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ABSTRACT
Across modified landscapes, anthropic factors can affect habitat selection by animals
and consequently their abundance and distribution patterns. The study of the
spatial structure of wild populations is crucial to gain knowledge on species’ response
to habitat quality, and a key for the design and implementation of conservation
actions. This is particularly important for a low-density and widely distributed
species such as the mara (Dolichotis patagonum), a large rodent endemic to
Argentina across the Monte and Patagonian drylands where extensive sheep
ranching predominates. We aimed to assess the spatial variation in the abundance of
maras and to identify the natural and anthropic factors influencing the observed
patterns in Península Valdés, a representative landscape of Patagonia. We conducted
ground surveys during the austral autumn from 2015 to 2017. We built density
surface models to account for the variation in mara abundance, and obtained a map
of mara density at a resolution of four km2. We estimated an overall density of
0.93 maras.km-2 for the prediction area of 3,476 km2. The location of ranch
buildings, indicators of human presence, had a strong positive effect on the
abundance of maras, while the significant contribution of the geographic longitude
suggested that mara density increases with higher rainfall. Although human
presence favored mara abundance, presumably by providing protection against
predators, it is likely that the association could bring negative consequences for maras
and other species. The use of spatial models allowed us to provide the first
estimate of mara abundance at a landscape scale and its spatial variation at a
high resolution. Our approach can contribute to the assessment of mara population
abundance and the factors shaping its spatial structure elsewhere across the species
range, all crucial attributes to identify and prioritize conservation actions.

Subjects Biogeography, Conservation Biology, Ecology, Population Biology
Keywords Distribution and abundance, Dolichotis patagonum, Natural and anthropic factors,
spatial models, Patagonia, Península Valdés

INTRODUCTION
Habitat selection has been defined as the process by which individuals use or occupy a
non-random set of available habitats, and depends on the particular requirements
of a given species or population, the availability of resources and the ability of individuals
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to exploit those resources (Morris, 2003). In addition, the patterns of habitat selection
influence population dynamics through differences in survival and breeding
success across habitats types (Pulliam & Danielson, 1991). Thus, variation in habitat
quality (i.e., the different combinations of physical and biotic conditions affecting
individual fitness) will be reflected in the variation in population density (Bradshaw et al.,
1995; Mayor et al., 2009). Across modified landscapes, both natural and human-related
factors are known to influence the abundance and distribution of wild species,
as changes imposed by human activities can favor or limit species’ presence and
subsequently affect biodiversity at a given area (Hansson, Fahrig & Merriam, 1995).
Therefore, reliable models accounting for the spatial variation in the abundance of wild
populations are crucial to gain knowledge of the response of species to habitat
quality and to predict the consequences of implementation of conservation actions
(Fischer & Lindenmayer, 2006).

The Mara (Dolichotis patagonum) is a large caviomorph rodent endemic to Argentina,
widely distributed across the arid lands of the Monte and Patagonian steppe ecoregions
(Taber, 1987; Kufner & Chambouleyron, 1991; Campos, Tognelli & Ojeda, 2001).
In Patagonia, pioneering work conducted by Taber (1987), Taber & Macdonald (1992a,
1992b) showed that maras are monogamous and breed communally, an unusual
combination among mammals. Maras dig breeding dens in which the young remain until
they are 6–8 weeks old (Taber & Macdonald, 1992a; Baldi, 2007). Female maras give
birth and nurse their pups at the entrance of the dens. Adults never occupy the dens,
and their home range can reach two km2 (Taber & Macdonald, 1992b). Maras have been
defined as generalist herbivores as they feed on grasses and shrubs (Bonino et al., 1997;
Campos, Tognelli & Ojeda, 2001; Sombra & Mangione, 2005). The antipredatory
strategy, of the species is based on the early detection and escape from predators
(Dubost & Genest, 1974; Taber & Macdonald, 1992a). Consequently, maras would be
favored by habitats that offer good visibility and access to shelter, like flat, open areas with
heterogeneous vegetation structure (i.e., the presence of shrubs). Although there are
studies suggesting that open sites and the proximity to ranch buildings would favor the
presence of maras, past research has been focused on the location of breeding warrens,
in particular the occurrence of communal dens (Taber & Macdonald, 1992a;
Baldi, 2007; Alonso Roldán & Baldi, 2016) and habitat use by individuals around the
breeding sites (Taber & Macdonald, 1992b; Rodríguez, 2009; Alonso Roldán et al., 2017).
Also, it has been suggested that overgrazing by livestock lead to the decrease in cover
of palatable grasses and the increase of woody species and bare soil could affect habitat use
by maras (Kufner & Chambouleyron, 1991; Taber & Macdonald, 1992b; Rodríguez, 2009).
The mara has been assessed as a “Near Threatened” species by the International
Union for the Conservation of Nature (IUCN; Roach, 2016), as its global population has
been reported to be dwindling due to habitat loss. Although estimates of population
abundance and distribution were identified as the main research priorities (Roach, 2016),
the available estimates of abundance are restricted to particular dens surveyed
intensively during the breeding season (Taber & Macdonald, 1992a; Baldi, 2007;
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Alonso Roldán, Bossio & Galván, 2015), while estimates of abundance and distribution at a
population scale in relation to habitat variables are lacking.

Our aim in this work was to account for the spatial variation in the abundance of maras
at a population scale in Península Valdés (PV), a representative area of the arid Patagonia
where wild species share the range with human activities. We used density surface
models (DSM,Miller et al., 2013) which combine survey methodologies with mathematical
models to obtain reliable estimates of abundance, while identifying the main factors related
to its spatial variation. We hypothesize that both natural and human-related variables
shape the spatial variation in the abundance of maras throughout the area. We predict that
higher plant productivity, heterogeneity in vegetation structure, and flat terrain will all
positively affect the number of maras. Regarding human-related factors, the proximity to
infrastructure such as ranch buildings will favor the occurrence of maras and affect
their spatial structure at the population scale, while high sheep stocking rates are a
disturbance which will result in decreased numbers of maras.

MATERIALS AND METHODS
The present work is a non-invasive study, conducted through the observation of animals
by means of binoculars. Permission for the research was given by the Direction of
Conservation and Protected Areas, and the Direction of Wildlife of the Province
Chubut (DF & FS-SSG, Permits 71/2014, 73/2015, and 69/2016).

Study site
The study was conducted at PV, located in the Argentine Patagonia (Fig. 1), a provincial
protected area and also a UNESCO World Heritage Site since 1999. The climate of PV
is temperate semi-arid with a mean annual temperature of 13.6 �C, while annual
precipitation averages 230 mm with a high interannual variation (Coronato, Pessacg &
Alvarez, 2017). The vegetation is characteristic of the southern Monte Phytogeographic
Province, but sharing plant species with the northern Patagonian Province
(León et al., 1998). The vegetation structure is highly patchy, with high-cover vegetation,
surrounded by areas with a high proportion of bare soil. The main life forms in PV
are shrubs (evergreen and deciduous), bunch perennial grasses, and forbs (Sala et al., 1989;
Golluscio & Sala, 1993; Bertiller et al., 2017). Shrubs and grass-shrubs steppes dominate
northern and central PV with a vegetation cover that varies between 40% and 60%,
while grass steppes predominate in the southern part of the area with an average
cover of 70% (Fig. 1; Bertiller et al., 2017). The most common shrub species are
Chuquiraga avellanedae and Chuquiraga erinacea, while the most abundant perennial
grasses are Nassella tenuis, Piptochaetium napostaence, and Sporobolus rigens
(Bertiller et al., 2017).

Extensive sheep ranching for wool production occupies most of the land, which is
divided by fences into more than 60 properties. Each ranch is subsequently fenced
into paddocks of 1,000–2,500 ha where the sheep graze on the native vegetation.
There is usually one building per ranch permanently occupied by a rural worker, and
occasionally an outstation which may be inhabited temporarily.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 3/18

http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Species like the grison (Galictis cuja), Patagonian gray fox (Lycalopex gymnocercus) and
the red-backed hawk (Buteo polysoma) have been reported as predators of the mara in
Patagonia (Taber, 1987). Other potential predators of maras in PV are the puma
(Puma concolor), the culpeo fox (Lycalopex culpaeus), and smaller cats (Leopardus
geoffroyi and Leopardus colocolo; Nabte, 2010; Taber, 1987).

Field surveys
We conducted ground, line transect surveys (Buckland et al., 1993; Laake et al., 1993) of
maras during the austral autumn of 2015, 2016, and 2017 totaling 1,085.4 km
surveyed along secondary dirt-roads and tracks, spaced by at least one km among
contiguous tracks (Fig. 1). Surveys were conducted during the non-breeding period in
order to maximize the number of observations, as maras tend to be aggregated
around communal dens during the breeding season (Taber, 1987; Baldi, 2007); and to
prevent possible biases in the abundance estimates due to pup mortality associated to the
breeding season (estimated around 55% of the pups born between August and December;
Baldi, 2007). All surveys were conducted from an open pickup truck, traveling at a maximum
speed of 25 km.h-1, with two observers standing in the back. For every group of maras
detected (one or more individuals) we stopped the vehicle, counted the number of animals
using binoculars, estimated the perpendicular distance from the transect line to the
location where the group was standing at the time it was detected, using a laser rangefinder
(Bushnell Yardage Pro 1000; Bushnell Outdoor Products, Overland Park, KS, USA), and
recorded our location and the angle relative to the group of animals using a portable GPS
(Garmin Oregon 550; Garmin, Olathe, KS, USA).

Figure 1 Location of the study area, distribution of the survey transects and vegetation units
following Bertiller et al. (2017). Full-size DOI: 10.7717/peerj.6367/fig-1
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Estimating the detection function
Using standard distance sampling methodology (Buckland et al., 1993), we fitted a
detection function g(y) to account for the probability of detecting maras. The detection
model assumes that all groups were detected at zero distance from the transect line,
with detectability decreasing with increasing distance from the line (Buckland et al., 2001).
Following Thomas et al. (2010), we evaluated the half-normal, uniform, and hazard-rate
functions as candidate detection functions. As the effect of data truncation (removal
of the 5–10% of the sightings corresponding to the most extreme distance values;
Thomas et al., 2010) increases robustness of the fit for the models, and that sightings far
away from the line contribute little to fit the model at small distances (Buckland et al., 2001,
2015), we removed 10% of the sightings resulting in a truncation distance at 304 m
from the transect line. Then, following Buckland et al. (2001) and Thomas et al. (2010),
we visually explored frequency histograms of distances of each candidate function
and selected the best model by the “shape criterion,” which is based on the analysis of the
most critical region of the function close to the line, excluding functions that are
spiked near zero distance. The detection function should have a “shoulder” close to the
line, indicating that detection remains nearly certain at small distances (Buckland et al.,
1993, 2001, 2004; Thomas et al., 2010; Supplemental Information 1). All analyses
were performed using the “Distance” package version 0.9.7 (Miller, 2017) for R.

Predictor selection
According to our hypotheses, we identified natural and anthropic variables as potential
predictors of mara abundance (Table 1). Additionally, we included the geographic
latitude and longitude as proxy variables to account for possible remaining variation
(Table 1). Normalized Difference Vegetation Index (NDVI) from 250 m MODIS
MOD13Q1 satellite images (available at https://lpdaac.usgs.gov) was used as a correlate of
primary productivity. We calculated the mean values of NDVI for the spring-summer
seasons (from September 21st to March 21st) of the years 2014–2015, 2015–2016,
and 2016–2017 according to the field surveys. As some areas of PV are a mosaic of
vegetation types, we found that a continuous variable such as the coefficient of variation
(CV) of the mean NDVI values was better to represent changes in vegetation physiognomy
than a categorical variable. Thus, we calculated the CV of the NDVI between 2010
and 2014 to account for variation in vegetation physiognomy, and found that it was larger
across shrub steppes than in mixed and grass steppes (see Supplemental Information 2).
Values of CV of altitude were obtained from the Digital Elevation Model for
South America (resolution of about 220 m) at https://lta.cr.usgs.gov/SRTM1Arc.
Updated numbers of sheep per paddock were obtained by asking owners and workers of
the ranches during the field surveys. Data on the location of ranch buildings was
available at our institute but it was also checked and updated in the field while working
across PV between 2015 and 2017. We obtained the values for each variable using
the QGIS Open Source Geographic Information System (QGIS Development Team, 2016)
and packages rshape2 version 1.4.2 (Wickham, 2007), raster version 2.5.8 (Hijmans et al.,
2016) and ggplot2 version 2.2.1 (Wickham & Chang, 2016; R software, version 3.2.1,
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R Development Core Team, 2015). The range of values of each variable across the study
area was included as far as possible in the surveyed tracks. Multicollinearity in predictor
variables could make difficult to separate the effects on the response variable and to
compare alternative models (Lennon, 1999), so we evaluated the collinearity between pairs
of covariates taking the values measured at each segment (see below, “Density surface
model”). We considered two predictors not to be collinear when Pearson’s correlation
coefficients were <0.7 (Block, Morrison & Scott, 1998). The variables CV of NDVI
and geographic latitude showed collinearity (|r| > 0.7), thus we kept the former due to
its ecological significance.

Density surface model
Following Miller et al. (2013) and DSM methodology, each transect line was divided into
smaller segments of 1.8 km in length, totaling 603 segments. Subsequently, each observation
was assigned to its segment according to its location. The size of the segment was
defined according to the information available for the species (maras move on average
1.7 km per day-and its average home range is 1.93 km2, Taber & Macdonald, 1992b),
the detection function and the length of the transects. Given that there were no covariates
other than distance in the detection function, the probability of detection (p) was constant
for all segments. Therefore, we estimated mara abundance per segment (n) by the
“count method” (Hedley & Buckland, 2004). In this way, the number of maras seen in each
segment was described by a generalized additive model (GAM; Wood, 2006) as the sum
of smooth functions of uncorrelated predictor variables measured at the segment.

Eðn̂jÞ ¼ p̂ Ajexp b0 þ
X
k

fk ðzjkÞ
" #

Where E(n̂j) is the expected number of maras in the jth segment, p̂ is the estimated
probability of detection of maras, A is the segment area, zjk is the value of covariate k in

Table 1 List and description of all the variables proposed.

Variable type Name of the
variable

Description

Natural Mean NDVI Mean normalized difference vegetation index for the spring-summer
seasons of 2014–2015, 2015–2016, and 2016–2017 according to each
field survey. Used as a correlate of plant productivity

CV NDVI Coefficient of variation of NDVI from 2010 to 2014. Used as a correlate
of vegetation physiognomy

CV altitude Coefficient of variation of mean altitude. Used to describe the
topography of the terrain

Anthropic Ranch dist. Distance to the nearest ranch building in meters.

Sheep stock. Sheep stocking rate (sheep.km-2) obtained per paddock

Proxy Longitude Longitude projected into meters using Universal Transverse Mercator
zone 20

Latitude Latitude projected into meters using Universal Transverse Mercator
zone 20

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 6/18

http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


segment j, while fk represents the smooth function of the spatial covariate k and β0 is an
intercept term. We used restricted maximum likelihood for smoothness selection
(Reiss & Ogden, 2009;Wood, 2011). The concurvity of the smoothing term (Wood, 2006)
was evaluated before and after fitting the models (Miller et al., 2018) to guarantee
that any smoothing term could be approximated by one or more of the other smoothing
terms in the model. The concurvity measures were very small in all the models
evaluated, suggesting negligible concurvity (Wood, 2006; available as
Supplemental Information 3). Following Miller et al. (2013) we explored three response
distributions including: Tweedie, negative binomial, and quasi-Poisson. The Tweedie
distribution offers a flexible alternative to the others, in particular when the data
contains a high proportion of zero values (Candy, 2004; Shono, 2008; Peel et al., 2012).
For each distribution we built a “base model” considered all the covariates as univariate
smooths. We performed the covariate selection in each base model by removing
the non-significant covariates (with approximate P < 0.01; Marra & Wood, 2011) and
included an additional penalty for each smoothing term, which allowed the degrees
of freedom to fall below 1 (Wood, 2006; section 4.1.6; Wood, 2011). Thus, we obtained
three models as final candidates (Table 2) and subsequently we selected the best-fit
model based on the inspection of residual plots. Residual autocorrelation was checked by
inspecting the correlogram, which showed the behavior of the correlation between
segments at a series of lags. Models were fitted using the “dsm” package version 2.2.16
(Miller et al., 2018) for R.

Abundance and variance estimation
We overlaid a grid of four km2 cells to our study area, obtaining a prediction area of
3,476 km2. We excluded those zones adjacent to the coastal limits of the area and also
inside the salt pans as they represent marginal habitat of the study area that have not been
surveyed. Based on the cell covariate values, we predicted the number of maras for each cell
resulting from the selected DSM, and subsequently obtained an overall estimate of
abundance for PV. Given that the detection function did not have covariates, we calculated
the uncertainty associated with the estimation for each four km2 cell by using the
variation propagation method (Williams et al., 2011). In this way, we included the
uncertainty associated with both the detection function and the spatial model (GAM)
in our estimates of the variance (Miller et al., 2013).

Table 2 Density surface models tested.

Final
models

Response
distribution

Significant variables Exp. Dev. Ab. SE CV

A Tweedie s(ranch dist.) s(longitude) 15.9 3,261 494 0.15

B Quasi-Poisson s(ranch dist.) s(longitude) 24.1 3,195 357 0.11

C Negative binomial s(ranch dist.) s(longitude) 9.18 3,047 559 0.18

Notes:
The best fitting model selected is shaded.
Exp. Dev., percentage of explained deviance; Ab., total number of individuals of D. patagonum estimated for the study
area; SE, standard error; CV, coefficient of variation.
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RESULTS
We recorded 119 sightings of maras (0.11 observations.km-1) comprising a total of
316 individuals, averaging 2.65 ± 1.76 individuals per observation (X̂ ± SD). The detection
function selected was the half normal (Fig. 2) with a truncation distance at 304 m from the
transect line in order to remove the extreme 10% of the sightings and improve data
fitting (Thomas et al., 2010). After truncation 107 sightings were retained, more than
the minimum of 80 observations recommended for modeling clustered objects
(Buckland et al., 2001).

Overall population density estimated by the DSM was 0.93 maras.km-2 (CV = 15%;
Table 2) for the 3,476 km2 prediction area (Fig. 3). Lowest densities (<0.45 ind.km-2) were
mainly concentrated in the central and western areas of the Peninsula (Fig. 3),
while the highest densities (>0.93 ind.km-2) were estimated for the eastern zone where
ranch buildings tend to be more concentrated. The CV associated with the abundance
estimation per cell showed a heterogeneous pattern (Fig. 4).

Statistically significant variables (P < 0.01) of the selected DSM were the distance to the
nearest ranch building (P = 5.96� 10-9) and the geographic longitude (P = 0.001; Table 2).
The abundance of maras had nonlinear relationship with the significant predictors.
The confidence intervals of the smooth function of the predictor variables tended to be
wider where the range of the variables had reduced survey coverage (Fig. 5). Maras were
more abundant close to ranch buildings. Increased distance to the nearest ranch
building showed a marked decrease in mara abundance, in particular within the range of
4,000 m (Fig. 5A). The geographic longitude showed a positive effect on the abundance
of maras, from the central area of the PV to the eastern coast (Fig. 5B). A small
amount of unmodeled correlation in residuals (<0.2) was observed between adjacent

Figure 2 Distribution of perpendicular detection distances of D. patagonum sightings. Solid line
represents the fitted half-normal detection function selected after the data truncation of the 10% of the
most distant sightings. The bars represent the observed data grouped into distance intervals according to
the perpendicular distance at which they were detected. Full-size DOI: 10.7717/peerj.6367/fig-2
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Figure 3 Spatial variation in the abundance of D. patagonum. Abundance is expressed in terms of
absolute density (maras.km-2) for each four km2 cell, totaling a 3,476 km2 prediction area.

Full-size DOI: 10.7717/peerj.6367/fig-3

Figure 4 Uncertainty associated with the predicted abundance of D. patagonum per four km2 cell,
in terms of the coefficient of variation (CV) of the estimate.

Full-size DOI: 10.7717/peerj.6367/fig-4
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segments in the fitted model (see Supplemental Information 4), but we assumed that it did
not affect the explanatory capacity of the model (Dellabianca et al., 2016).

DISCUSSION
Human dwellings are a key factor in mara’s habitat selection and strongly related to
the species’ abundance in PV. Also, it is the only human-related factor explaining
the spatial structure of the mara population. Although the main results do not contradict
our hypothesis about natural and anthropic factors involved in mara habitat selection,
only the geographic longitude could reflect some variation in environmental
conditions, while predictive variables related to plant productivity, vegetation
physiognomy and topography (mean NDVI, CV NDVI, and CV Altitude) did not
show significant effects in the abundance of maras.

Human presence—represented by the distance to inhabited ranch buildings—favored the
increase in mara abundance throughout the modified landscape of PV. Previous studies
conducted at a local scale, focused on particular warrens during the breeding season,
suggested that maras would gain protection from predators as the ranchers usually kill
carnivores like the puma, gray and culpeo foxes, and smaller cats in order to protect their
sheep (Taber &Macdonald, 1992a; Rodríguez, 2009; Rivas et al., 2015; Alonso Roldán & Baldi,
2016). Therefore, the proximity to inhabited ranch buildings could represent safe areas with
low risk of predation for D. patagonum and likely this is reflected at a population scale.

It is known that human activity can alter the interactions between mammalian
carnivores and their prey species (Berger et al., 2001; Schuette et al., 2013), leading to

Figure 5 Partial effects of the significant predictors (A: Ranch distance; B: Longitude) on the
abundance of D. patagonum according to the best fitting model. The solid lines represent the esti-
mated smoothing terms (s) of each predictor and the gray shading the 95% confidence intervals for the
mean effect. The number in brackets in each “s” gives the effective degrees of freedom (a measure of
flexibility) of each term. The y-axis is on the scale of the link function. The tick marks at the bottom of the
plot indicate the coverage of the range of values of each variable in the survey area.

Full-size DOI: 10.7717/peerj.6367/fig-5
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numerous consequences such as local irruptions of native and domestic herbivores
(Sinclair, 1998), site-specific changes in prey behavior (Berger et al., 1999), and disease
propagation (Wilson & Childs, 1997). For example, predator displacement by humans was
found to result in a positive, indirect effect on prey species abundances such as elk
(Cervus elaphus) and white-tailed deer (Odocoileus virginianus) in the drylands of
southwestern Canada, where pumas and wolves (Canis lupus) are actively persecuted
(Hebblewhite et al., 2005; Muhly et al., 2011). It is likely that human activities related to
sheep ranching in PV are disruptive of predator-prey interactions and hence favor the
local abundance of maras in the vicinity of ranch buildings. In Patagonia, carnivores
are perceived by ranchers as a threat to their livestock (Sillero-Zubiri, Reynolds & Novaro,
2004; Travaini et al., 2000; Walker & Novaro, 2010), and this led to high hunting
rates in areas frequented by humans or where the ranchers live (Novaro, Funes & Walker,
2005). As the mara is an important prey species across the Patagonian drylands
(Walker & Novaro, 2010), different hunting pressure on carnivores resulting in differences
in predation rates throughout the landscape (Novaro, Funes & Walker, 2005) could be
reflected in mara distribution and abundance patterns. Also, it is likely that the abundance
of maras is positively influenced by the availability of food in the vicinity of human
dwellings. Usually, ranch buildings are close to temporary water bodies which provide
single, resource-rich patches of nutritive food items where maras tend to feed all year
round (Taber & Macdonald, 1992b). Therefore, lower predation risk and the higher food
availability in areas close to human inhabitants could lead to an increase in the local
abundance of maras. A positive effect of local high-density is the decrease of individual
vigilance time and an increase of pup survival in communal warrens, as observed by
Taber & Macdonald (1992a). Whilst density-dependent habitat selection and intraspecific
competition are likely to play a role, further research is needed to understand the processes
shaping the patterns of local abundance.

Although our work showed a positive effect of human presence on the abundance of
maras, it is necessary to investigate what are the possible costs associated to this
interaction. For example, there is evidence showing that maras are exposed to infectious
disease like Johne’s disease and toxoplasmosis, common to the domestic sheep and
the invasive European hare (Lepus europaeus) in PV (Marull et al., 2004). Therefore, the
proximity to ranch buildings, which are next to shearing sheds and corrals were the sheep
are gathered, could bring negative consequences for mara’s health. Regarding the
abundance of sheep, we did not find effects on the abundance of maras in this study.
It is known that livestock grazing and trampling drive changes in the vegetation
structure (Van De Koppel, Rietkerk & Weissing, 1997; Bisigato & Bertiller, 1997;
Bisigato et al., 2005) that subsequently affect the abundance and distribution of wild
species (Longland & Young, 1995; Keesing, 1998; Campos, Tognelli & Ojeda, 2001;
Tabeni & Ojeda, 2003). On the other hand, there is evidence that the diets of maras and
sheep do not show a high overlap reducing the likelihood of competition for food
resources (Bonino et al., 1986, 1997; Kufner & Pelliza De Sbriller, 1987; Campos, Tognelli &
Ojeda, 2001; Sombra & Mangione, 2005; Rodríguez & Dacar, 2008). Nevertheless,
specific studies designed to investigate mara-sheep interactions are needed to
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assess the effects of the abundant and widespread domestic species on the wild, low-density
populations of maras.

Although the correlates of plant productivity and vegetation physiognomy had no
significant effects on the spatial variation in the abundance of maras as we predicted,
we cannot rule out their possible effects. It is likely that both the NDVI and its CV were not
sufficiently sensitive variables to account for the variation in the composition of
different life-forms affecting habitat selection by maras. However, the proxy variable
“geographic longitude” did have a significant effect on the variation in mara abundance.
Broadly, this variable could be interpreted as a good approximation to spatial variation
in the rainfall regime, a crucial attribute controlling the presence and abundance of
grasses and herbs across the arid systems (Noy-Meir, 1973). In PV, the average annual
rainfall increases from the west toward the eastern coast (Coronato, Pessacg & Alvarez,
2017) where the model estimated the highest densities of maras (Fig. 3), and the
relationship between mara abundance and geographic longitude was positive (Fig. 5B).
This could be associated to the abundance of grasses and herbs which are important
food items for the mara whose growth rates respond quickly to the rainfall regime
(Kufner & Pelliza De Sbriller, 1987; Campos, 1997). The pre-breeding period of the mara
occurs between May and August, when the precipitation tends to be higher and
high-quality food items are more abundant. However, this study was limited to the
post-reproductive period. Future research could incorporate the seasonal dynamics in
abundance and distribution to analyze variation in habitat selection by maras
throughout the year.

Using the DSM, we found maras occur at a low population density and they are
positive related to human presence in PV, a protected area under managed resources
(IUCN Category VI). Conservation authorities should consider the implementation of a
monitoring program in order to evaluate population trends in the area, as well as
the assessment of the factors affecting the abundance of maras in different management
scenarios. As a Near-Threatened species reported to be declining, coordinate efforts
are needed to expand population surveys and to identify the main threats to maras across
their range.

CONCLUSIONS
Natural and anthropic variables shape the spatial variation in the abundance of maras
in PV. The location of ranch buildings was key in habitat selection by maras across the
landscape, while the positive association between species’ abundance and geographic
longitude could reflect the variation in the rainfall regime and ultimately in the abundance
of grasses and herbs. Our results showed that maras are heterogeneously distributed
and their population density is low across the modified landscape of PV, a representative
area of the arid Patagonia. The use of density surface models allowed us to (i) obtain the
first estimate of mara abundance at a population scale; (ii) describe its variation at a
higher resolution; and (iii) identify the main variables explaining the spatial structure of
the population. This approach can contribute to assess mara population abundance
and distribution elsewhere across its range, by combining the well-known distance
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sampling survey method with spatial modeling. While the identification of the main
variables explaining the variation in the abundance of maras is a first step toward the
design of conservation actions, future research should focus on the mechanisms
underlying the observed patterns and their effects on mara population dynamics.

ACKNOWLEDGEMENTS
We thank the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET),
Fundación Vida Silvestre Argentina and Administración de Parques Nacionales
for logistical support. We are grateful to Mario Guttilla, Paula Martinez, Adrian Pizani,
Rafael Lorenzo, Esteban Bremer, Daniel Udrizar Sauthier, Romina D’Agostino,
Sofía Alderete, Lucas Bandieri, Alejandro Arias, German Solveira, Alexis Inchazu,
Juan Canio, Gabriel Cortinovis, Virginia Alonso Roldán and Marcela Nabte for field
assistance and help to build the database. We thank Donald Kramer, Sundararaj Vijayan
and an anonymous reviewer who provided helpful comments that improved
this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The fieldwork was funded by theWildlife Conservation Society. The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosure
The following grant information was disclosed by the authors:
The Wildlife Conservation Society.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Milagros Antún conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, approved the final draft.

� Ricardo Baldi conceived and designed the experiments, contributed reagents/materials/
analysis tools, prepared figures and/or tables, authored or reviewed drafts of the paper,
approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Permission for the research was given by the Direction of Conservation and
Protected Areas, and the Direction of Wildlife of the Province Chubut (DF & FS-SSG,
Permits 71/2014, 73/2015, and 69/2016).

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 13/18

http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Data Availability
The following information was supplied regarding data availability:

The raw data is available in Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6367#supplemental-information.

REFERENCES
Alonso Roldán V, Baldi R. 2016. Location of breeding warrens as indicators of habitat use by

maras (Dolichotis patagonum) in Península Valdés, Argentina. Mammalia 81:515–520
DOI 10.1515/mammalia-2015-0136.

Alonso Roldán V, Baldi R, Del Valle H, Deutschman D. 2017. Living on the edge:
Heterogeneity in vegetation type cover as key factor of the habitat occupied by
Dolichotis patagonum at landscape scale. Journal of Arid Environments 140:42–49
DOI 10.1016/j.jaridenv.2017.01.008.

Alonso Roldán V, Bossio L, Galván DE. 2015. Sources of variation in a two-step monitoring
protocol for species clustered in conspicuous points: Dolichotis patagonum as a case study.
PLOS ONE 10(5):e0128133 DOI 10.1371/journal.pone.0128133.

Baldi R. 2007. Breeding success of the endemic mara Dolichotis patagonum in relation to
habitat selection: conservation implications. Journal of Arid Environments 68(1):9–19
DOI 10.1016/j.jaridenv.2006.03.025.

Berger J, Stacey PB, Bellis L, Johnson MP. 2001. A mammalian predator-prey imbalance: grizzly
bear and wolf extinction affect avian Neotropical migrants. Ecological Applications
11(4):947–960 DOI 10.2307/3061004.

Berger J, Testa JW, Roffe T, Montfort SL. 1999. Conservation endocrinology: a noninvasive tool
to understand relationships between carnivore colonization and ecological carrying capacity.
Conservation Biology 13(5):980–989 DOI 10.1046/j.1523-1739.1999.98521.x.

Bertiller MB, Beeskow AM, Blanco PD, Idaszkin IL, Pazos GE, Hardtk L. 2017.
Vegetation of Península Valdés: priority sites for conservation. In: Bouza P, Bilmes A, eds.
Late Cenozoic of Península Valdés, Patagonia, Argentina. Springer Earth System Sciences.
Vol. 131. Cham: Springer, 159.

Bisigato AJ, Bertiller MB. 1997. Grazing effects on patchy dryland vegetation in northern
Patagonia. Journal of Arid Environments 36(4):639–653 DOI 10.1006/jare.1996.0247.

Bisigato AJ, Bertiller MB, Ares JO, Pazos GE. 2005. Effect of grazing on plant
patterns in arid ecosystems of Patagonian Monte. Ecography 28(5):561–572
DOI 10.1111/j.2005.0906-7590.04170.x.

Block WM, Morrison ML, Scott PE. 1998. Development and evaluation of habitat models
for herpetofauna and small mammals. Forest Science 44:430–437.

Bonino N, Bonvisutto G, Pelliza Sbriller A, Somlo R. 1986. Hábitos alimentarios de los
herbívoros en la zona central de área ecológica Sierras y Mesetas occidentales de la Patagonia.
Revista Argentina de Producción Animal 6:275–287.

Bonino N, Sbriller A, Manacorda MM, Larosa F. 1997. Food partitioning between the mara
(Dolichotis patagonum) and the introduced hare (Lepus europaeus) in the Monte Desert,
Argentina. Studies on Neotropical Fauna and Environment 32(3):129–134.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 14/18

http://dx.doi.org/10.7717/peerj.6367#supplemental-information
http://dx.doi.org/10.7717/peerj.6367#supplemental-information
http://dx.doi.org/10.7717/peerj.6367#supplemental-information
http://dx.doi.org/10.1515/mammalia-2015-0136
http://dx.doi.org/10.1016/j.jaridenv.2017.01.008
http://dx.doi.org/10.1371/journal.pone.0128133
http://dx.doi.org/10.1016/j.jaridenv.2006.03.025
http://dx.doi.org/10.2307/3061004
http://dx.doi.org/10.1046/j.1523-1739.1999.98521.x
http://dx.doi.org/10.1006/jare.1996.0247
http://dx.doi.org/10.1111/j.2005.0906-7590.04170.x
http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Bradshaw CJ, Boutin S, Hebert DM, Rippin AB. 1995. Winter peatland habitat selection by
woodland caribou in northeastern Alberta. Canadian Journal of Zoology 73(8):1567–1574
DOI 10.1139/z95-185.

Buckland ST, Anderson DR, Burnham KP, Laake JL. 1993. Distance sampling: estimating
abundance of biological populations. London: Chapman & Hall.

Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. 2001.
Introduction to distance sampling: estimating abundance of biological populations.
Oxford: Oxford University Press.

Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L. 2004.
Advanced distance sampling: estimating abundance of biological populations. Oxford:
Oxford University Press.

Buckland ST, Rexstad EA, Marques TA, Oedekoven CS. 2015. Distance sampling:
methods and applications. Heidelberg: Springer Nature.

Campos CM. 1997. Utilización de recursos alimentarios por mamíferos medianos y pequeños
del desierto del Monte. PhD thesis. Universidad Nacional de Córdoba.

Campos CM, Tognelli MF, Ojeda R. 2001. Dolichotis patagonum. Mammalian Species
652:1–5.

Candy SG. 2004. Modelling catch and effort data using generalised linear models, the
Tweedie distribution, random vessel effects and random stratum-by-year effects.
CCAMLR Science 11:59–80.

Coronato F, Pessacg N, Alvarez MP. 2017. The climate of Península Valdés within a regional
frame. In: Bouza P, Bilmes A, eds. Late Cenozoic of Península Valdés, Patagonia, Argentina.
Vol. 85. Cham: Springer Earth System Sciences, 104.

Dellabianca NA, Pierce GJ, Rey AR, Scioscia G, Miller DL, Torres MA, Paso Viola MN,
Goodall RNP, Schiavini ACM. 2016. Spatial models of abundance and habitat preferences of
commerson’s and peale’s dolphin in southern patagonian waters. PLOS ONE 11(10):e0163441
DOI 10.1371/journal.pone.0163441.

Dubost G, Genest H. 1974. Le comportement social d’une colonie de maras, Dolichotis patagonum
Z. dans le Parc de Branfere. Zeitschrift für Tierpsychologie 35:225–302.

Fischer J, Lindenmayer DB. 2006. Beyond fragmentation: the continuummodel for fauna research
and conservation in human-modified landscapes. Oikos 112(2):473–480
DOI 10.1111/j.0030-1299.2006.14148.x.

Golluscio RA, Sala OE. 1993. Plant functional types and ecological strategies in Patagonian forbs.
Journal of Vegetation Science 4(6):839–846 DOI 10.2307/3235623.

Hansson L, Fahrig L, Merriam G. 1995. Mosaic landscapes and ecological processes.
London: Chapman & Hall.

Hebblewhite M, White CA, Nietvelt CG, Mckenzie JA, Hurd TE, Fryxell JM, Bayley SE,
Paquet PC. 2005. Human activity mediates a trophic cascade caused by wolves. Ecology
86(8):2135–2144 DOI 10.1890/04-1269.

Hedley SL, Buckland ST. 2004. Spatial models for line transect sampling. Journal of Agricultural,
Biological, and Environmental Statistics 9(2):181–199 DOI 10.1198/1085711043578.

Hijmans RJ, Etten JV, Cheng J, Mattiuzzi M, Sumner M, Greenberg JA, Perpinan Lamigueiro O,
Bevan A, Racine EB, Shortridge A. 2016. raster: Geographic Data Analysis and Modeling.
Available at https://cran.r-project.org/web/packages/raster/ (accessed 13 December 2018).

Keesing F. 1998. Impacts of ungulates on the demography and diversity of small mammals in
central Kenya. Oecologia 116(3):381–389 DOI 10.1007/s004420050601.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 15/18

http://dx.doi.org/10.1139/z95-185
http://dx.doi.org/10.1371/journal.pone.0163441
http://dx.doi.org/10.1111/j.0030-1299.2006.14148.x
http://dx.doi.org/10.2307/3235623
http://dx.doi.org/10.1890/04-1269
http://dx.doi.org/10.1198/1085711043578
https://cran.r-project.org/web/packages/raster/
http://dx.doi.org/10.1007/s004420050601
http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Kufner MB, Chambouleyron M. 1991. Actividad espacial de Dolichotis patagonum en relación a la
estructura de la vegetación en el Monte Argentino. Studies on Neotropical Fauna and
Environment 26:249–255.

Kufner MB, Pelliza De Sbriller A. 1987. Composición botánica de la dieta de Mara
(Dolichotis patagonum) y del ganado bovino en el monte mendocino. Revista Argentina
Producucción Animal 7:255–264.

Laake JL, Buckland ST, Anderson DR, Burnham KP. 1993. DISTANCE user’s guide.
Colorado: Colorado State University Press.

Lennon JJ. 1999. Resource selection functions: taking space seriously? Trends in Ecology &
Evolution 14(10):399–400 DOI 10.1016/s0169-5347(99)01699-7.

León RJC, Bran D, Collantes M, Paruelo JM, Soriano A. 1998. Grandes unidades de vegetación
de la Patagonia extra andina. Ecología Austral 8(2):125–144.

Longland WS, Young JA. 1995. Landscape diversity in the western Great Basin. In: West NE, ed.
Natural Resources and Environmental Issues: Biodiversity on Rangelands. Logan: Utah State
University Press, 80–91.

Marra G, Wood SN. 2011. Practical variable selection for generalized additive models.
Computational Statistics & Data Analysis 55(7):2372–2387 DOI 10.1016/j.csda.2011.02.004.

Marull C, Marticorena D, Baldoménico P, Baldi R, Uhart M. 2004. Interacción epidemiológica
entre la mara Dolichotis patagonum y especies introducidas en la Patagonia Argentina.
In: Abstracts of the II Bi-national Ecological Conference (Argentina-Chile), Mendoza, 263.

Mayor SJ, Schneider DC, Schaefer JA, Mahoney SP. 2009. Habitat selection at multiple scales.
Ecoscience 16(2):238–247 DOI 10.2980/16-2-3238.

Miller DL. 2017. Distance: a simple way to fit detection functions to distance sampling
data and calculate abundance/density for biological populations. Available at
https://cran.r-project.org/web/packages/Distance/Distance.pdf (accessed 13 December 2018).

Miller DL, Burt ML, Rexstad EA, Thomas L. 2013. Spatial models for distance sampling data:
recent developments and future directions. Methods in Ecology and Evolution 4(11):1001–1010
DOI 10.1111/2041-210x.12105.

Miller DL, Rexstad E, Burt L, Bravington MV, Hedley S. 2018. dsm: density surface modelling
of distance sampling data. R package version 2.2.16. Available at
https://cran.r-project.org/web/packages/dsm/index.html (accessed 13 December 2018).

Morris DW. 2003. Toward an ecological synthesis: a case for habitat selection. Oecologia
136(1):1–13 DOI 10.1007/s00442-003-1241-4.

Muhly TB, Semeniuk C, Massolo A, Hickman L, Musiani M. 2011. Human activity
helps prey win the predator-prey space race. PLOS ONE 6(3):e17050
DOI 10.1371/journal.pone.0017050.

Nabte MJ. 2010. Desarrollo de criterios ecológicos para la conservación de mamíferos
terrestres en Península Valdés. PhD thesis. Universidad Nacional de Mar del Plata.

Novaro AJ, Funes MC, Walker RS. 2005. An empirical test of source-sink dynamics
induced by hunting. Journal of Applied Ecology 42(5):910–920
DOI 10.1111/j.1365-2664.2005.01067.x.

Noy-Meir I. 1973. Desert ecosystems: environment and producers. Annual Review of
Ecology and Systematics 4(1):25–51 DOI 10.1146/annurev.es.04.110173.000325.

Peel D, Bravington MV, Kelly N, Wood SN, Knuckey I. 2012. A model-based approach to
designing a fishery-independent survey. Journal of Agricultural, Biological, and
Environmental Statistics 18(1):1–21 DOI 10.1007/s13253-012-0114-x.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 16/18

http://dx.doi.org/10.1016/s0169-5347(99)01699-7
http://dx.doi.org/10.1016/j.csda.2011.02.004
http://dx.doi.org/10.2980/16-2-3238
https://cran.r-project.org/web/packages/Distance/Distance.pdf
http://dx.doi.org/10.1111/2041-210x.12105
https://cran.r-project.org/web/packages/dsm/index.html
http://dx.doi.org/10.1007/s00442-003-1241-4
http://dx.doi.org/10.1371/journal.pone.0017050
http://dx.doi.org/10.1111/j.1365-2664.2005.01067.x
http://dx.doi.org/10.1146/annurev.es.04.110173.000325
http://dx.doi.org/10.1007/s13253-012-0114-x
http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Pulliam RH, Danielson BJ. 1991. Sources, sinks, and habitat selection: a landscape perspective on
population dynamics. American Naturalist 137:S50–S66 DOI 10.1086/285139.

QGIS Development Team. 2016. QGIS Geographic Information System. Open Source Geospatial
Foundation project. Available at https://qgis.org/ (accessed 13 December 2018).

R Development Core Team. 2015. R: a language and environment for statistical computing.
Vienna: The R Foundation for Statistical Computing. Available at https://www.R-project.org/.

Reiss PT, Ogden RT. 2009. Smoothing parameter selection for a class of semiparametric linear
models. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 71(2):505–523
DOI 10.1111/j.1467-9868.2008.00695.x.

Rivas LF, Novaro AJ, Funes MC, Walker RS. 2015. Rapid assessment of distribution of wildlife
and human activities for prioritizing conservation actions in a patagonian landscape. PLOS ONE
10(6):e0127265 DOI 10.1371/journal.pone.0127265.

Roach N. 2016.Dolichotis patagonum. IUCN: The IUCN red list of threatened species.Version 2016.
Available at www.iucnredlist.org (accessed 11 September 2018).

Rodríguez D. 2009. Modeling habitat use of the threatened and endemic mara (Dolichotis
patagonum, Rodentia, Caviidae) in agricultural landscapes of Monte Desert.
Journal of Arid Environments 73(4–5):444–448 DOI 10.1016/j.jaridenv.2008.12.010.

Rodríguez D, Dacar MA. 2008. Composición de la dieta de la mara (Dolichotis patagonum)
en el sudeste del monte pampeano (La Pampa, Argentina). Mastozoología Neotropical
15:215–220.

Sala OE, Golluscio RA, Lauenroth WK, Soriano A. 1989. Resource partitioning
between shrubs and grasses in the Patagonian steppe. Oecologia 81(4):501–505
DOI 10.1007/bf00378959.

Schuette P, Wagner AP, Wagner ME, Creel S. 2013. Occupancy patterns and niche
partitioning within a diverse carnivore community exposed to anthropogenic pressures.
Biological Conservation 158:301–312 DOI 10.1016/j.biocon.2012.08.008.

Shono H. 2008. Application of the Tweedie distribution to zero-catch data in CPUE analysis.
Fisheries Research 93(1–2):154–162 DOI 10.1016/j.fishres.2008.03.006.

Sillero-Zubiri C, Reynolds J, Novaro AJ. 2004.Management and control of wild canids alongside
people. In: Macdonald DW, Sillero-Zubiri C, eds. The Biology and Conservation of Wild Canids.
Oxford: Oxford University Press, 107–122.

Sinclair ARE. 1998. Natural regulation of ecosystems in protected areas as ecological baselines.
Wildlife Society Bulletin 26:399–409.

Sombra MS, Mangione AM. 2005. Obsessed with grasses?: the case of mara Dolichotis patagonum
(Caviidae: rodentia). Revista Chilena de Historia Natural 78(3):401–408
DOI 10.4067/s0716-078x2005000300004.

Tabeni S, Ojeda RA. 2003. Assessing mammal responses to perturbations in temperate
aridlands of Argentina. Journal of Arid Environments 55(4):715–726
DOI 10.1016/s0140-1963(02)00314-2.

Taber AB. 1987. The behavioral ecology of the Mara, Dolichotis patagonum. PhD thesis.
Oxford University.

Taber AB, Macdonald DW. 1992a. Communal Breeding in the Mara, Dolichotis patagonum.
Journal of Zoology 227(3):439–452 DOI 10.1111/j.1469-7998.1992.tb04405.x.

Taber AB, Macdonald DW. 1992b. Spatial organization and monogamy in the mara Dolichotis
patagonum. Journal of Zoology 227:417–438.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 17/18

http://dx.doi.org/10.1086/285139
https://qgis.org/
https://www.R-project.org/
http://dx.doi.org/10.1111/j.1467-9868.2008.00695.x
http://dx.doi.org/10.1371/journal.pone.0127265
www.iucnredlist.org
http://dx.doi.org/10.1016/j.jaridenv.2008.12.010
http://dx.doi.org/10.1007/bf00378959
http://dx.doi.org/10.1016/j.biocon.2012.08.008
http://dx.doi.org/10.1016/j.fishres.2008.03.006
http://dx.doi.org/10.4067/s0716-078x2005000300004
http://dx.doi.org/10.1016/s0140-1963(02)00314-2
http://dx.doi.org/10.1111/j.1469-7998.1992.tb04405.x
http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/


Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, Bishop JRB,
Marques TA, Burnham KP. 2010. Distance software: design and analysis of distance sampling
surveys for estimating population size. Journal of Applied Ecology 47(1):5–14
DOI 10.1111/j.1365-2664.2009.01737.x.

Travaini A, Zapata SC, Martínez-Peck R, Delibes M. 2000. Percepción y actitud humanas hacia
la predación de ganado ovino por el zorro colorado (Pseudalopex culpaeus) en Santa Cruz,
Patagonia argentina. Mastozoologia Neotropical 7:117–129.

Van De Koppel J, Rietkerk M, Weissing FJ. 1997. Catastrophic vegetation shifts and soil
degradation in terrestrial grazing systems. Trend in Ecology and Evolution 12(9):352–356
DOI 10.1016/s0169-5347(97)01133-6.

Walker S, Novaro A. 2010. The world’s southernmost Pumas in Patagonia and the southern
Andes. In: Hornocker M, Negri S, eds. Cougar, Ecology and Conservation. Chicago: University of
Chicago Press, 91–99.

Wickham H. 2007. Reshaping data with the reshape package. Journal of Statistical Software
21(12):1–20 DOI 10.18637/jss.v021.i12.

Wickham H, Chang W. 2016. Create elegant data visualizations using the grammar
of graphics. Available at https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
(accessed 13 December 2018).

Williams R, Hedley SL, Branch TA, Bravington MV, Zerbini AN, Findlay KP. 2011.
Chilean blue whales as a case study to illustrate methods to estimate abundance and
evaluate conservation status of rare species. Conservation Biology 25(3):526–535
DOI 10.1111/j.1523-1739.2011.01656.x.

Wilson ML, Childs JE. 1997. Vertebrate abundance and the epidemiology of zoonotic diseases.
In: McShea MJ, Underwood HB, Rappole JH, eds. The Science of Overabundance.
Washington: Smithsonian Institution Press, 224–248.

Wood SN. 2006. Generalized additive models: an introduction with R. Florida: Chapman & Hall.

Wood SN. 2011. Fast stable restricted maximum likelihood and marginal likelihood estimation
of semiparametric generalized linear models. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73(1):3–36 DOI 10.1111/j.1467-9868.2010.00749.x.

Antún and Baldi (2019), PeerJ, DOI 10.7717/peerj.6367 18/18

http://dx.doi.org/10.1111/j.1365-2664.2009.01737.x
http://dx.doi.org/10.1016/s0169-5347(97)01133-6
http://dx.doi.org/10.18637/jss.v021.i12
https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf
http://dx.doi.org/10.1111/j.1523-1739.2011.01656.x
http://dx.doi.org/10.1111/j.1467-9868.2010.00749.x
http://dx.doi.org/10.7717/peerj.6367
https://peerj.com/

	Modeling the spatial structure of the endemic mara (Dolichotis patagonum) across modified landscapes
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


