-neosauropod eusauropods from Late 

378 Jurassic of Portugal (Mocho et al., 2017).

379

380 Phylogenetic signal and implications for biodiversity

381

382 As shown in Figure 4, the phylogeny retrieves the Peterborough caudal PETMG R272 as a 

383 diplodocoid, and the Leicester caudal LEICT G.418.1956.21.0 as a diplodocid. The adding of 

384 these two elements as OTU’s did change some of the original relationships of the Tschopp et al. 

385 (2015) analysis, and the extremely simplified tree might not be a projection of real evolutionary 

386 trends. The strict consensus tree resulted in a great polytomy, as with Tschopp et al. (2015), 

387 therefore, a 50% majority rule consensus tree was recovered instead. However, the caudal 

388 characters that could be scored for the material from Peterborough and Leicester gave enough 

PeerJ reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)

Manuscript to be reviewed

Phil
Highlight
Again, it's a dicraeosaurid

pmannion
Highlight
The Chinese Middle Jurassic mamenchisaurid Chuanjiesaurus also has ventrolateral ridges in some of its middle caudal centra (Sekiya 2011).

Sekiya T. 2011. Re-examination of Chuanjiesaurus anaensis (Dinosauria: Sauropoda) from the Middle Jurassic Chuanjie Formation, Lufeng County, Yunnan Province, southwest China. Memoir of the Fukui Prefectural Dinosaur Museum 10: 1–54.



389 information for a placement within Neosauropoda, whereas others (e.g. Barosaurus affinis) were 

390 unstable taxa. In Tschopp et al. (2015), however, a pruned tree is preferred. Though in this 

391 current analysis not many steps were needed to force the caudals outside of Neosauropoda (4 

392 and 8, respectively), the characters that unite them with diplodocoids and diplodocids are 

393 characters that are clearly visible on the caudals. This analysis shows, therefore, that in addition 

394 to  Cetiosauriscus,  a diplodocoid and a diplodocid were present in the Oxford Clay Formation. 

395 Neosauropods were already reported from the Callovian of Europe (e.g. Alifanov & Averianov, 

396 2003; Mocho et al., 2017) and also tentatively known from the UK (e.g. Noè, Liston & Chapman, 

397 2010). Therefore, this analysis confirms the presence of neosauropods in the Callovian of the 

398 UK. Though not as species-rich as the later Kimmeridgian-Tithonian Tendaguru beds (Remes, 

399 2007, 2009) or the Morrison Formation (Foster, 2003) or the Lourinhã Formation (Mannion et 

400 al., 2012, 2013; Mocho, Royo-Torres & Ortega, 2014; Mocho et al., 2016), the Peterborough 

401 Oxford Clay material thus far has hinted at a high diversity in sauropods: a non-neosauropod 

402 eusauropod (Heathcote & Upchurch, 2003), a diplodocoid, a diplodocid (this research) a 

403 possible brachiosaurid (Upchurch & Martin, 2003), possible diplodocid posterior caudals (Noè, 

404 Liston & Chapman, 2010) and a possible camarasaurid (Martill, 1988) or turiasaurid (Royo 

405 Torres & Upchurch, 2012; Mocho et al., 2015). This indicates an equivalent richness of 

406 sauropod groups from this Middle Jurassic marine formation, to the classic Late Jurassic 

407 terrestrial Morrison, Lourinhã and Tendaguru formations. In the future, more material can be 

408 added to this list. This shows the importance of paying close attention to caudal characters, as 

409 phylogenetic information might otherwise be missed which would indicate the range of fauna 

410 present in a given environment. 

411

412

413 CONCLUSIONS

414
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415 In summary, the anterior isolated caudal shares few morphological features with non-

416 neosauropod eusauropods, and most morphological features with neosauropods. The middle 

417 isolated caudal shares few features with non-neosauropod eusauropods, and more with 

418 neosauropods. It is therefore most likely that these caudals belong to a neosauropod dinosaurs, 

419 and are different from Cetiosauriscus. Phylogenetic analysis tentatively retrieves these caudals 

420 as a diplodocoid, and diplodocid, respectively. Therefore, these caudals give a higher sauropod 

421 species diversity to the Peterborough Oxford Clay Formation than previously assumed. This 

422 diversity may be as high as the Late Jurassic Morrison, Tendaguru or Lourinhã Formations.

423
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430

431

432 Figure captions

433

434 Figure 1: Geological setting  - geographical setting of King’s Dyke and Star Pit, Whittlesey 

435 (adapted after Hudson & Martill (1994) with notes from Liston (2006)).

436

437 Figure 2: Anterior caudal PETMG PETMG R272 in anterior (A), posterior (B), lateral (C), ventral 

438 (D), and dorsal (E) views. Scalebar is 10 cm.

439
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440 Figure 3: Middle caudal Leict LEICT G.418.1956.21.0 in anterior (A) right lateral (B), posterior 

441 (C), left lateral (D), dorsal (E), ventral (F) views. Scalebar 10 cm.

442

443 Figure 4: 50% Reduced consensus tree based on Tschopp et al., (2015) with revised 

444 Cetiosauriscus (purple) coding, and additionally PETMG R272 (blue) and LEICT 

445 G.418.1956.21.0 (red) as OTU’s.
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Figure 1(on next page)

Geographical position of King’s Dyke and Star Pit, Whittlesey, UK.

(adapted after Hudson & Martill (1994), with notes from Liston, (2006)).

PeerJ reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)

Manuscript to be reviewed



Eyebury Farm

Eye

Kings Dyke Whittlesey

Orton

Dogsthorpe

Star Pit

Peterborough

Yaxley

A 15

A 805

B 1091

A 47

A 1
0                2 Km

100 Km

200 Km

PeerJ reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)

Manuscript to be reviewed



Figure 2(on next page)

Anterior caudal PETMG R272 (Photographs taken by FH).

In anterior (A), posterior (B), lateral (C), ventral (D), and dorsal (E) views. Scalebar is 10 cm.
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Figure 3(on next page)

Middle caudal Leict G418.1956.21.0 (Photographs by FH).

In anterior (A) right lateral (B), posterior (C), left lateral (D), dorsal (E), ventral (F) views.

Scalebar 10 cm.

PeerJ reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)

Manuscript to be reviewed



10 cm

nutrient 

foramina

nutrient foramina

chevron 

facets

longitudinal 

ridge

fossa

neurocentral sutures

ventrolateral crest

ventral hollow

neural 

canal

transverse process 
rim

A B

C D

E F

neurocentral sutures

PeerJ reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)

Manuscript to be reviewed



Figure 4(on next page)

50% majority rule consensus tree based on Tschopp et al., (2015).

With positions of Cetiosauriscus (purple), and additionally PETMG R272 (blue) and Leict

G.418.1956.21.0 (red) as OTU’s.
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