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ABSTRACT
An influential hypothesis proposed by Greenwood (1980) suggests that different
mating systems result in female and male-biased dispersal, respectively, in birds and
mammals. However, other aspects of social structure and behavior can also shape
sex-biased dispersal. Although sex-specific patterns of kin cooperation are expected
to affect the benefits of philopatry and dispersal patterns, empirical evidence is scarce.
Unlike many mammals, Saguinus geoffroyi (Geoffroy’s tamarin) has a breeding
system in which typically multiple males mate with a single breeding female. Males
typically form cooperative reproductive partnerships between relatives, whereas
females generally compete for reproductive opportunities. This system of cooperative
polyandry is predicted to result in female-biased dispersal, providing an opportunity
to test the current hypotheses of sex-biased dispersal. Here we test for evidence of
sex-biased dispersal in S. geoffroyi using demographic and genetic data from three
populations. We find no sex bias in natal dispersal, contrary to the prediction based
on the mating patterns. This pattern was consistent after controlling for the effects of
historical population structure. Limited breeding opportunities within social groups
likely drive both males and females to disperse, suggesting that dispersal is intimately
related to the social context. The integration of genetic and field data revealed that
tamarins are another exception to the presumed pattern of male-biased dispersal
in mammals. A shift in focus from mating systems to social behavior, which plays a
role in most all processes expected to influence sex-bias in dispersal, will be a fruitful
target for research both within species and across taxa.

Subjects Animal Behavior, Anthropology, Biogeography, Evolutionary Studies, Genetics
Keywords Local resource enhancement, Local mate competition, Inbreeding avoidance,
Sex-biased dispersal, Population structure, Kin cooperation, Social behavior, Mating systems,
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“Which sex disperses may be the outcome of a conflict between the sexes, where the relative

costs and benefits of dispersal and philopatry to the sexes determine the outcome”.

Greenwood (1980)
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The factors influencing sex-specific patterns of animal dispersal have been the focus of

intense research over several decades, and include competition for resources (Greenwood,

1980), competition for mates (Dobson, 1982), and inbreeding avoidance (Waser, Austad

& Keane, 1986). Greenwood (1980) posited that differences in mating system, mediated by

resource distributions, cause a pattern of sex-biased dispersal in mammals and birds with

male and female-biased dispersal, respectively. This hypothesis, largely accepted for some

time (Dobson, 2013), has now faced increased scrutiny (Dobson, 2013; Mabry et al., 2013).

Assessing the relationship between mating systems and sex-biased dispersal across

taxa may be difficult because social structure and mating patterns can be variable within

species. For example, red deer are strongly polygynous and expected to have “typical”

mammalian male-biased dispersal. However, in different populations this pattern can

disappear altogether (Perez-Espona et al., 2010) or even switch to female-biased dispersal

(Pérez-González & Carranza, 2009), highlighting the importance of social structure,

including changes in mate availability and group composition, in shaping sex-biased

dispersal (Morelli et al., 2009).

The potential of social interactions beyond mating systems to impact dispersal patterns,

although recognized for some time (Hamilton & May, 1977; Greenwood, 1980), is again

an important focus of research emphasizing sex-specific patterns of kin competition and

cooperation (Handley & Perrin, 2007; Clutton-Brock & Lukas, 2011; Dobson, 2013). For

instance, when individuals benefit from cooperation with kin of a particular sex, there

might be a selective pressure on sex-specific dispersal (Local resource enhancement model;

(Perrin & Mazalov, 2000)). The potential impact of social relationships on sex-biased

dispersal is illustrated in primate societies. Female primates with strong philopatry form

relationships with kin that enhance fitness, as observed in female baboons (Silk et al.,

2009). Similarly, philopatric male primates are observed to have strong social bonds (Di

Fiore et al., 2009; Mitani, 2009). However, dispersal does not preclude cooperation between

kin, as observed for male howler (Pope, 1990) and male capuchin monkeys (Jack & Fedigan,

2004; Wikberg et al., 2014), suggesting complex interactions between kin relationships and

dispersal. Recent reviews (Clutton-Brock & Lukas, 2011; Dobson, 2013) have recommended

the study of species with atypical mating systems, for instance mammal species in which

one would expect female-biased dispersal, to test current hypotheses (Dobson, 2013).

Tamarin monkeys (Saguinus) provide an important model because: (i) their mating

patterns are predominantly polyandrous, (ii) social behavior among males tends to be

cooperative, while female reproductive competition is intense and (iii) previous studies

indicate that both sexes disperse (Goldizen & Terborgh, 1989; Garber et al., 1993; Lottker,

Huck & Heymann, 2004; Huck, Roos & Heymann, 2007).

Saguinus tamarins (Callitrichinae) are Neotropical primates that typically live in groups

of 3–9 individuals. The Callitrichine lineage is characterized by small body sizes, high

potential reproductive output, twinning, and large neonate-maternal mass ratios; traits

which are hypothesized to have co-evolved during callitrichine divergence (Harris et al.,

2014). To balance the demands of infant care, tamarins form cooperatively breeding groups

where multiple individuals provide alloparental care to group infants (Goldizen, 2003).
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Although there is considerable variation in social behavior (Goldizen, 1988), generally a

single dominant breeding female mates with all adult males that are unrelated to her and

enlists their assistance in caring for fraternal twin young. Tenures of breeding individuals

are generally long in tamarins: 28–72 months for females, and 2–8 years for males (Garber

et al., 1993; Garber, 1997; Lottker, Huck & Heymann, 2004; Dı́az-Muñoz, 2011). These

tenures, together with the rapid achievement of reproductive maturity (between 12 and 25

months (reviewed in Digby, Ferrari & Saltzman, 2007)), limit the breeding opportunities

for other group members owing to inbreeding avoidance. The remainder of the group

is typically composed of: 1–2 additional reproductive-age females, subordinates that

may be daughters of the breeding female; natal adult males that delay dispersal; and 1

pair of infants or juveniles (Garber et al., 1993; Lottker, Huck & Heymann, 2004; Huck et

al., 2005; Dı́az-Muñoz, 2011). All group members, including subordinate adult females,

provide alloparental care. However, the adult males are the primary allocare providers and

group infant production correlates with the number of adult males (Garber et al., 1993).

These adult males have remarkably prosocial relationships (Goldizen, 1989) and have

been shown to be related and share paternity, albeit to different extents (Huck et al., 2005;

Dı́az-Muñoz, 2011). In contrast, female relationships are characterized by reproductive

competition; the dominant female routinely suppresses subordinates in the group via

behavioral and hormonal mechanisms (Savage, Ziegler & Snowdon, 1988; Garber, 1997)

and as a consequence subordinates rarely produce their own offspring (Garber et al., 1993).

It should be noted that tamarins have flexible social behavior and differences in ecological

and social factors can lead to changes in behavior (Goldizen, 1990; Goldizen, 2003; Digby,

Ferrari & Saltzman, 2007), including dispersal. Nevertheless, the properties mentioned

above show remarkable consistency in studies of wild tamarins.

Given these features of tamarin social organization, i.e., local resource competition

among females, kin-based cooperation among males, and inbreeding risks, we expect

dispersal to be female-biased. At odds with this theoretical expectation, studies of Saguinus

tamarins have observed dispersal by both sexes (Goldizen & Terborgh, 1989; Garber et al.,

1993; Lottker, Huck & Heymann, 2004). To the best of our knowledge, only one genetic

study has been conducted in Saguinus tamarins (Huck, Roos & Heymann, 2007) to reveal

effective dispersal by both sexes in S. mystax; however, the study was restricted to a single

population.

Thus, to robustly test the theoretical expectation of female-biased dispersal, we

combined population genetic methods (using mitochondrial DNA and microsatellites)

with field data from three populations of Geoffroy’s tamarin in Panama to ask:

(a) Is dispersal female biased?

(b) Is sex bias in dispersal consistent across populations?

Finally, we place these results in the larger context of the cooperative breeding system of

tamarins and discuss how kin cooperation and competition may affect dispersal patterns.
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Figure 1 Background information on tamarin study populations. Population locations in Panama
Canal watershed and mitochondrial lineages are shown per Dı́az-Muñoz (2012). Mitochondrial lineages
as represented by distinct colors in the pie charts, where each color depicts a different mtDNA haplotype.
An exact test of population divergence supports the presence of two distinct groups. Blue lines depict
riverine water barriers: Panama Canal and Chagres River. Photo Credit: Anand Varma.

MATERIALS AND METHODS
Geographic location and individual dispersal status
We sampled 44 tamarins in three localities in Panama (Fig. 1): Gamboa, Panama West,

and Soberania National Park. The number of social groups and individuals in each locality

are detailed in Table 1. Data on weight, age, and sex were recorded in the field. For the

Soberanı́a and Gamboa populations, we used behavioral observations and long-term

demographic data to ascertain dispersal status. Individuals that were associated with a

lactating female and with mass <400 gr at capture were considered infants born into the

group; older offspring not associated with a lactating female were considered juveniles.

Individuals >400 gr were considered adults. The Panama West individuals were sampled

from museum specimens collected by GA Dawson (Michigan State University Museum

(Dı́az-Muñoz, 2012)) and no behavioral or group composition information was available,

except that individuals sampled represent multiple groups and no complete groups. Thus,

dispersal status was assigned on the basis of body mass. Full geographic locations and field

methods are described elsewhere (Dı́az-Muñoz, 2011; Dı́az-Muñoz, 2012). This research

project was authorized by the National Authority of the Environment of the Republic of

Panama (SE/A-17-05, SE/A-16-06, SE/A-13-07, SE/A-10-08, SE/A-6-09) and import of

samples under CITES was authorized by the US Fish and Wildlife Service (09US224310/9).

The animal handling and use procedures in this project were approved by the UC Berkeley

Institutional Animal Care and Use Committee (MAP #R224-030) and followed the

published guidelines for animal use of the American Society of Mammalogists (Gannon

& Sikes, 2007) and the ASAB/ABS (2006) guidelines.
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Table 1 Population sample demographics. Number of social groups and individuals in each of the
Geoffroy’s tamarin populations studied.

Populations Gamboa (n = 17) Soberania (n = 14) Panama West (n = 13)

Groups BA LC PH NJ CTb AGb Unknowna

Individuals 3 7 7 6 7 6 13

Adult males 2 3 4 2 2 2 5

Adult females 1 1 1 2 1 1 5

Infants/Juveniles 0 3 3 4 2 2

Total adults 12 8 10

Total Ind. <400 g 5 6 3

Notes.
a Individuals sampled from museum specimens and group compositions were not available, but samples do not represent

complete groups and were collected from multiple groups.
b Groups CT and AG not sampled completely, missing 2 and 1 adults respectively. Only the total reflects uncaptured

individuals.

Genetic analyses
We used seven microsatellite loci to obtain individual genotypes with no missing data

(Dı́az-Muñoz, 2011). Procedures for DNA extraction, amplification, and scoring have

been reported in detail previously (Dı́az-Muñoz, 2011). In brief, we extracted DNA from

hair or tissues using Qiagen DNA Micro kits (Qiagen, Valencia, CA). For Panama West

samples (museum specimens) we used a dedicated room. Following PCR amplification, we

genotyped samples in an ABI 3730 automated sequencer (ABI, Foster City, CA) and scored

in Genemapper 4.0 (ABI).

No microsatellites deviated from Hardy–Weinberg expectations or showed linkage

disequilibrium. We employed a two-step approach to examine genetic structure and infer

sex-biased dispersal:

1. Compare male and female groups. We compared male and female population

genetic structure in three populations using three distinct statistics that allow for

independent tests within site, without relying on between-site comparisons: Fis (Wright,

1942), AIc (assignment index corrected by population mean (Paetkau et al., 1995)) and R

(relatedness; (Ritland, 1996)).

Under sex-biased dispersal the pool of genotypes of the dispersing sex will exhibit a

deficiency of heterozygotes caused by immigrant genotypes. If dispersal is female-biased,

we expect Fis for females to be positive and larger than Fis for males. Thus, we tested

for female-biased dispersal estimating Fis in G (Rousset, 2008) by setting the

alternative hypothesis to heterozygote deficiency.

Individuals living in close proximity are expected to be more related than individuals

taken at random from the whole population. Therefore, we calculated average pairwise

relatedness, R, for each sex within each population using GenAlEx v6.5 (Peakall & Smouse,

2012). As per our prediction of female-biased dispersal, we tested whether the philopatric

sex (males) had higher average relatedness than the dispersing sex (females) using a

Wilcoxon test.
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With the rationale that immigrants (dispersers) can introduce new alleles into the

population, we estimate the probability that an individual is a resident or an immigrant

using AIc (calculated in GenAlEx v6.5 Peakall & Smouse, 2012). AIc is centered on zero;

positive values characterize individuals with a higher probability of being ‘residents’,

whereas negative values indicate a high probability of being ‘immigrants’. We tested

the hypothesis that female-biased dispersal would create negative AIc values due to

immigration (i.e., females are mostly immigrants) by using a Wilcoxon test to detect

significant differences in AIc between the sexes.

2. Compare pre-dispersal with post-dispersal groups. We pooled genotypes from all

three populations to build two groups: (i) infants and juveniles (pre-dispersal individuals

n = 14) and (ii) adults (post-dispersal individuals n = 30). Defining a pre-dispersal

group (i.e., infant/juveniles) allowed us to build a null control for sex-biased dispersal.

Specifically, because infants and juveniles represent a random assortment of alleles yet

to disperse, any sex-specific pattern of relatedness and population structure that might

exist in the population should be erased. Therefore, if dispersal is female-biased in

tamarins we expect: adult females to be less related than under a scenario of unbiased

dispersal; and significant difference in mean AIc between adult males and females,

but no difference between young/juvenile males and females (pre-dispersal group).

To test these predictions, we first compared the observed R to a null distribution

obtained by randomization of infant/juvenile or adult genotypes (10,000×) and tested

whether it exceeded the 95% CI. Second, we calculated the difference in the AIc mean

(D = |AIc females − AIc males|) and built a null distribution by randomization. We tested

whether observed D for each group (i.e., infant/juvenile and adults) was significantly

different from a null distribution of D, generated by randomly assigning sex to individuals

9,999 times. Probability of obtaining a result that exceeded the null hypothesis was

p = [(number D null ≥ D)/total number randomizations].

These approaches avoid common statistical pitfalls (Prugnolle & de Meeus, 2002), by

using the same bi-parentally inherited loci across populations and randomizing sex among

individuals in each population (Prugnolle & de Meeus, 2002). Finally, because the 44

genotypes used were sampled across a broad geographic area (∼500 km2) and previous

work demonstrated population divergence in this area (Dı́az-Muñoz, 2012), we controlled

for the possible effect of population structure. We used an ANCOVA with AIc mean as

the dependent variable and the result from an exact test of population divergence based

on 1,080 base pairs of the mitochondrial control region (i.e., presence of two genetically

distinct groups; see Fig. 1) as the covariate. In this manner we could distinguish variation in

AIc reflecting historical changes from variation in sex-specific AIc. Statistical analyses were

performed using R v3.0.0 (R Development Core Team, 2013).

RESULTS AND DISCUSSION
The genetic analyses presented suggest that there is no sex bias in effective dispersal in

S. geoffroyi, contrary to our initial prediction (Table 2 and Fig. 2). Fis for females was

consistently negative, at odds with the expectation of a positive Fis for the dispersing
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Figure 2 No difference in dispersal between males and females measured by relatedness (R) and
difference in assignment index (D). Pre-dispersal group consists of young and juveniles and hence is
a random assortment of alleles from all parents. Post-dispersal group comprises exclusively adults and
therefore represents the populations after the movement of alleles due to dispersal. Dashed lines depict
the 95% CI around mean R.

sex. R-values were similar between sexes and AIc suggests no sex-differential presence

of immigrants over residents (Table 2). Interestingly, this pattern held across three

populations and is consistent with previous observations for Saguinus mystax (Huck, Roos

& Heymann, 2007). Our results were not confounded by historical genetic structure: there

was no statistically significant difference between sexes in AIc (ANCOVA F1,30 = 1.270,

p = 0.270), when analyzing only adults. This suggests the dispersal pattern is consistent

across space, at least in this focal area. Although not systematically examined here, this

pattern may also be stable across time as one population was sampled from museum

specimens. Temporal differences in sex-biased dispersal may be important, particularly for

species undergoing rapid anthropogenic change (Perez-Espona et al., 2010).

We did find significant differences in R and D for infants/juveniles (pre-dispersal),

despite our prediction of similar values between sexes (Fig. 2); and after accounting

for historical genetic structure AIc values were still significant (ANCOVA; Table 2). A

closer inspection of the genotypes revealed that our estimates were biased because some

juvenile males had unique alleles in the population. This result may be explained by the

stochasticity associated with sampling procedure and the sample sizes; or alternatively,

these juveniles were mis-assigned as pre-dispersal by our criteria and are indeed represented
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Table 2 Dispersal is not sex-biased in Geoffroy’s tamarins. Predictions under female-biased dispersal for statistics and tests are indicated in light
shading. Gamboa, Panama West, Soberania: per-population results. Pre-dispersal and Post-dispersal: infants/juveniles (pre-) vs. adult (post-) results.

Fis R AIc mean AIc var

Prediction F > M F < M F < M F > M

Males (n = 10) −0.281
(p = 0.999)

−0.041 −0.072 0.630

Gamboa
Females (n = 7) −0.378

(p = 0.999)

−0.057 0.103 0.818

W; p = 0.962

Males (n = 7) −0.091
(p = 0.762)

−0.072 0.189 0.209

Panama West
Females (n = 6) −0.100

(p = 0.733)

−0.086 −0.220 1.912

W; p = 0.945

Males (n = 6) −0.236
(p = 0.231)

−0.092 −0.056 0.337

Soberania
Females (n = 8) −0.236

(p = 0.981)

−0.058 0.042 1.004

W; p = 0.485

Prediction F = M F = M F = M F = M

Males (n = 5) −0.057 −0.107 −0.712 0.749
Pre-dispersal

Females (n = 9) −0.354 −0.049 0.395 0.287

ANCOVA: 0.017

Prediction F > M F < M F < M F > M

Males (n = 18) −0.053 −0.040 0.112 0.706
Post-dispersal

Females (n = 12) −0.152 −0.028 −0.167 1.662

ANCOVA: 0.457

Notes.
Fis, Wright’s F statistic; R, Ritland’s relatedness; AIc, Peatkau’s assignment index corrected by population mean; ANCOVA, (analysis of covariance); W, Wilcoxon test.

tamarins that had already dispersed. Nevertheless, all other analyses, notably those that do

not depend on identifying pre- and post-dispersal groups, suggest that there is no sex bias

in effective dispersal in these Geoffroy’s tamarin populations.

The absence of sex bias in dispersal seems counterintuitive in light of the resource

defense hypothesis, where male mammals benefit from philopatry (Perrin & Mazalov,

2000). If, in general, females are reproductive competitors and males typically cooperate

in kin groups, why would both sexes disperse? Cooperation and competition can also

occur within a sex, especially in cooperative breeders: while S. geoffroyi females are typically

competitive in regard to reproduction, subordinate females often assist in infant rearing

and may also be related to breeding females. Adult males in a group are generally related

and cooperate in reproductive contexts, but these two properties need not be related

exclusively to philopatry; related male tamarins often disperse together or reunite in new

groups (Lottker, Huck & Heymann, 2004). Although cooperation may provide benefits to

philopatry (local resource enhancement hypothesis), the monopoly of the breeding female

simultaneously restricts breeding opportunities for both sexes (Garber, 1997). When

breeding tenures of the dominant females are long, as is generally the case for tamarins
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(Goldizen & Terborgh, 1989; Garber et al., 1993; Goldizen et al., 1996; Savage et al., 1996),

breeding opportunities for natal group members are scarce or absent, if individuals are to

avoid mating with kin. As a consequence, individuals of both sexes are expected to disperse

to seek breeding opportunities.

The ability to detect sex-biased dispersal genetically depends crucially on the power

of the tests employed and the characteristics of dispersal such as rate and distance.

Many genetic tests are insensitive to asymmetrical dispersal between genders unless the

bias is extreme (Goudet, Perrin & Waser, 2002) and a large sample size is analyzed. We

employed several measures to ensure our genetic tests avoided common statistical pitfalls.

Specifically we used the same bi-parentally inherited loci across populations, randomized

sex among individuals within each population, and included only same-season samples

within populations (Prugnolle & de Meeus, 2002). We cannot exclude the possibility that

a small bias in philopatry was not detected in our study due to a lack of statistical power.

However, our results suggest this is likely not the case. The observed heterozygosity for

each population (HO Gamboa = 0.7924; HO Panama West = 0.675; HO Soberania = 0.630) was

large suggesting high levels of gene flow. Thus, if rates of dispersal were highly skewed

toward one sex, the tests we implemented would be able to detect the signal. Moreover,

the reported lack of sex-biased dispersal, adds to existing demographic (Goldizen &

Terborgh, 1989; Lottker, Huck & Heymann, 2004) and genetic (Huck et al., 2005) evidence

suggesting both sexes disperse, in Saguinus. One further question that remains to be

elucidated is dispersal distance. Evidence from S. mystax suggests that females may move

longer distances (Huck, Roos & Heymann, 2007), perhaps due to limited reproductive

opportunities associated with male-biased groups with males sharing reproduction with a

single breeding female. However, dispersal by both sexes may imply fitness costs that arise

from kin competition or the risk of inbreeding. Only future detailed studies integrating

demography, behavior, and genetics over the long term will help illuminate the factors

associated with sex-specific dispersal patterns.

In sum, the analyses suggest that sex-unbiased dispersal is a robust property of

S. geoffroyi likely arising from its social organization. In social animals, limited breeding

opportunities within groups set the stage for conflicts of interest in reproduction, resulting

in a mating system that can be viewed as an emergent property of social interactions

(Davies et al., 1995). While within-sex cooperation is an important selective pressure

for philopatry, in S. geoffroyi this occurs in both males and females and thus the risk of

philopatric inbreeding needs to be compensated by dispersing, regardless of sex.

Our empirical study reveals that local resource enhancement might be as important

as local resource competition and inbreeding avoidance in determining the evolution of

dispersal (Perrin & Mazalov, 2000).
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