Additional sauropod material from the Peterborough Oxford Clay: evidence for higher sauropod diversity (#25725)

First submission

Editor guidance

Please submit by **8 Apr 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the location described by the author.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 4 Figure file(s)
- 1 Raw data file(s)

Structure your review

The review form is divided into 5 sections.

Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
 Literature well referenced & relevant.
- Structure conforms to <u>PeerJ standards</u>, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see <u>PeerJ policy</u>).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
 Negative/inconclusive results accepted.
 Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Additional sauropod material from the **Peterborough Oxford Clay**: evidence for higher sauropod diversity.

Femke M Holwerda $^{Corresp.,-1,\,2}$, Mark Evans 3 , Jeff J Liston $^{1,\,4,\,5}$

Corresponding Author: Femke M Holwerda Email address: f.holwerda@lrz.uni-muenchen.de

An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle Jurassic) of King's Dyke pit near Peterborough, UK, is examined. Despite post-mortem residency on the seabed, some diagnostic features are preserved, including the presence of a ventral keel, a 'shoulder' indicating a wing-like transverse process, along with a possible prespinal lamina. This, together with an overall high complexity of the anterior caudal transverse process (ACTP) complex, indicates that this caudal belonged to a derived eusauropod, most likely a neosauropod. A second isolated middle-posterior caudal from the Oxford Clay of Peterborough is also described, also showing some diagnostic features, despite the neural spine and neural arch not being preserved and the neurocentral sutures being unfused. The positioning of the neurocentral sutures on the anterior 1/3rd of the centrum indicates a middle caudal position, and the presence of faint ventrolateral crests, as well as a rhomboid anterior articulation surface, show neosauropod affinities. The presence of possible nutrient foramina are only tentative evidence of a neosauropod origin, as they are also found in Late Jurassic non-neosauropod eusauropods. As the caudals from the two other known sauropods from the Peterborough Oxford Clay, Cetiosauriscus stewarti and a brachiosaurid, do not show the features seen on either of the new elements described, both isolated caudals indicate a higher sauropod species diversity in the region than previously recognised. A reduced consensus tree using these caudal characters shows a diplodocoid affinity for the anterior caudal, and a diplodocid origin for the middle caudal. Together with Cetiosauriscus, and other material assigned to different sauropod groups, this study indicates the presence of a high sauropod biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and Tendaguru formations. This study shows that it is still beneficial to examine isolated elements, as these may be indicators for species richness in deposits that are otherwise

¹ Vertebrate Palaeontology, Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Bavaria, Germany

² Faculty of Geosciences, Utrecht University, Utrecht, Netherlands

³ New Walk Museum and Art Gallery, Leicester Arts and Museums Service, Leicester, United Kingdom

⁴ Department of Natural Sciences, National Museum of Scotland, Edinburgh, Scotland

⁵ Vivacity-Peterborough Museum, Peterborough, United Kingdom

poor in terrestrial fauna.

1	Additional sauropod material from the Peterborough Oxford Clay: evidence for higher
2	sauropod diversity
3	
4	Femke M. HOLWERDA ^{a,b*} , Mark EVANS ^c , Jeffrey J. LISTON ^{a,d,e,f,g}
5	
6	Author affiliations
7	
8	^a Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB), Bayerische Staatssamlung
9	für Paläontologie und Geologie, Richard-Wagner-Straße 10, 80333 München, Germany
10	^b Faculty of Geosciences, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, the
11	Netherlands
12	^c New Walk Museum and Art Gallery, Leicester Arts and Museums Service, Leicester, United
13	Kingdom
14	^d Palaeobiology, Department of Natural Sciences, National Museum of Scotland, Old Town,
15	Edinburgh, Chambers Street, Edinburgh, EH1 1JF, Scotland
16	^e School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen's
17	Road, Bristol, BS8 1RJ, England
18	^f Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical,
19	Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, G12 8QQ,
20	Scotland
21	⁹ Vivacity-Peterborough Museum, Priestgate, Peterborough, PE1 1LF, England
22	
23	*corresponding author: f.holwerda@lrz.uni-muenchen.de
24	
25	ABSTRACT
26	

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

An isolated anterior caudal vertebra of a sauropod from the Oxford Clay (Callovian, Middle Jurassic) of King's Dyke pit near Peterborough, UK, is examined. Despite post-mortem residency on the seabed, some diagnostic features are preserved, including the presence of a ventral keel, a 'shoulder' indicating a wing-like transverse process, along with a possible prespinal lamina. This, together with an overall high complexity of the anterior caudal transverse process (ACTP) complex, indicates that this caudal belonged to a derived eusauropod, most likely a neosauropod. A second isolated middle-posterior caudal from the Oxford Clay of Peterborough is also described, also showing some diagnostic features, despite the neural spine and neural arch not being preserved and the neurocentral sutures being unfused. The positioning of the neurocentral sutures on the anterior 1/3rd of the centrum indicates a middle caudal position, and the presence of faint ventrolateral crests, as well as a rhomboid anterior articulation surface, show neosauropod affinities. The presence of possible nutrient foramina are only tentative evidence of a neosauropod origin, as they are also found in Late Jurassic non-neosauropod eusauropods. As the caudals from the two other known sauropods from the Peterborough Oxford Clay, Cetiosauriscus stewarti and a brachiosaurid, do not show the features seen on either of the new elements described, both isolated caudals indicate a higher sauropod species diversity in the region than previously recognised. A reduced consensus tree using these caudal characters shows a diplodocoid affinity for the anterior caudal, and a diplodocid origin for the middle caudal. Together with Cetiosauriscus, and other material assigned to different sauropod groups, this study indicates the presence of a high sauropod biodiversity in the Oxford Clay, equivalent to that of both the classic Jurassic Morrison and Tendaguru formations. This study shows that it is still beneficial to examine isolated elements, as these may be indicators for species richness in deposits that are otherwise poor in terrestrial fauna.

51

52

50

Keywords: Sauropoda, Eusauropoda, Neosauropoda, Oxford Clay, caudal

PeerJ

53	
54	
55	
56	
57	INTRODUCTION
58	
59	The Middle Jurassic Oxford Clay has yielded many marine vertebrates (ichthyosaurs,
60	plesiosaurs, pliosaurs, marine crocodiles, sharks, and fishes (Andrews, 1910, 1913)), as well as
61	invertebrates (Leeds, 1956). Land-dwelling vertebrates, however, are rare from this marine
62	setting. The Jurassic Gallery of the Vivacity-Peterborough Museum in Peterborough, and the
63	New Walk Museum and Art Gallery in Leicester, however, house some dinosaur specimens
64	from the Oxford Clay of Peterborough. The material consists of isolated partial elements of a
65	stegosaur, and several isolated sauropod fossils, including a partial anterior caudal and a partial
66	middle caudal. The caudals have been submerged in seawater, however, they do display some
67	characters which may be used for diagnosis.
68	Sauropods are represented in the Middle Jurassic of the UK by two species thus far: the
69	Bajocian-Bathonian Cetiosaurus oxoniensis (Phillips, 1871; Owen, 1875) and the Callovian
70	Cetiosauriscus stewarti (Charig, 1980, 1993). Cetiosauriscus is known from material found in
71	the Peterborough Oxford Clay, and has thus far not been encountered from other localities
72	(Woodward, 1905; Heathcote & Upchurch, 2003; Noè, Liston & Chapman, 2010). The type
73	material comprises of a partial caudal axial column, a femur, and a partial pelvic girdle
74	(Woodward, 1905). Another Cetiosauriscus, Cetiosauriscus greppini, is known from Switzerland
<mark>75</mark>	however, this specimen is from the Late Jurassic, and moreover, has recently been reidentified
76	as a basal titanosauriform (Schwarz, Wings & Meyer, 2007).
77	Next to Cetiosauriscus, four anterior caudal vertebrae (NHMUK R1984), ascribed to a
<mark>78</mark>	brachiosaurid (Upchurch & Martin, 2003, Noè, Liston & Chapman, 2010, Fig.6), as well as a

79	partial distal tail segment including eight posterior(most) caudals, ascribed to a diplodocid
80	(Upchurch, 1995), are described from the Oxford Clay material (Noè, Liston & Chapman, 2010).
81	Finally, three undiagnosed 'camarasaurid' sauropod teeth are known from the Oxford Clay
82	(Martill, 1988), which might tentatively be turiasaurid (Royo Torres & Upchurch, 2012; Mocho et
83	al., <mark>2015</mark>).
84	Despite the locality being a classic site for fossils, and many historical finds of marine reptiles
85	having been described and redescribed, the sauropod fauna from the Oxford Clay has not
86	received much attention thus far. Though associated material such as Cetiosauriscus is scarce,
87	isolated material can be studied in detail and reveal information on both morphology and
88	species diversity. This is especially important for material which has its provenance in the
89	Middle Jurassic, as major sauropod radiation and evolution events happened during the Early
90	and Middle Jurassic, with most major clades firmly established worldwide at the late Middle
91	Jurassic, while sauropod material remains rare from this time, and not all evolutionary patterns
92	are well understood. Moreover, caudal vertebrae have rarely been given appropriate attention,
92 <mark>93</mark>	are well understood. Moreover, caudal vertebrae have rarely been given appropriate attention, as only recently have caudal characters begun to be recognized as taxonomically diagnostic
93	as only recently have caudal characters begun to be recognized as taxonomically diagnostic
93	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated
939495	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the
93949596	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both
9394959697	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both previously indexed in collections under 'Cetiosaurus'), and compare them to contemporaneous
939495969798	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both previously indexed in collections under 'Cetiosaurus'), and compare them to contemporaneous
93949596979899	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both previously indexed in collections under 'Cetiosaurus'), and compare them to contemporaneous and other sauropod remains.
93 94 95 96 97 98 99	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both previously indexed in collections under 'Cetiosaurus'), and compare them to contemporaneous and other sauropod remains.
93 94 95 96 97 98 99 100 101	as only recently have caudal characters begun to be recognized as taxonomically diagnostic (e.g. Mocho et al., 2017; Holwerda & Liston, 2017). Therefore, we here describe two isolated sauropod caudal vertebrae from the collections of the Vivacity-Peterborough Museum and of the New Walk Museum of Leicester, both from the Oxford Clay of Peterborough, (and both previously indexed in collections under 'Cetiosaurus'), and compare them to contemporaneous and other sauropod remains. MATERIALS & METHODS

105	NHMUK = Natural History Museum, London, UK
106	
107	Systematic Palaeontology
108	
109	Dinosauria (Owen, 1842)
110	
111	Saurischia (Seeley, 1888)
112	
113	Sauropoda (Marsh, 1878)
114	
115	Eusauropoda (Upchurch, 1995)
116	
117	?Cetiosauridae (Lydekker, 1888) sensu (Upchurch, Barrett & Dodson, 2004)
118	
118 119	?Neosauropoda (Bonaparte, 1986a)
	?Neosauropoda (Bonaparte, 1986a)
119	?Neosauropoda (Bonaparte, 1986a) Geological setting
119 120	
119 120 121	
119 120 121 122	Geological setting
119 120 121 122 123	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that
119 120 121 122 123	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that it is recorded as being from the King's Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is
119 120 121 122 123 124	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that it is recorded as being from the King's Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The
119 120 121 122 123 124 125	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that it is recorded as being from the King's Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The original label on the specimen dates back to 1956, however, a number of brick pits were open at
119 120 121 122 123 124 125 126	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that it is recorded as being from the King's Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The original label on the specimen dates back to 1956, however, a number of brick pits were open at that stage. The strata of King's Dyke pit extend from the Kellaways Formation up to the
119 120 121 122 123 124 125 126 127	Geological setting Details on the provenance of the caudal specimen PETMG PETMG R272 are sparse, save that it is recorded as being from the King's Dyke pit (see Figure 1). The LEICT G. 418.1956.21.0 is from the Peterborough Oxford Clay formation, however, its precise provenance is unknown. The original label on the specimen dates back to 1956, however, a number of brick pits were open at that stage. The strata of King's Dyke pit extend from the Kellaways Formation up to the Stewartby Member of the Peterborough Formation (see Hudson & Martill, 1994, for a more

131	
132	
133	
134	
135	
136	
137	
138	
139	RESULTS
140	
141	Morphology
142	
143	The anterior caudal PETMG R272 (See Figure 2) measures a maximum of 27,2 cm
144	dorsoventrally and 26,5 cm transversely. It is covered in bivalves which are embedded in the
144 145	dorsoventrally and 26,5 cm transversely. It is covered in bivalves which are embedded in the bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine
145	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine
145 146	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially
145146147	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the
145 146 147 148	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of
145 146 147 148 149	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of the centrum, together with the apparent connection between the neural arch and base of the
145 146 147 148 149 150	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of the centrum, together with the apparent connection between the neural arch and base of the transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most
145 146 147 148 149 150	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of the centrum, together with the apparent connection between the neural arch and base of the transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most
145 146 147 148 149 150 151 152	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of the centrum, together with the apparent connection between the neural arch and base of the transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most caudals.
145 146 147 148 149 150 151 152	bone matrix (see Figure 2), demonstrating long-term submersion in seawater. The neural spine is missing, as well as the entire left transverse process; the right transverse process is partially preserved at its base. The centrum is wider at its dorsal side than at the ventral side, and the anterior side protrudes further ventrally than the posterior side. The relative axial compression of the centrum, together with the apparent connection between the neural arch and base of the transverse processes (as far as can be seen) shows this vertebra to be one of the anterior-most caudals. In anterior view (Figure 2A), the articular surface of the centrum is oval to round, and is

'cupped' by a thick rim, which mostly follows the oval to round contour of the articular surface, however, it is flattened ventrally, and on the dorsal rim it shows a slight indent, rendering the dorsal rim heart-shaped. This rim is also seen in lateral view (Figure 2C). In posterior view (Figure 2B), the articular surface is heart-shaped to triangular: the ventral rim ends in a transversely pointed shape, whereas the dorsal rim shows a rounded depression on the midline, flanked by parallel convex bulges. The articular surface itself is concave, with an additional depression in the mid ±1/3rd part of the surface. The posterior articular surface is less rugosely 'cupped' by its rim than the anterior one.

In ventral view (Figure 2D), the anterior rim of the centrum shows rudimentary semilunar shaped chevron facets, which are not seen on the posterior side. The transverse processes are visible as triangular protrusions that project laterally. Below each is a small oval depression. The lateral sides of the centrum are constricted, and flare out towards the anterior and posterior sides. A keel-like structure can be seen on the ventral axial midline of this vertebra. This keel is not visible as a thin protruding line, but more as a broad band protruding slightly ventrally from the ventral part of the centrum. It is possible this keel is formed by the close spacing of the ventrolateral rims of the centrum (Harris, 2006).

The anterior side of the neural canal and the base of the neural arch are set in a dorsoventrally high, anteroposteriorly flattened sheet of bone, consisting of the spinodiapophyseal/prezygodiapophyseal and centrodiapophyseal laminae, which give the neural arch (without transverse processes and neural spine) a roughly triangular shape (Figure 2A). In particular, the high projection on the neural arch of the diapophyseal laminae suggest the existence of a 'shoulder', which would make the transverse processes wing-shaped. The neural canal is broadly arched (measuring 3,3 cm by 3,8 cm). Its dorsal rim is overshadowed by a lip-like, triangular protrusion, which could be a remnant of the hypantrum (Figure 2A). Right

above this lip-like process, a rugosely striated lamina persists along the dorsoventral midline of the neural arch, up to the dorsal-most rim of the specimen. It is not entirely clear if this is a scar of a rudimentary single intraprezygapophyseal lamina or a prespinal lamina (Figure 2A). The posterior side of the neural canal is more teardrop-shaped, and is set within the neural arch, which displays shallow depressions on both sides of the neural canal; these could be small postzygapophyseal spinodiapophyseal fossae (pocdf, sensu (Wilson et al., 2011, Figure 2B)). Directly above it, the rami of the bases of the postzygapophyses are clearly visible. The postzygapophyses are rounded to triangular in shape (Figure 2B). A deep oval depression is seen between them; this could be the remnant of the spinopostzygapophyseal fossae (spof, sensu (Wilson et al., 2011, Figure 2B). Finally, a V-shaped striated process is seen between the two postzygapophyses, which could be the remnant of the hyposphene.

The transverse processes appear like rounded bulges, seen in anterior and lateral view (Figure 2A,C). The ventral sides of the bases of both transverse processes are concave. In lateral view, the transverse process has a rounded to triangular shape, and is axially wider ventrally than dorsally. It is dorsally supported by a spinodiapophyseal lamina (Figure 2E), and seems to have an anterior centrodiapophyseal lamina; however, a posterior centrodiapophyseal lamina is not clearly visible.

The middle caudal LEICT G.418.1956.21.0 (Figure 3) is an isolated element, and has no connection to the anterior caudal. Unlike the anterior caudal, this middle caudal centrum is well-preserved, with minute details clearly visible. The neural arch and neural spine are not preserved, and as the unfused neurocentral sutures show, the animal this caudal belonged to, was not fully grown (Brochu, 1996) and probably in Morphological Ontogenetic Stage 2 (MOS 2), rather than MOS 1, given the large size (sensu Carballido & Sander, 2014).

The centrum is 12,9 cm long axially, its anterior tranverse width is 21,7 cm and its posterior width 18,6 cm, with posterior height at 15,2 cm. The centrum is rectangular in shape, seen in dorsal (Figure 3E) and ventral view (Figure 3F), with mildly flaring anterior and posterior lateral ends of the articulation surfaces. In lateral view (Figure 3B,D), the posterior ventral side protrudes further ventrally than the anterior ventral side. However, the anterior dorsal side projects further dorsally than the posterior side. Transverse processes are only rudimentarily present, as oval, rugose, lateral bulges.

The anterior articular surface is rhomboid (hexagonal to almost octagonal) in shape (Figure 3A); the dorsal 1/3rd shows a wide transverse extension of the articular rim, whilst the lower 1/3rd shows a much narrower width, with sharply beveled constrictions between them. The ventral side shows a rounded indent on the midline, giving this articular surface a heart-shaped ventral rim. The rim itself is about 2-3 cm thick, shows concentric striations, and protrudes slightly anteriorly. The inner articular surface is flat to concave, however, the kernel shows a rugose rounded protrusion of bone. The morphology of the posterior articular surface (Figure 3C) is much more simple, oval in shape, and is wider transversely than dorsoventrally high. The articular rim is less thick than anteriorly; about 1-2cm. The articular surface is mildly concave, with a dorsal slightly convex bulge, which is common in non-neosauropod eusauropods (e.g. *Cetiosaurus*, *Patagosaurus*). The dorsal side of the centrum (Figure 3E) shows well-preserved and unfused neurocentral sutures, which span approximately the anterior 2/3rds of the axial length of the centrum. The ventral half of the neural canal is clearly visible, and shows four axially elongate, deep nutrient foramina embedded within the posterior half of the centrum. A further two shallow nutrient foramina are visible.

The ventral side of the centrum (Figure 3F) shows two sets of chevron facets, the posterior ones of which are more pronounced. Several rugose striations run along the axial length of the

ventral surface, probably for ligament attachments. Along the midline, a ventral hollow runs anteroposteriorly, braced on each lateral side by a rounded, slightly protruding beam. On each lateral side of these, shallow oval asymmetrical depressions are visible; these are caused by preparing away sediment and debris. Two faint ventrolateral crests are also possibly present, also visible in right lateral view (Figure 3B). The crests are not pronounced, and on the left lateral side (Figure 3D) the crest does not run for the entire anteroposterior length. The right lateral side (Figure 3B) furthermore shows a faint longitudinal ridge, however, in left lateral view (Figure 3D), this ridge does not persist on the entire lateral side of the centrum. The lateral side of the centrum further shows several small nutrient foramina. Finally, very shallow oval depressions, possibly pneumatic, are seen ventral to the bulges of the transverse processes.

Phylogenetic framework

To explore possible phylogenetic relationships, the caudals were used as separate Operational Taxonomic Units (OTU's). The morphological characters of both caudals were coded in an existing matrix in Mesquite (Maddison & Maddison, 2010) using non-neosauropod eusauropods and neosauropods, from Tschopp et al., (2015). See supplementary material for Tschopp et al. (2015), for the character matrix, explanatory notes, and references therein. Only anterior caudal characters could be coded for PETMG R272, and only anterior to middle, and middle to posterior characters could be coded for LEICT G.418.1956.21.0. Next to these codings, the anterior and middle caudals of Cetiosauriscus stewarti were recoded, based on the descriptions of Woodward (1905), Charig (1980) and based on pictures of NHMUK R3078 which resulted in some character changes. See Supplemental file for our character matrix, adapted from Tschopp et al., (2015). The matrix was analysed using TNT (Goloboff, Farris & Nixon, 2008; Goloboff & Catalano,

2016) using TBR, which yielded 37156 trees with a best score of 2026. A strict consensus tree

261	rendered too many polytomies, therefore a 50% majority rule consensus analysis was
262	performed. See Figure 4 for the simplified 50% majority consensus tree.
263	
264	Cetiosauriscus is retrieved as a non-neosauropod eusauropod in this analyis, basal to Jobaria
265	and more derived than Mamenchisaurids and basal non-neosauropod eusauropods, which is
266	the same result as in Tschopp, Mateus and Benson, (2015), but see Heathcote & Upchurch
267	(2003). The anterior caudal PETMG R272 is retrieved a a diplodocoid, more derived than
268	Haplocanthosaurus, but basal to Zapalasaurus and all derived neosauropods. Characters that
269	unite it with Diplodocoidea (sensu Tschopp, Mateus and Benson (2015)) are the presence of
270	well-defined anterior diapophyseal laminae on transverse processes, as well as having an
271	anterior neural arch base with a transverse width/anterioposterior length ratio higher than 1
272	(Tschopp, Benson and Mateus, 2015).
273	The middle caudal LEICT G.418.1956.21.0 is retrieved as more derived than <i>Galeomopus</i> ,
274	basal to Barosaurus and all other diplodocids, and is firmly nested within Diplodocidae.
275	Characters that unite it with Diplodocidae (sensu Tschopp, Mateus and Benson (2015)) are
276	having a trapezoidal articular surface, a straight ventral surface in lateral view, and articular
277	surfaces being wider than high (Tschopp, Benson and Mateus, 2015). Furthermore, it takes 4
278	additional steps to force PETMG R272 outside of Neosauropoda, and it takes an additional 8
279	steps to force LEICT G.418.1956.21.0 outside of Neosauropoda.
280	
281	
282	DISCUSSION
283	
284	Systematics
285	
286	Peterborough caudal PETMG R272

287	
288	The anterior caudal PETMG R272 shows characteristics shared with both non-neosauropod
289	eusauropods, as well as neosauropods.
290	The slightly more rounded shape of the centrum in lateral view is shared with <i>Apatosaurus</i> .
291	Anterior caudals of Cetiosauriscus are strongly axially compressed, as also seen in non-
292	neosauropod eusauropods such as Cetiosaurus and Patagosaurus (Woodward, 1905; Charig,
293	1980; Bonaparte, 1986b; Upchurch & Martin, 2003).
294	The flat anterior articular surface and the mildly concave posterior articular surface of the
295	centrum is a common feature, shared with non-neosauropod eusauropods (e.g. Cetiosaurus,
296	Patagosaurus (Bonaparte, 1986b; Upchurch & Martin, 2003). The thick rim cupping the anterior
297	surface is found in early Middle Jurassic non-neosauropod eusauropods (Cetiosaurus) but also
298	in the (non-neosauropod eusauropod/potentially basal neosauropod) Callovian Cetiosauriscus
299	(Woodward, 1905; Charig, 1980; Heathcote & Upchurch, 2003) and in the Oxfordian-
300	Kimmeridgian basal titanosauriform Vouivria damparisensis (Mannion, Allain & Moine, 2017).
301	The morphology of the ventrally offset anterior articular surface, together with pronounced
302	chevron facets, is seen in non-neosauropod eusauropods from the Late Jurassic of Portugal
303	(Mocho et al., 2017), however, this type of assymmetry is also seen in Apatosaurus louisae
304	(Harris 2006).
305	
306	The ventral keel is found in an Early Jurassic indeterminate sauropod caudal from York, UK
307	(Manning, Egerton & Romano, 2015), however, it is also found in neosauropods, specifically in
308	flagellicaudates and diplodocids Apatosaurus ajax, Apatosaurus louisae, and Suuwassea
309	(Harris, 2006; Tschopp, Mateus & Benson, 2015). The former has a ventral keel which results
310	from a transverse constriction of the ventral side of the centrum, forming a triangular protrusion
311	on the ventral articular surface. This is also seen in non-neosauropod cervicals (such as

Cetiosaurus, Patagosaurus, Spinophorosaurus, Amygdalodon, Tazoudasaurus (Bonaparte,

313 1986c; Rauhut, 2003; Upchurch & Martin, 2003; Allain & Aquesbi, 2008; Remes et al., 2009)). 314 The latter keel-like form, which seems to match more the morphology of PETMG R272, forms 315 when there is a very close association of the two ventrolateral ridges that run along the 316 ventralmost side of the centrum, and is only seen in neosauropods. No keel-like structure is 317 seen in Cetiosauriscus anterior caudals, nor on the 'brachiosaurid' caudals from the Oxford Clay 318 (Upchurch & Martin, 2003, Noè, Liston & Chapman, 2010, Fig.6); the ventral surface of these 319 anterior caudal vertebrae appearing to be smooth. 320 321 The triangular shape of the anterior caudal transverse process (ACTP) complex in PETMG 322 R272 is seen to a lesser extent in non-neosauropod eusauropods, such as *Tazoudasaurus*, but 323 also in an unnamed anterior caudal from a titanosauriform from the Bajocian of Normandie, 324 France, and in indeterminate non-neosauropod sauropods from the Late Jurassic of Portugal 325 (Allain & Aquesbi, 2008; Läng, 2008; Mocho et al.). The pronounced shape, however, is more 326 suggestive of 'wing'-shaped transverse processes, due to the possible existence of a 'shoulder' 327 (see Figure 2). This is used as a caudal character to define diplodocids (Whitlock, 2011; 328 Tschopp, Mateus & Benson, 2015), and is found neither in non-neosauropod eusauropods nor 329 the Bajocian French titanosauriform. However, it is also seen in other neosauropods, such as 330 Camarasaurus and titanosauriforms (Gallina & Otero, 2009). To a lesser extent, a triangular, 331 sheet-like ACTP is seen in Cetiosauriscus, as well as the 'brachiosaurid' caudals from the 332 Oxford Clay, however, the anterior caudals of *Cetiosauriscus* do not show a pronounced 'shoulder'. Moreover, the transverse processes of PETMG R272 are robust, and rounded to 333 334 triangular in cross-section, whereas those of *Cetiosauriscus* are gracile, dorsoventrally 335 elongated and axially compressed, providing a more oval cross-section. 336 Furthermore, the presence of clearly defined anterior centrodiapophyseal laminae (acdl) is 337 considered to be an autapomorphy in the Late Jurassic titanosauriform Vouivria, together with

338 posterior centrodiapophyseal laminae (pcdl). Unfortunately, in PETMG R272 no pcdl is clearly 339 visible, however, the acdl shows a possible derived state. 340 If the rugosity dorsal to the prezygapophyses is indeed a prespinal lamina (prsl) and not the 341 single intraprezygapophyseal lamina (stpol), then this is yet another neosauropod feature on 342 PETMG R272 (Wilson, 1999; Gallina & Otero, 2009; Tschopp, Mateus & Benson, 2015). 343 Cetiosauriscus has both a prespinal and postspinal lamina (prsl and psl), however, the prsl in 344 Cetiosauriscus is not rugose, but rather thin and gracile. 345 346 To summarize, more characters indicative of a neosauropod origin of this caudal are present, 347 than those indicative of a non-neosauropod (eu)sauropod origin. However, due to the lack of 348 complete transverse processes and neural spine, several morphological characters remain 349 ambiguous. 350 351 352 Leicester caudal LEICT G.418.1956.21.0 353 354 The middle caudal LEICT G.418.1956.21.0 also shows characters both shared with non-355 neosauropod eusauropods, as well as neosauropods. 356 The rhomboid, hexagonal to octagonal shape of the anterior articular surface is not seen in 357 Cetiosauriscus; the middle caudal articular surfaces of the latter are rather round to oval in 358 shape. Hexagonal articular surfaces are a derived condition found in neosauropods, such as 359 Apatosaurus ajax, Suuwassea, but also in Camarasaurus, Demandasaurus and Dicraeosaurus 360 (Upchurch & Martin, 2002; Tschopp, Mateus & Benson, 2015). Octagonal articular surfaces are 361 also a derived feature seen in Dicraeosaurus and the potential neosauropod Cetiosaurus 362 glymptoniensis (Upchurch & Martin, 2003; Harris, 2006).

363	The ventrolateral crests seen on the ventral side of this caudal are a neosauropod feature,
364	found in many Late Jurassic neosauropods (Harris, 2006; Mocho et al., 2017). The ventral
365	hollow seen in LEICT G.418.1956.21.0 is also found in several neosauropods, such as
366	Tornieria, Diplodocus, Supersaurus, but also Demandasaurus and Isisaurus (Tschopp et al.,
367	2017). However, it is also seen in an unnamed caudal vertebra from the Bajocian-Bathonian of
368	Skye, UK
369	(Liston, 2004). The ventral hollow is also present in Cetiosauriscus, though not as pronounced
370	as in LEICT G.418.1956.21.0.
371	The longitudinal ridge is another neosauropod feature, though it may also have been present in
372	non-neosauropod eusauropods. A longitudinal ridge is seen on both Cetiosauriscus and LEICT
373	G.418.1956.21.0, as are the lateral pneumatic foramina on the centra, and the ventrolateral
374	crests.
375	Nutrient foramina are seen on the Late Jurassic diplodocid Suuwassea, but also on Late
376	Jurassic Portuguese non-neosauropod eusauropods; small foramina on the ventral surface of
377	the centrum are also seen in the anterior caudals of non-neosauropod eusauropods from Late
378	Jurassic of Portugal (Mocho et al., 2017).
379	
380	Phylogenetic signal and implications for biodiversity
381	
382	As shown in Figure 4, the phylogeny retrieves the Peterborough caudal PETMG R272 as a
383	diplodocoid, and the Leicester caudal LEICT G.418.1956.21.0 as a diplodocid. The adding of
384	these two elements as OTU's did change some of the original relationships of the Tschopp et al.
385	(2015) analysis, and the extremely simplified tree might not be a projection of real evolutionary
386	trends. The strict consensus tree resulted in a great polytomy, as with Tschopp et al. (2015),
387	therefore, a 50% majority rule consensus tree was recovered instead. However, the caudal

characters that could be scored for the material from Peterborough and Leicester gave enough

information for a placement within Neosauropoda, whereas others (e.g. <i>Barosaurus affinis</i>) were
unstable taxa. In Tschopp et al. (2015), however, a pruned tree is preferred. Though in this
current analysis not many steps were needed to force the caudals outside of Neosauropoda (4
and 8, respectively), the characters that unite them with diplodocoids and diplodocids are
characters that are clearly visible on the caudals. This analysis shows, therefore, that in addition
to Cetiosauriscus, a diplodocoid and a diplodocid were present in the Oxford Clay Formation.
Neosauropods were already reported from the Callovian of Europe (e.g. Alifanov & Averianov,
2003; Mocho et al., 2017) and also tentatively known from the UK (e.g. Noè, Liston & Chapman,
2010). Therefore, this analysis confirms the presence of neosauropods in the Callovian of the
UK. Though not as species-rich as the later Kimmeridgian-Tithonian Tendaguru beds (Remes,
2007, 2009) or the Morrison Formation (Foster, 2003) or the Lourinhã Formation (Mannion et
al., 2012, 2013; Mocho, Royo-Torres & Ortega, 2014; Mocho et al., 2016), the Peterborough
Oxford Clay material thus far has hinted at a high diversity in sauropods: a non-neosauropod
eusauropod (Heathcote & Upchurch, 2003), a diplodocoid, a diplodocid (this research) a
possible brachiosaurid (Upchurch & Martin, 2003), possible diplodocid posterior caudals (Noè,
Liston & Chapman, 2010) and a possible camarasaurid (Martill, 1988) or turiasaurid (Royo
Torres & Upchurch, 2012; Mocho et al., 2015). This indicates an equivalent richness of
sauropod groups from this Middle Jurassic marine formation, to the classic Late Jurassic
terrestrial Morrison, Lourinhã and Tendaguru formations. In the future, more material can be
added to this list. This shows the importance of paying close attention to caudal characters, as
phylogenetic information might otherwise be missed which would indicate the range of fauna
present in a given environment.

CONCLUSIONS

415	In summary, the anterior isolated caudal shares few morphological features with non-
416	neosauropod eusauropods, and most morphological features with neosauropods. The middle
417	isolated caudal shares few features with non-neosauropod eusauropods, and more with
418	neosauropods. It is therefore most likely that these caudals belong to a neosauropod dinosaurs,
419	and are different from Cetiosauriscus. Phylogenetic analysis tentatively retrieves these caudals
420	as a diplodocoid, and diplodocid, respectively. Therefore, these caudals give a higher sauropod
421	species diversity to the Peterborough Oxford Clay Formation than previously assumed. This
422	diversity may be as high as the Late Jurassic Morrison, Tendaguru or Lourinhã Formations.
423	
424	ACKNOWLEDGEMENTS
425	
426	The authors would like to thank Glenys Wass and the staff of Peterborough Museum for kindly
427	providing access to the specimen, as well as to the late Arthur Cruickshank of the New Walk
428	Museum, Leicester, for preparing the Leicester material.
429	
430	
431	
432	Figure captions
433	
434	Figure 1: Geological setting - geographical setting of King's Dyke and Star Pit, Whittlesey
435	(adapted after Hudson & Martill (1994) with notes from Liston (2006)).
436	
437	Figure 2: Anterior caudal PETMG PETMG R272 in anterior (A), posterior (B), lateral (C), ventral
438	(D), and dorsal (E) views. Scalebar is 10 cm.
439	

PeerJ

40	Figure 3: Middle caudal Leict LEICT G.418.1956.21.0 in anterior (A) right lateral (B), posterio
41	(C), left lateral (D), dorsal (E), ventral (F) views. Scalebar 10 cm.
142	
ł43	Figure 4: 50% Reduced consensus tree based on Tschopp et al., (2015) with revised
144	Cetiosauriscus (purple) coding, and additionally PETMG R272 (blue) and LEICT
ł45	G.418.1956.21.0 (red) as OTU's.

14/	References
48	
149	Alifanov VR., Averianov AO. 2003. Ferganasaurus verzilini, gen. et sp. nov., a new
150	neosauropod (Dinosauria, Saurischia, Sauropoda) from the Middle Jurassic of
151	Fergana Valley, Kirghizia. Journal of Vertebrate Paleontology 23:358–372.
152	Allain R., Aquesbi N. 2008. Anatomy and phylogenetic relationships of Tazoudasaurus
ł53	naimi (Dinosauria, Sauropoda) from the late Early Jurassic of Morocco. <i>Geodiversitas</i>
154	30:345-424.
ł55	Andrews CW. 1910. A catalogue of the marine reptiles of the Oxford Clay, Part I. British
ł56	Museum (Natural History), London, England.
157	Andrews CW. 1913. A Descriptive Catalogue of the Marine Reptiles of the Oxford Clay: Based
158	on the Leeds Collection in the British Museum (Natural History), London. order of the
159	Trustees.
160	Bonaparte JF. 1986a. The early radiation and phylogenetic relationships of the Jurassic
161	sauropod dinosaurs, based on vertebral anatomy. In: Padian K ed. The Beginning of
162	the Age of Dinosaurs. Cambridge: Cambridge University Press, 247–258.
163	Bonaparte JF. 1986b. Les dinosaures (Carnosaures, Allosauridés, Sauropodes,
164	Cétosauridés) du Jurassique Moyen de Cerro Cóndor (Chubut, Argentina). Annales
165	de Paléontologie (VertInvert.) 72:247–289.
166	Bonaparte JF. 1986c. The dinosaurs (Carnosaurs, Allosaurids, Sauropods, Cetiosaurids) of
167	the Middle Jurassic of Cerro Cóndor (Chubut, Argentina). In: Annales de
168	Paléontologie (VertInvert.). 325–386.

469	Brochu CA. 1996. Closure of neurocentral sutures during crocodilian ontogeny:
470	Implications for maturity assessment in fossil archosaurs. Journal of Vertebrate
471	Paleontology 16:49-62. DOI: 10.1080/02724634.1996.10011283.
472	Carballido JL., Sander PM. 2014. Postcranial axial skeleton of Europasaurus holgeri
473	(Dinosauria, Sauropoda) from the Upper Jurassic of Germany: implications for
474	sauropod ontogeny and phylogenetic relationships of basal Macronaria. Journal of
475	Systematic Palaeontology 12:335–387. DOI: 10.1080/14772019.2013.764935.
476	Charig AJ. 1980. A diplodocid sauropod from the Lower Cretaceous of England. In: Jacobs
477	LL ed. Aspects of Vertebrate History. Essays in Honor of Edwin Harris Colbert.
478	Flagstaff: Museum of Northern Arizona Press, 231–244.
479	Charig AJ. 1993. Case 1876. <i>Cetiosauriscus</i> von Huene, 1927 (Reptilia, Sauropodomorpha):
480	proposed designation of <i>C. stewarti</i> Charig, 1980 as the type species. <i>Bulletin of</i>
481	Zoological Nomenclature 50:282–283.
482	Foster JR. 2003. Paleoecological analysis of the vertebrate fauna of the Morrison Formation
483	(Upper Jurassic), Rocky Mountain Region, U.S.A. New Mexico Museum of Natural
484	History and Science Bulletin 23:2–100.
485	Gallina PA., Otero A. 2009. Anterior caudal transverse processes in sauropod dinosaurs:
486	morphological, phylogenetic and functional aspects. Ameghiniana 46:165–176.
487	Goloboff PA., Catalano SA. 2016. TNT version 1.5, including a full implementation of
488	phylogenetic morphometrics. Cladistics 32:221–238.
489	Goloboff PA., Farris JS., Nixon KC. 2008. TNT, a free program for phylogenetic analysis.
490	Cladistics 24:774–786. DOI: 10.1111/j.1096-0031.2008.00217.x.

491	Harris JD. 2006. The axial skeleton of the dinosaur <i>Suuwassea emilieae</i> (Sauropoda:
492	Flagellicaudata) from the Upper Jurassic Morrison Formation of Montana, USA.
493	Palaeontology 49:1091–1121.
494	Heathcote J., Upchurch P. 2003. The relationships of <i>Cetiosauriscus stewarti</i> (Dinosauria;
495	Sauropoda): implications for sauropod phylogeny. Journal of Vertebrate
496	Paleontology 23:60A.
497	Holwerda FM., Liston JJ. 2017. An anterior sauropod caudal from the Peterborough Oxford
498	Clay: Whose tail is it anyway? In: PeerJ Preprints 5:e3243v1,. DOI: PeerJ Preprints
499	5:e3243v1.
500	Läng É. 2008. Les cétiosaures (Dinosauria, Sauropoda) et les sauropodes du Jurassique
501	moyen: révision systématique, nouvelles découvertes et implications
502	phylogénétiques. Ph. D. dissertation Thesis. Paris, France: Centre de recherche sur la
503	paléobiodiversité et les paléoenvironnements.
504	LEEDS ET. 1956. The Leeds Collection of Fossil Reptiles from the Oxford Clay of Peterborough.
505	BH Blackwell.
506	Liston JJ. 2004. A re-examination of a Middle Jurassic sauropod limb bone from the
507	Bathonian of the Isle of Skye. Scottish Journal of Geology 40:119–122.
508	Liston JJ. 2006. From Glasgow to the Star Pit and Stuttgart: a short journey around the
509	world's longest fish. Glasgow Naturalist 24:59–71.
510	Lydekker R. 1888. Catalogue of the Fossil Reptilia and Amphibia in the British Museum
511	(Natural History). Part I. Containing the Orders Ornithosauria, Crocodilia,
512	Dinosauria, Squamata, Rhynchocephalia, and Proterosauria. British Museum
513	(Natural History), London:309.

514	Maddison WP., Maddison DR. 2010. Mesquite: a modular system for evolutionary analysis.
515	2011; Version 2.75. See mesquiteproject. org/mesquite/download/download. html.
516	Manning PL., Egerton VM., Romano M. 2015. A New Sauropod Dinosaur from the Middle
517	Jurassic of the United Kingdom. PLOS ONE 10:e0128107. DOI:
518	10.1371/journal.pone.0128107.
519	Mannion PD., Allain R., Moine O. 2017. The earliest known titanosauriform sauropod
520	dinosaur and the evolution of Brachiosauridae. PeerJ 5:e3217.
521	Mannion PD., Upchurch P., Barnes RN., Mateus O. 2013. Osteology of the Late Jurassic
522	Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the
523	evolutionary history of basal titanosauriforms. Zoological Journal of the Linnean
524	Society 168:98-206. DOI: 10.1111/zoj.12029.
525	Mannion PD., Upchurch P., Mateus O., Barnes RN., Jones MEH. 2012. New information on
526	the anatomy and systematic position of Dinheirosaurus lourinhanensis (Sauropoda:
527	Diplodocoidea) from the Late Jurassic of Portugal, with a review of European
528	diplodocoids. Journal of Systematic Palaeontology 10:521–551. DOI:
529	10.1080/14772019.2011.595432.
530	Marsh OC. 1878. Principal characters of American Jurassic dinosaurs, Part I. American
531	Journal of Science (series 3) 16:411-416. DOI: 10.2475/ajs.s3-16.95.411.
532	Martill DM. 1988. A review of the terrestrial vertebrate fossils of the Oxford Clay
533	(Callovian-Oxfordian) of England. Mercian Geologist 11:171.
534	Mocho P., Royo-Torres R., Malafaia E., Escaso F., Ortega F. 2016. Systematic review of Late
535	Jurassic sauropods from the Museu Geológico collections (Lisboa, Portugal). Journal
536	of Iberian Geology 42:227–250.

537	Mocho P., Royo-Torres R., Malafaia E., Escaso F., Ortega F. 2017. First occurrences of non-
538	neosauropod eusauropod procoelous caudal vertebrae in the Portuguese Upper
539	Jurassic record. Geobios 50:23–36.
540	Mocho P., Royo-Torres R., Malafaia E., Escaso F., Ortega F. First occurrences of non-
<mark>541</mark>	neosauropod eusauropod procoelous caudal vertebrae in the Portuguese Upper
542	Jurassic record. Geobios. DOI: 10.1016/j.geobios.2016.11.001.
543	Mocho, P., Royo-Torres, R., Malafaia, E., Escaso, F., Silva B., Ortega, F. 2015:
544	Turiasauria-like teeth from the Upper Jurassic of the Lusitanian Basin, Portugal. <i>Historical</i>
545	Biology: An International Journal of Paleobiology. DOI: 10.1080/08912963.2015.1049948
546 547	Mocho P., Royo-Torres R., Ortega F. 2014. Phylogenetic reassessment of <i>Lourinhasaurus</i>
548	alenquerensis, a basal Macronaria (Sauropoda) from the Upper Jurassic of Portugal.
549	Zoological Journal of the Linnean Society 170:875-916. DOI: 10.1111/zoj.12113.
550	Noè LF., Liston JJ., Chapman SD. 2010. 'Old bones, dry subject': the dinosaurs and pterosaur
551	collected by Alfred Nicholson Leeds of Peterborough, England. Geological Society,
552	London, Special Publications 343:49–77.
553	Owen R. 1842. Report on British Fossil Reptiles Pt. II. Report of the British Association for
554	the Advancement of Science 1841:60–204.
555	Owen R. 1875. Monographs on the British fossil Reptilia of the Mesozoic Formations, Part II
556	(Genera Bothriospondylus, Cetiosaurus, Omosaurus). Palaeontographical Society
557	(Monograph):1–93.
558	Phillips J. 1871. <i>Geology of Oxford and the Valley of the Thames</i> . Clarendon Press.
559	Rauhut OWM. 2003. Revision of Amygdalodon patagonicus Cabrera, 1947 (Dinosauria,
560	Sauropoda). Fossil Record 6:173–181.

561	Remes K. 2007. A second Gondwanan diplodocid dinosaur from the Upper Jurassic
562	Tendaguru beds of Tanzania, East Africa. Palaeontology 50:653-667.
563	Remes K. 2009. Taxonomy of Late Jurassic diplodocid sauropods from Tendaguru
564	(Tanzania). Fossil Record 12:23–46.
565	Remes K., Ortega F., Fierro I., Joger U., Kosma R., Ferrer JMM., Ide OA., Maga A. 2009. A new
566	basal sauropod dinosaur from the Middle Jurassic of Niger and the early evolution of
567	Sauropoda. PLoS One 4:e6924. DOI: 10.1371/journal.pone.0006924.
568	Royo-Torres, R., Upchurch, P. (2012): The cranial anatomy of the sauropod <i>Turiasaurus</i>
569	riodevensis and implications for its phylogenetic relationships. Journal of Systematic
570	Palaeontology. DOI:10.1080/14772019.2011.598577
571	Schwarz D., Meyer CA., Wings O., Le Loeuff J. 2007. Revision of <i>Cetiosauriscus greppini</i> –new
572	results and perspectives. In: Fifth Meeting of the European Association of Vertebrate
573	Palaeontologists Abstract Volume, Musée des Dinosaures, Espéraza, France. 57–58.
574	Schwarz D., Wings O., Meyer C. 2007. Revision of Cetiosauriscus greppini: the revival of a
575	Late Jurassic sauropod from Switzerland. In: Journal of Vertebrate Paleontology. SOC
576	VERTEBRATE PALEONTOLOGY 60 REVERE DR, STE 500, NORTHBROOK, IL 60062
577	USA, 143A-143A.
578	Seeley HG. 1888. Classification of the Dinosauria. Geological Magazine (Decade III) 5:45–46.
579	Tschopp E., Mateus O., Benson RBJ. 2015. A specimen-level phylogenetic analysis and
580	taxonomic revision of Diplodocidae (Dinosauria, Sauropoda). PeerJ 3:e857. DOI:
581	10.7717/peerj.857.

582	Upchurch P. 1995. The evolutionary history of sauropod dinosaurs. <i>Philosophical</i>
583	Transactions of the Royal Society of London. Series B: Biological Sciences 349:365-
584	390.
585	Upchurch P., Barrett PM., Dodson P. 2004. Sauropoda. In: Weishampel DB, Dodson P,
586	Osmólska H eds. The Dinosauria. Second edition. Berkeley, CA: University of
587	California Press, 259–322.
588	Upchurch P., Martin J. 2002. The Rutland <i>Cetiosaurus</i> : the anatomy and relationships of a
589	Middle Jurassic British sauropod dinosaur. Palaeontology 45:1049–1074.
590	Upchurch P., Martin J. 2003. The anatomy and taxonomy of Cetiosaurus (Saurischia,
591	Sauropoda) from the Middle Jurassic of England. Journal of Vertebrate Paleontology
592	23:208–231.
593	Whitlock JA. 2011. A phylogenetic analysis of Diplodocoidea (Saurischia: Sauropoda).
594	Zoological Journal of the Linnean Society 161:872-915. DOI: 10.1111/j.1096-
595	3642.2010.00665.x.
596	Wilson JA. 1999. A nomenclature for vertebral laminae in sauropods and other saurischian
597	dinosaurs. Journal of Vertebrate Paleontology 19:639-653.
598	Wilson JA., D'Emic MD., Ikejiri T., Moacdieh EM., Whitlock JA. 2011. A nomenclature for
599	vertebral fossae in sauropods and other saurischian dinosaurs. PLoS ONE 6:e17114
600	Woodward AS. 1905. On parts of the skeleton of Cetiosaurus leedsi, a sauropodous dinosaur
601	from the Oxford Clay of Peterborough. publisher not identified.
602	
603	
604	

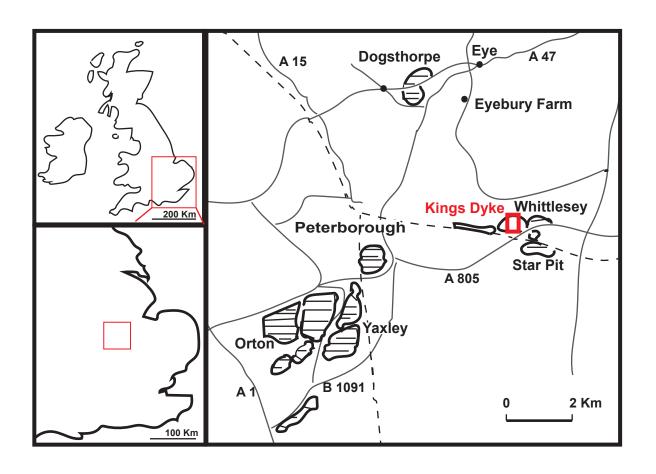

PeerJ

Figure 1(on next page)

Geographical position of King's Dyke and Star Pit, Whittlesey, UK.

(adapted after Hudson & Martill (1994), with notes from Liston, (2006)).

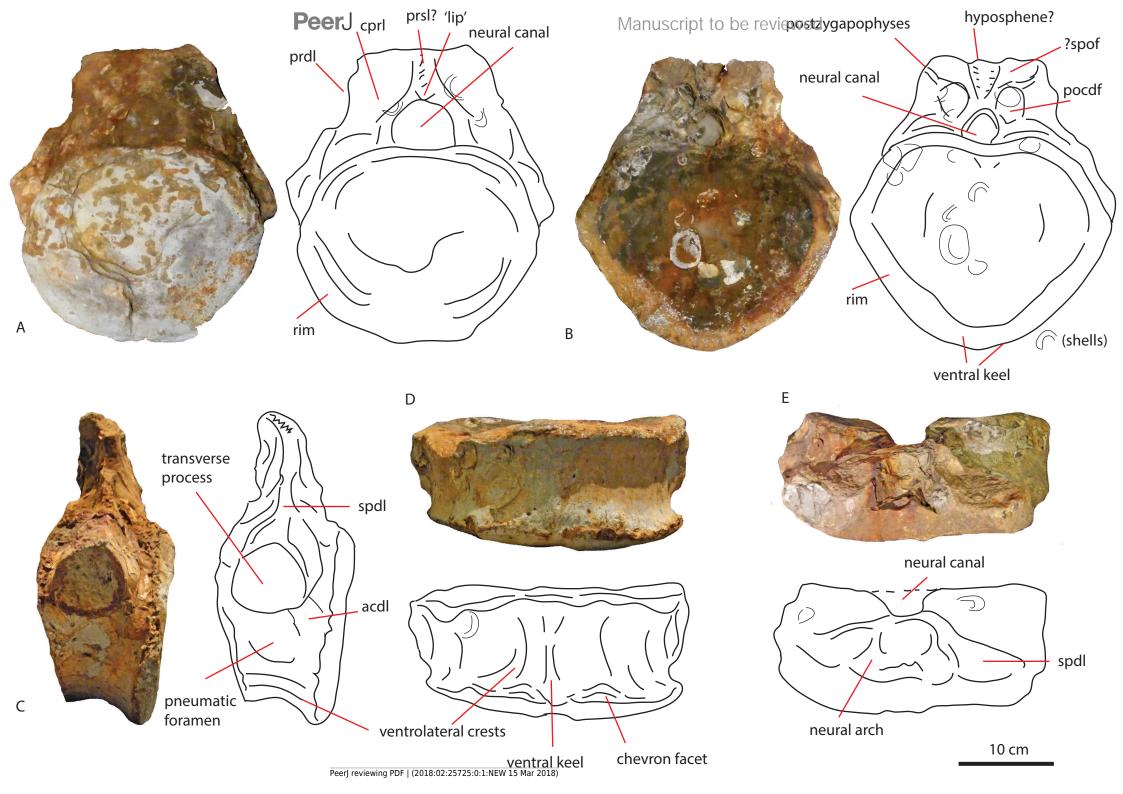


Figure 2(on next page)

Anterior caudal PETMG R272 (Photographs taken by FH).

In anterior (A), posterior (B), lateral (C), ventral (D), and dorsal (E) views. Scalebar is 10 cm.

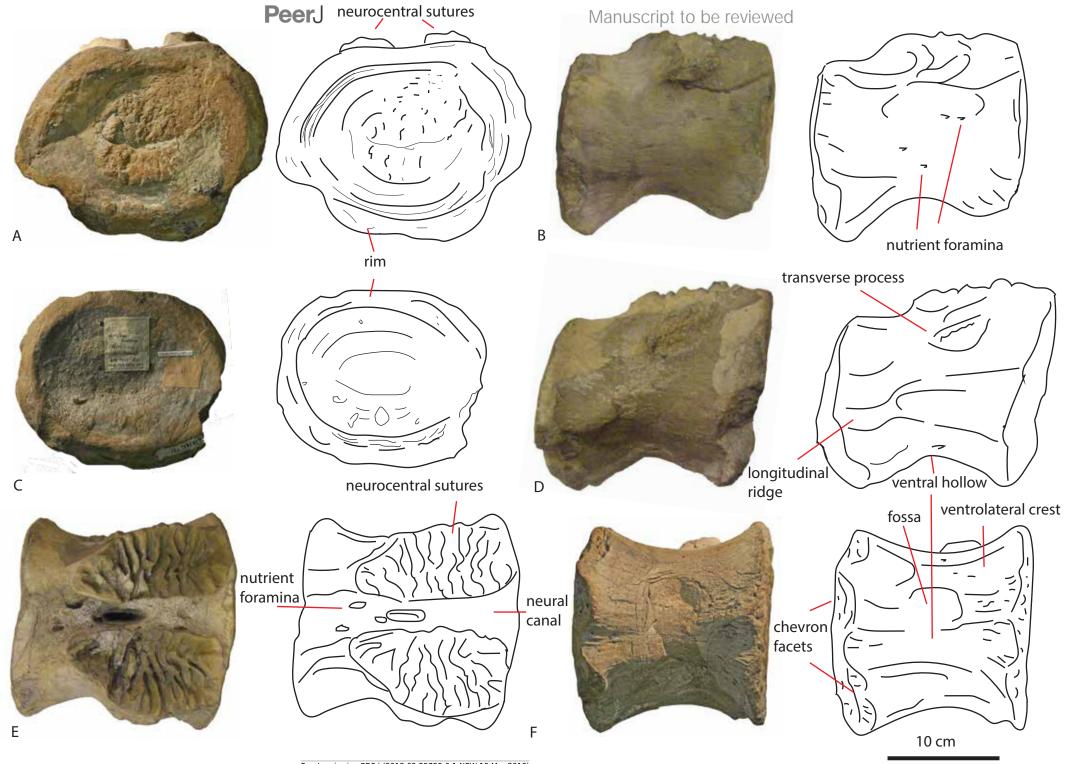


Figure 3(on next page)

Middle caudal Leict G418.1956.21.0 (Photographs by FH).

In anterior (A) right lateral (B), posterior (C), left lateral (D), dorsal (E), ventral (F) views. Scalebar 10 cm.

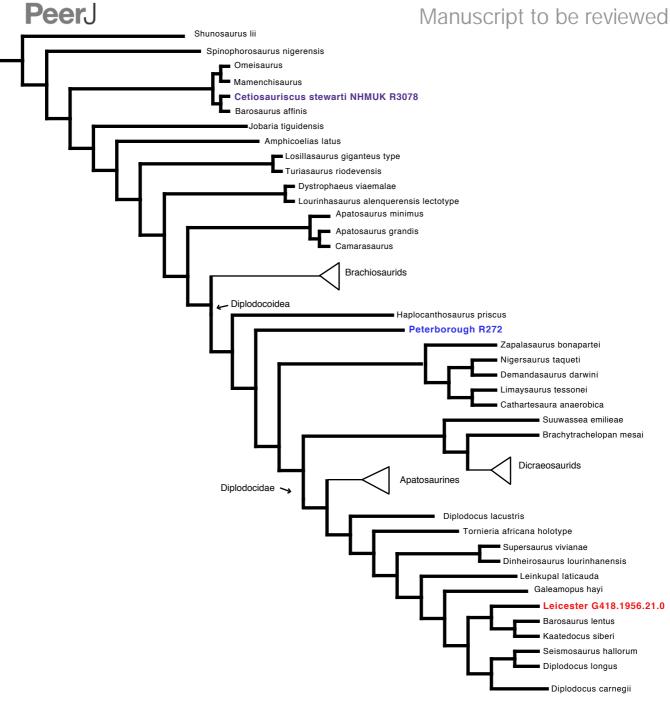


Figure 4(on next page)

50% majority rule consensus tree based on Tschopp et al., (2015).

With positions of *Cetiosauriscus* (purple), and additionally PETMG R272 (blue) and Leict G.418.1956.21.0 (red) as OTU's.

