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An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle
Jurassic) of King's Dyke pit near Peterborough, UK, is examined. Despite post-mortem
residency on the seabed, some diagnostic features are preserved, including the presence
of a ventral keel, a ‘shoulder’ indicating a wing-like transverse process, along with a
possible prespinal lamina. This, together with an overall high complexity of the anterior
caudal transverse process (ACTP) complex, indicates that this caudal belonged to a
derived eusauropod, most likely a neosauropod. A second isolated middle-posterior caudal
from the Oxford Clay of Peterborough is also described, also showing some diagnostic
features, despite the neural spine and neural arch not being preserved and the
neurocentral sutures being unfused. The positioning of the neurocentral sutures on the
anterior 1/3rd of the centrum indicates a middle caudal position, and the presence of faint
ventrolateral crests, as well as a rhomboid anterior articulation surface, show neosauropod
affinities. The presence of possible nutrient foramina are only tentative evidence of a
neosauropod origin, as they are also found in Late Jurassic non-neosauropod eusauropods.
As the caudals from the two other known sauropods from the Peterborough Oxford Clay,
Cetiosauriscus stewarti and a brachiosaurid, do not show the features seen on either of the
new elements described, both isolated caudals indicate a higher sauropod species
diversity in the region than previously recognised. A reduced consensus tree using these
caudal characters shows a diplodocoid affinity for the anterior caudal, and a diplodocid
origin for the middle caudal. Together with Cetiosauriscus, and other material assigned to
different sauropod groups, this study indicates the presence of a high sauropod
biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and
Tendaguru formations. This study shows that it is still beneficial to examine isolated
elements, as these may be indicators for species richness in deposits that are otherwise

Peer] reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)


Phil
Highlight
Incorporate the age and the fact that this is the UK (!) in the title...


PeerJ Manuscript to be reviewed

poor in terrestrial fauna.

Peer] reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)



Peer]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26

Additional sauropod material from the Peterborough Oxford Clay: evidence for higher

sauropod diversity

Femke M. HOLWERDA?"", Mark EVANS?¢, Jeffrey J. LISTON2de.fg

Author affiliations

a Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung
fur Paldontologie und Geologie, Richard-Wagner-Strale 10, 80333 Minchen, Germany

b Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the
Netherlands

¢New Walk Museum and Art Gallery, Leicester Arts and Museums Service, Leicester, United
Kingdom

d Palaeobiology, Department of Natural Sciences, National Museum of Scotland, Old Town,
Edinburgh, Chambers Street, Edinburgh, EH1 1JF, Scotland

e School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's

Road, Bristol, BS8 1RJ, England

fInstitute of Biodiversity, Animal Health and Comparative Medicine, College of Medical,
Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ,
Scotland

¢ Vivacity-Peterborough Museum, Priestgate, Peterborough, PE1 1LF, England

*corresponding author: f.holwerda@Irz.uni-muenchen.de

ABSTRACT

Peer] reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)



Peer]

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
472
43
44
45
46
47
48
49
50
51

52

An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle
Jurassic) of King’s Dyke pit near Peterborough, UK, is examined. Despite post-mortem
residency on the seabed, some diagnostic features are preserved, including the presence of a
ventral keel, a ‘shoulder’ indicating a wing-like transverse process, along with a possible
prespinal lamina. This, together with an overall high complexity of the anterior caudal transverse
process (ACTP) complex, indicates that this caudal belonged to a derived eusauropod, most
likely a neosauropod. A second isolated middle-posterior caudal from the Oxford Clay of
Peterborough is also described, also showing some diagnostic features, despite the neural
spine and neural arch not being preserved and the neurocentral sutures being unfused. The
positioning of the neurocentral sutures on the anterior 1/3rd of the centrum indicates a middle
caudal position, and the presence of faint ventrolateral crests, as well as a rhomboid anterior
articulation surface, show neosauropod affinities. The presence of possible nutrient foramina
are only tentative evidence of a neosauropod origin, as they are also found in Late Jurassic
non-neosauropod eusauropods. As the caudals from the two other known sauropods from the
Peterborough Oxford Clay, Cetiosauriscus stewarti and a brachiosaurid, do not show the
features seen on either of the new elements described, both isolated caudals indicate a higher
sauropod species diversity in the region than previously recognised. A reduced consensus tree
using these caudal characters shows a diplodocoid affinity for the anterior caudal, and a
diplodocid origin for the middle caudal. Together with Cetiosauriscus, and other material
assigned to different sauropod groups, this study indicates the presence of a high sauropod
biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and
Tendaguru formations. This study shows that it is still beneficial to examine isolated elements,
as these may be indicators for species richness in deposits that are otherwise poor in terrestrial

fauna.
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INTRODUCTION

The Middle Jurassic Oxford Clay has yielded many marine vertebrates (ichthyosaurs,
plesiosaurs, pliosaurs, marine crocodiles, sharks, and fishes (Andrews, 1910, 1913)), as well as
invertebrates (Leeds, 1956). Land-dwelling vertebrates, however, are rare from this marine
setting. The Jurassic Gallery of the Vivacity-Peterborough Museum in Peterborough, and the
New Walk Museum and Art Gallery in Leicester, however, house some dinosaur specimens
from the Oxford Clay of Peterborough. The material consists of isolated partial elements of a
stegosaur, and several isolated sauropod fossils, including a partial anterior caudal and a partial
middle caudal. The caudals have been submerged in seawater, however, they do display some
characters which may be used for diagnosis.

Sauropods are represented in the Middle Jurassic of the UK by two species thus far: the
Bajocian-Bathonian Cetiosaurus oxoniensis (Phillips, 1871; Owen, 1875) and the Callovian
Cetiosauriscus stewarti (Charig, 1980, 1993). Cetiosauriscus is known from material found in
the Peterborough Oxford Clay, and has thus far not been encountered from other localities
(Woodward, 1905; Heathcote & Upchurch, 2003; Nog, Liston & Chapman, 2010). The type
material comprises of a partial caudal axial column, a femur, and a partial pelvic girdle
(Woodward, 1905). Another Cetiosauriscus, Cetiosauriscus greppini, is known from Switzerland,
however, this specimen is from the Late Jurassic, and moreover, has recently been reidentified
as a basal titanosauriform (Schwarz, Wings & Meyer, 2007).

Next to Cetiosauriscus, four anterior caudal vertebrae (NHMUK R1984), ascribed to a

brachiosaurid (Upchurch & Martin, 2003, Nog, Liston & Chapman, 2010, Fig.6), as well as a
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partial distal tail segment including eight posterior(most) caudals, ascribed to a diplodocid
(Upchurch, 1995), are described from the Oxford Clay material (Noé, Liston & Chapman, 2010).
Finally, three undiagnosed ‘camarasaurid’ sauropod teeth are known from the Oxford Clay
(Martill, 1988), which might tentatively be turiasaurid (Royo Torres & Upchurch, 2012; Mocho et
al., 2015).

Despite the locality being a classic site for fossils, and many historical finds of marine reptiles
having been described and redescribed, the sauropod fauna from the Oxford Clay has not
received much attention thus far. Though associated material such as Cetiosauriscus is scarce,
isolated material can be studied in detail and reveal information on both morphology and
species diversity. This is especially important for material which has its provenance in the
Middle Jurassic, as major sauropod radiation and evolution events happened during the Early
and Middle Jurassic, with most major clades firmly established worldwide at the late Middle
Jurassic, while sauropod material remains rare from this time, and not all evolutionary patterns
are well understood. Moreover, caudal vertebrae have rarely been given appropriate attention,
as only recently have caudal characters begun to be recognized as taxonomically diagnostic
(e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated
sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the
New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both
previously indexed in collections under ‘Cetiosaurus’), and compare them to contemporaneous

and other sauropod remains.

MATERIALS & METHODS

Institutional abbreviations

PETMG R.= Vivacity-Peterborough Museum, UK

LEICT G.= New Walk Museum, Leicester, UK
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NHMUK = Natural History Museum, London, UK

Systematic Palaeontology

Dinosauria (Owen, 1842)

Saurischia (Seeley, 1888)

Sauropoda (Marsh, 1878)

Eusauropoda (Upchurch, 1995)

?Cetiosauridae (Lydekker, 1888) sensu (Upchurch, Barrett & Dodson, 2004)

?Neosauropoda (Bonaparte, 1986a)

Geological setting

Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that

it is recorded as being from the King‘s Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is

from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The

original label on the specimen dates back to 1956, however, a number of brick pits were open at

that stage. The strata of King’s Dyke pit extend from the Kellaways Formation up to the

Stewartby Member of the Peterborough Formation (see Hudson & Martill, 1994, for a more

detailed geological setting), therefore date exclusively to the Callovian (Middle Jurassic, ~155

Ma).
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RESULTS

Morphology

The anterior caudal PETMG R272 (See Figure 2) measures a maximum of 27,2 cm
dorsoventrally and 26,5 cm transversely. It is covered in bivalves which are embedded in the
bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine
is missing, as well as the entire left transverse process; the right transverse process is partially
preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the
anterior side protrudes further ventrally than the posterior side. The relative axial compression of
the centrum, together with the apparent connection between the neural arch and base of the
transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most

caudals.

In anterior view (Figure 2A), the articular surface of the centrum is oval to round, and is
transversely wider than dorsoventrally high. The outer surface of the articular surface is convex
and displays circular striations, as is common for weightbearing bones in sauropods. The

internal £1/3rd of the anterior articular surface is mildly concave. The entire articular surface is
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'‘cupped' by a thick rim, which mostly follows the oval to round contour of the articular surface,
however, it is flattened ventrally, and on the dorsal rim it shows a slight indent, rendering the
dorsal rim heart-shaped. This rim is also seen in lateral view (Figure 2C). In posterior view
(Figure 2B), the articular surface is heart-shaped to triangular: the ventral rim ends in a
transversely pointed shape, whereas the dorsal rim shows a rounded depression on the midline,
flanked by parallel convex bulges. The articular surface itself is concave, with an additional
depression in the mid £1/3rd part of the surface. The posterior articular surface is less rugosely

‘cupped' by its rim than the anterior one.

In ventral view (Figure 2D), the anterior rim of the centrum shows rudimentary semilunar shaped
chevron facets, which are not seen on the posterior side. The transverse processes are visible
as triangular protrusions that project laterally. Below each is a small oval depression. The lateral
sides of the centrum are constricted, and flare out towards the anterior and posterior sides. A
keel-like structure can be seen on the ventral axial midline of this vertebra. This keel is not
visible as a thin protruding line, but more as a broad band protruding slightly ventrally from the
ventral part of the centrum. It is possible this keel is formed by the close spacing of the

ventrolateral rims of the centrum (Harris, 2006).

The anterior side of the neural canal and the base of the neural arch are set in a dorsoventrally
high, anteroposteriorly flattened sheet of bone, consisting of the
spinodiapophyseal/prezygodiapophyseal and centrodiapophyseal laminae, which give the
neural arch (without transverse processes and neural spine) a roughly triangular shape (Figure
2A). In particular, the high projection on the neural arch of the diapophyseal laminae suggest
the existence of a ‘shoulder’, which would make the transverse processes wing-shaped. The
neural canal is broadly arched (measuring 3,3 cm by 3,8 cm). Its dorsal rim is overshadowed by

a lip-like, triangular protrusion, which could be a remnant of the hypantrum (Figure 2A). Right
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above this lip-like process, a rugosely striated lamina persists along the dorsoventral midline of
the neural arch, up to the dorsal-most rim of the specimen. It is not entirely clear if this is a scar
of a rudimentary single intraprezygapophyseal lamina or a prespinal lamina (Figure 2A). The
posterior side of the neural canal is more teardrop-shaped, and is set within the neural arch,
which displays shallow depressions on both sides of the neural canal; these could be small
postzygapophyseal spinodiapophyseal fossae (pocdf, sensu (Wilson et al., 2011, Figure 2B)).
Directly above it, the rami of the bases of the postzygapophyses are clearly visible. The
postzygapophyses are rounded to triangular in shape (Figure 2B). A deep oval depression is
seen between them; this could be the remnant of the spinopostzygapophyseal fossae (spof,
sensu (Wilson et al., 2011, Figure 2B). Finally, a V-shaped striated process is seen between the

two postzygapophyses, which could be the remnant of the hyposphene.

The transverse processes appear like rounded bulges, seen in anterior and lateral view (Figure
2A,C). The ventral sides of the bases of both transverse processes are concave. In lateral view,
the transverse process has a rounded to triangular shape, and is axially wider ventrally than
dorsally. It is dorsally supported by a spinodiapophyseal lamina (Figure 2E), and seems to have
an anterior centrodiapophyseal lamina; however, a posterior centrodiapophyseal lamina is not

clearly visible.

The middle caudal LEICT G.418.1956.21.0 (Figure 3) is an isolated element, and has no
connection to the anterior caudal. Unlike the anterior caudal, this middle caudal centrum is well-
preserved, with minute details clearly visible. The neural arch and neural spine are not
preserved, and as the unfused neurocentral sutures show, the animal this caudal belonged to,
was not fully grown (Brochu, 1996) and probably in Morphological Ontogenetic Stage 2 (MOS

2), rather than MOS 1, given the large size (sensu Carballido & Sander, 2014).
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The centrum is 12,9 cm long axially, its anterior tranverse width is 21,7 cm and its posterior
width 18,6 cm, with posterior height at 15,2 cm. The centrum is rectangular in shape, seen in
dorsal (Figure 3E) and ventral view (Figure 3F), with mildly flaring anterior and posterior lateral
ends of the articulation surfaces. In lateral view (Figure 3B,D), the posterior ventral side
protrudes further ventrally than the anterior ventral side. However, the anterior dorsal side
projects further dorsally than the posterior side. Transverse processes are only rudimentarily

present, as oval, rugose, lateral bulges.

The anterior articular surface is rhomboid (hexagonal to almost octagonal) in shape (Figure 3A);
the dorsal 1/3rd shows a wide transverse extension of the articular rim, whilst the lower 1/3rd
shows a much narrower width, with sharply beveled constrictions between them. The ventral
side shows a rounded indent on the midline, giving this articular surface a heart-shaped ventral
rim. The rim itself is about 2-3 cm thick, shows concentric striations, and protrudes slightly
anteriorly. The inner articular surface is flat to concave, however, the kernel shows a rugose
rounded protrusion of bone. The morphology of the posterior articular surface (Figure 3C) is
much more simple, oval in shape, and is wider transversely than dorsoventrally high. The
articular rim is less thick than anteriorly; about 1-2cm. The articular surface is mildly concave,
with a dorsal slightly convex bulge, which is common in non-neosauropod eusauropods (e.g.
Cetiosaurus, Patagosaurus). The dorsal side of the centrum (Figure 3E) shows well-preserved
and unfused neurocentral sutures, which span approximately the anterior 2/3rds of the axial
length of the centrum. The ventral half of the neural canal is clearly visible, and shows four
axially elongate, deep nutrient foramina embedded within the posterior half of the centrum. A

further two shallow nutrient foramina are visible.

The ventral side of the centrum (Figure 3F) shows two sets of chevron facets, the posterior ones

of which are more pronounced. Several rugose striations run along the axial length of the
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ventral surface, probably for ligament attachments. Along the midline, a ventral hollow runs
anteroposteriorly, braced on each lateral side by a rounded, slightly protruding beam. On each
lateral side of these, shallow oval asymmetrical depressions are visible; these are caused by
preparing away sediment and debris. Two faint ventrolateral crests are also possibly present,
also visible in right lateral view (Figure 3B). The crests are not pronounced, and on the left
lateral side (Figure 3D) the crest does not run for the entire anteroposterior length. The right
lateral side (Figure 3B) furthermore shows a faint longitudinal ridge, however, in left lateral view
(Figure 3D), this ridge does not persist on the entire lateral side of the centrum.The lateral side
of the centrum further shows several small nutrient foramina. Finally, very shallow oval

depressions, possibly pneumatic, are seen ventral to the bulges of the transverse processes.

Phylogenetic framework

To explore possible phylogenetic relationships, the caudals were used as separate Operational
Taxonomic Units (OTU’s). The morphological characters of both caudals were coded in an
existing matrix in Mesquite (Maddison & Maddison, 2010) using non-neosauropod eusauropods
and neosauropods, from Tschopp et al., (2015). See supplementary material for Tschopp et al.
(2015), for the character matrix, explanatory notes, and references therein. Only anterior caudal
characters could be coded for PETMG R272, and only anterior to middle, and middle to
posterior characters could be coded for LEICT G.418.1956.21.0. Next to these codings, the
anterior and middle caudals of Cetiosauriscus stewarti were recoded, based on the descriptions
of Woodward (1905), Charig (1980) and based on pictures of NHMUK R3078 which resulted in
some character changes. See Supplemental file for our character matrix, adapted from Tschopp
et al., (2015).

The matrix was analysed using TNT (Goloboff, Farris & Nixon, 2008; Goloboff & Catalano,

2016) using TBR, which yielded 37156 trees with a best score of 2026. A strict consensus tree
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rendered too many polytomies, therefore a 50% majority rule consensus analysis was

performed. See Figure 4 for the simplified 50% majority consensus tree.

Cetiosauriscus is retrieved as a non-neosauropod eusauropod in this analyis, basal to Jobaria
and more derived than Mamenchisaurids and basal non-neosauropod eusauropods, which is
the same result as in Tschopp, Mateus and Benson, (2015), but see Heathcote & Upchurch
(2003). The anterior caudal PETMG R272 is retrieved a a diplodocoid, more derived than
Haplocanthosaurus, but basal to Zapalasaurus and all derived neosauropods. Characters that
unite it with Diplodocoidea (sensu Tschopp, Mateus and Benson (2015)) are the presence of
well-defined anterior diapophyseal laminae on transverse processes, as well as having an
anterior neural arch base with a transverse width/anterioposterior length ratio higher than 1
(Tschopp, Benson and Mateus, 2015).

The middle caudal LEICT G.418.1956.21.0 is retrieved as more derived than Galeomopus,
basal to Barosaurus and all other diplodocids, and is firmly nested within Diplodocidae.
Characters that unite it with Diplodocidae (sensu Tschopp, Mateus and Benson (2015)) are
having a trapezoidal articular surface, a straight ventral surface in lateral view, and articular
surfaces being wider than high (Tschopp, Benson and Mateus, 2015). Furthermore, it takes 4
additional steps to force PETMG R272 outside of Neosauropoda, and it takes an additional 8

steps to force LEICT G.418.1956.21.0 outside of Neosauropoda.

DISCUSSION

Systematics

Peterborough caudal PETMG R272
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The anterior caudal PETMG R272 shows characteristics shared with both non-neosauropod
eusauropods, as well as neosauropods.

The slightly more rounded shape of the centrum in lateral view is shared with Apatosaurus.
Anterior caudals of Cetiosauriscus are strongly axially compressed, as also seen in non-
neosauropod eusauropods such as Cetiosaurus and Patagosaurus (Woodward, 1905; Charig,
1980; Bonaparte, 1986b; Upchurch & Martin, 2003).

The flat anterior articular surface and the mildly concave posterior articular surface of the
centrum is a common feature, shared with non-neosauropod eusauropods (e.g. Cetiosaurus,
Patagosaurus (Bonaparte, 1986b; Upchurch & Martin, 2003). The thick rim cupping the anterior
surface is found in early Middle Jurassic non-neosauropod eusauropods (Cetiosaurus) but also
in the (non-neosauropod eusauropod/potentially basal neosauropod) Callovian Cetiosauriscus
(Woodward, 1905; Charig, 1980; Heathcote & Upchurch, 2003) and in the Oxfordian-
Kimmeridgian basal titanosauriform Vouivria damparisensis (Mannion, Allain & Moine, 2017).
The morphology of the ventrally offset anterior articular surface, together with pronounced
chevron facets, is seen in non-neosauropod eusauropods from the Late Jurassic of Portugal
(Mocho et al., 2017), however, this type of assymmetry is also seen in Apatosaurus louisae

(Harris 2006).

The ventral keel is found in an Early Jurassic indeterminate sauropod caudal from York, UK
(Manning, Egerton & Romano, 2015), however, it is also found in neosauropods, specifically in
flagellicaudates and diplodocids Apatosaurus ajax, Apatosaurus louisae, and Suuwassea
(Harris, 2006; Tschopp, Mateus & Benson, 2015). The former has a ventral keel which results
from a transverse constriction of the ventral side of the centrum, forming a triangular protrusion
on the ventral articular surface. This is also seen in non-neosauropod cervicals (such as

Cetiosaurus, Patagosaurus, Spinophorosaurus, Amygdalodon, Tazoudasaurus (Bonaparte,

Peer] reviewing PDF | (2018:02:25725:0:1:NEW 15 Mar 2018)


Phil
Highlight
It's constrained to Oxfordian

Phil
Highlight
This is a dicraeosaurid, not a diplodocid

Phil
Highlight
Clarify which taxon is the "former" here

pmannion
Highlight
flagellicaudatans


Peer]

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337

1986¢; Rauhut, 2003; Upchurch & Martin, 2003; Allain & Aquesbi, 2008; Remes et al., 2009)).
The latter keel-like form, which seems to match more the morphology of PETMG R272, forms
when there is a very close association of the two ventrolateral ridges that run along the
ventralmost side of the centrum, and is only seen in neosauropods. No keel-like structure is
seen in Cetiosauriscus anterior caudals, nor on the ‘brachiosaurid’ caudals from the Oxford Clay
(Upchurch & Martin, 2003, Noé, Liston & Chapman, 2010, Fig.6); the ventral surface of these

anterior caudal vertebrae appearing to be smooth.

The triangular shape of the anterior caudal transverse process (ACTP) complex in PETMG
R272 is seen to a lesser extent in non-neosauropod eusauropods, such as Tazoudasaurus, but
also in an unnamed anterior caudal from a titanosauriform from the Bajocian of Normandie,
France, and in indeterminate non-neosauropod sauropods from the Late Jurassic of Portugal
(Allain & Aquesbi, 2008; Lang, 2008; Mocho et al.). The pronounced shape, however, is more
suggestive of ‘wing’-shaped transverse processes, due to the possible existence of a ‘shoulder’
(see Figure 2). This is used as a caudal character to define diplodocids (Whitlock, 2011;
Tschopp, Mateus & Benson, 2015), and is found neither in non-neosauropod eusauropods nor
the Bajocian French titanosauriform. However, it is also seen in other neosauropods, such as
Camarasaurus and titanosauriforms (Gallina & Otero, 2009). To a lesser extent, a triangular,
sheet-like ACTP is seen in Cetiosauriscus, as well as the ‘brachiosaurid’ caudals from the
Oxford Clay, however, the anterior caudals of Cetiosauriscus do not show a pronounced
‘shoulder’. Moreover, the transverse processes of PETMG R272 are robust, and rounded to
triangular in cross-section, whereas those of Cetiosauriscus are gracile, dorsoventrally
elongated and axially compressed, providing a more oval cross-section.

Furthermore, the presence of clearly defined anterior centrodiapophyseal laminae (acdl) is

considered to be an autapomorphy in the Late Jurassic titanosauriform Vouivria, together with
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338 posterior centrodiapophyseal laminae (pcdl). Unfortunately, in PETMG R272 no pcdl is clearly
339 visible, however, the acdl shows a possible derived state.

340 If the rugosity dorsal to the prezygapophyses is indeed a prespinal lamina (prsl) and not the
341 single intraprezygapophyseal lamina (stpol), then this is yet another neosauropod feature on
342 PETMG R272 (Wilson, 1999; Gallina & Otero, 2009; Tschopp, Mateus & Benson, 2015).

343 Cetiosauriscus has both a prespinal and postspinal lamina (prsl and psl), however, the prsl in
344 Cetiosauriscus is not rugose, but rather thin and gracile.

345

346 To summarize, more characters indicative of a neosauropod origin of this caudal are present,
347 than those indicative of a non-neosauropod (eu)sauropod origin. However, due to the lack of
348 complete transverse processes and neural spine, several morphological characters remain
349 ambiguous.

350

351

352 Leicester caudal LEICT G.418.1956.21.0

353

354 The middle caudal LEICT G.418.1956.21.0 also shows characters both shared with non-

355 neosauropod eusauropods, as well as neosauropods.

356 The rhomboid, hexagonal to octagonal shape of the anterior articular surface is not seen in
357 Cetiosauriscus; the middle caudal articular surfaces of the latter are rather round to oval in
358 shape. Hexagonal articular surfaces are a derived condition found in neosauropods, such as
359 Apatosaurus ajax, Suuwassea, but also in Camarasaurus, Demandasaurus and Dicraeosaurus
360 (Upchurch & Martin, 2002; Tschopp, Mateus & Benson, 2015). Octagonal articular surfaces are
361 also a derived feature seen in Dicraeosaurus and the potential neosauropod Cetiosaurus

362 glymptoniensis (Upchurch & Martin, 2003; Harris, 2006).
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The ventrolateral crests seen on the ventral side of this caudal are a neosauropod feature,
found in many Late Jurassic neosauropods (Harris, 2006; Mocho et al., 2017). The ventral
hollow seen in LEICT G.418.1956.21.0 is also found in several neosauropods, such as
Tornieria, Diplodocus, Supersaurus, but also Demandasaurus and Isisaurus (Tschopp et al.,
2017). However, it is also seen in an unnamed caudal vertebra from the Bajocian-Bathonian of
Skye, UK

(Liston, 2004). The ventral hollow is also present in Cetiosauriscus, though not as pronounced
as in LEICT G.418.1956.21.0.

The longitudinal ridge is another neosauropod feature, though it may also have been present in
non-neosauropod eusauropods. A longitudinal ridge is seen on both Cetiosauriscus and LEICT
(G.418.1956.21.0, as are the lateral pneumatic foramina on the centra, and the ventrolateral
crests.

Nutrient foramina are seen on the Late Jurassic diplodocid Suuwassea, but also on Late
Jurassic Portuguese non-neosauropod eusauropods; small foramina on the ventral surface of
the centrum are also seen in the anterior caudals of non-neosauropod eusauropods from Late

Jurassic of Portugal (Mocho et al., 2017).

Phylogenetic signal and implications for biodiversity

As shown in Figure 4, the phylogeny retrieves the Peterborough caudal PETMG R272 as a
diplodocoid, and the Leicester caudal LEICT G.418.1956.21.0 as a diplodocid. The adding of
these two elements as OTU’s did change some of the original relationships of the Tschopp et al.
(2015) analysis, and the extremely simplified tree might not be a projection of real evolutionary
trends. The strict consensus tree resulted in a great polytomy, as with Tschopp et al. (2015),
therefore, a 50% majority rule consensus tree was recovered instead. However, the caudal

characters that could be scored for the material from Peterborough and Leicester gave enough
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389 information for a placement within Neosauropoda, whereas others (e.g. Barosaurus affinis) were
390 unstable taxa. In Tschopp et al. (2015), however, a pruned tree is preferred. Though in this

391 current analysis not many steps were needed to force the caudals outside of Neosauropoda (4
392 and 8, respectively), the characters that unite them with diplodocoids and diplodocids are

393 characters that are clearly visible on the caudals. This analysis shows, therefore, that in addition
394 to Cetiosauriscus, a diplodocoid and a diplodocid were present in the Oxford Clay Formation.
395 Neosauropods were already reported from the Callovian of Europe (e.g. Alifanov & Averianov,
396 2003; Mocho et al., 2017) and also tentatively known from the UK (e.g. Noé, Liston & Chapman,
397 2010). Therefore, this analysis confirms the presence of neosauropods in the Callovian of the
398 UK. Though not as species-rich as the later Kimmeridgian-Tithonian Tendaguru beds (Remes,
399 2007, 2009) or the Morrison Formation (Foster, 2003) or the Lourinhd Formation (Mannion et
400 al., 2012, 2013; Mocho, Royo-Torres & Ortega, 2014; Mocho et al., 2016), the Peterborough
401 Oxford Clay material thus far has hinted at a high diversity in sauropods: a non-neosauropod
402 eusauropod (Heathcote & Upchurch, 2003), a diplodocoid, a diplodocid (this research) a

403 possible brachiosaurid (Upchurch & Martin, 2003), possible diplodocid posterior caudals (Noég,
404 Liston & Chapman, 2010) and a possible camarasaurid (Martill, 1988) or turiasaurid (Royo

405 Torres & Upchurch, 2012; Mocho et al., 2015). This indicates an equivalent richness of

406 sauropod groups from this Middle Jurassic marine formation, to the classic Late Jurassic

407 terrestrial Morrison, Lourinhd and Tendaguru formations. In the future, more material can be
408 added to this list. This shows the importance of paying close attention to caudal characters, as
409 phylogenetic information might otherwise be missed which would indicate the range of fauna
410 presentin a given environment.

411

412

413 CONCLUSIONS

414
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In summary, the anterior isolated caudal shares few morphological features with non-
neosauropod eusauropods, and most morphological features with neosauropods. The middle
isolated caudal shares few features with non-neosauropod eusauropods, and more with
neosauropods. It is therefore most likely that these caudals belong to a neosauropod dinosaurs,
and are different from Cetiosauriscus. Phylogenetic analysis tentatively retrieves these caudals
as a diplodocoid, and diplodocid, respectively. Therefore, these caudals give a higher sauropod
species diversity to the Peterborough Oxford Clay Formation than previously assumed. This

diversity may be as high as the Late Jurassic Morrison, Tendaguru or Lourinhd Formations.

ACKNOWLEDGEMENTS

The authors would like to thank Glenys Wass and the staff of Peterborough Museum for kindly

providing access to the specimen, as well as to the late Arthur Cruickshank of the New Walk

Museum, Leicester, for preparing the Leicester material.

Figure captions

Figure 1: Geological setting - geographical setting of King’s Dyke and Star Pit, Whittlesey

(adapted after Hudson & Martill (1994) with notes from Liston (2006)).

Figure 2: Anterior caudal PETMG PETMG R272 in anterior (A), posterior (B), lateral (C), ventral

(D), and dorsal (E) views. Scalebar is 10 cm.
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Figure 3: Middle caudal Leict LEICT G.418.1956.21.0 in anterior (A) right lateral (B), posterior

(C), left lateral (D), dorsal (E), ventral (F) views. Scalebar 10 cm.
Figure 4: 50% Reduced consensus tree based on Tschopp et al., (2015) with revised

Cetiosauriscus (purple) coding, and additionally PETMG R272 (blue) and LEICT

G.418.1956.21.0 (red) as OTU’s.
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Figure 1 (on next page)

Geographical position of King’'s Dyke and Star Pit, Whittlesey, UK.

(adapted after Hudson & Martill (1994), with notes from Liston, (2006)).
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Figure 2(on next page)

Anterior caudal PETMG R272 (Photographs taken by FH).

In anterior (A), posterior (B), lateral (C), ventral (D), and dorsal (E) views. Scalebar is 10 cm.
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Figure 3(on next page)

Middle caudal Leict G418.1956.21.0 (Photographs by FH).

In anterior (A) right lateral (B), posterior (C), left lateral (D), dorsal (E), ventral (F) views.

Scalebar 10 cm.
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Figure 4 (on next page)

50% majority rule consensus tree based on Tschopp et al., (2015).

With positions of Cetiosauriscus (purple), and additionally PETMG R272 (blue) and Leict
G.418.1956.21.0 (red) as OTU'’s.
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