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The reported Agrobacterium radiobacter DSM30174T genome is highly fragmented,

hindering robust comparative genomics and genome-based taxonomic analysis. We re-

sequenced the Agrobacterium radiobacter type strain, generating a dramatically improved

genome with high contiguity. In addition, we sequenced the genome of Agrobacterium

tumefaciens B6T, enabling for the first time, a proper comparative genomics of these

contentious Agrobacterium species. We provide concrete evidence that the previously

reported A. radiobacter type strain genome (Accession Number: ASXY01) is contaminated

which explains its abnormally large genome size and fragmented assembly. We propose

that Agrobacterium tumefaciens be reclassified as A. radiobacter subsp. tumefaciens and

that A. radiobacter retains it species status with the proposed name of A. radiobacter

subsp. radiobacter. This proposal is based, first on the high pairwise genome-scale

average nucleotide identity supporting the amalgamation of both A. radiobacter and A

tumefaciens into a single species. Second, maximum likelihood tree construction based on

the concatenated alignment of shared genes (core genes) among related strains indicates

that A. radiobacter NCPPB3001 is sufficiently divergent from A. tumefaciens to propose

two independent sub-clades. Third, A. tumefaciens demonstrates the genomic potential to

synthesize the L configuration of fucose in its lipid polysaccharide, fostering its ability to

colonize plant cells more effectively than A. radiobacter.
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19 ABSTRACT

20

21 The reported Agrobacterium radiobacter DSM30174T genome is highly fragmented, 
22 hindering robust comparative genomics and genome-based taxonomic analysis. We re-
23 sequenced the Agrobacterium radiobacter type strain, generating a dramatically 
24 improved genome with high contiguity. In addition, we sequenced the genome of 
25 Agrobacterium tumefaciens B6T, enabling for the first time, a proper comparative 
26 genomics of these contentious Agrobacterium species. We provide concrete evidence 
27 that the previously reported A. radiobacter type strain genome (Accession Number: 
28 ASXY01) is contaminated which explains its abnormally large genome size and 
29 fragmented assembly. We propose that Agrobacterium tumefaciens be reclassified as 
30 A. radiobacter subsp. tumefaciens and that A. radiobacter retains it species status with 
31 the proposed name of A. radiobacter subsp. radiobacter.  This proposal is based, first 
32 on the high pairwise genome-scale average nucleotide identity supporting the 
33 amalgamation of both A. radiobacter and A tumefaciens into a single species. Second, 
34 maximum likelihood tree construction based on the concatenated alignment of shared 
35 genes (core genes) among related strains indicates that A. radiobacter NCPPB3001 is 
36 sufficiently divergent from A. tumefaciens to propose two independent sub-clades. 
37 Third, A. tumefaciens demonstrates the genomic potential to synthesize the L 
38 configuration of fucose in its lipid polysaccharide, fostering its ability to colonize plant 
39 cells more effectively than A. radiobacter.     
40

41

42

43

44

45 INTRODUCTION
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47 The taxonomy and phylogeny of the genus Agrobacterium has proven to be 

48 complex and controversial. Bacteria of the genus Agrobacterium have been grouped 

49 into six species based on the disease phenotype associated, in part, with the resident 

50 disease-inducing plasmid. Among those six species are A. tumefaciens causing crown 

51 gall on dicotyledonous plants, stone fruit and nut trees and A. radiobacter that is not 

52 known to cause plant diseases of any kind (Bouzar & Jones 2001; Conn 1942; Kerr & 

53 Panagopoulos 1977; Panagopoulos et al. 1978; Riker et al. 1930; Starr & Weiss 1943; 

54 Süle 1978). An alternative classification approach grouped Agrobacterium organisms 

55 into three biovars based on physiological and biochemical properties without 

56 consideration of disease phenotype (Keane et al. 1970; Kerr & Panagopoulos 1977; 

57 Panagopoulos et al. 1978).  The species and biovar classification schemes do not 

58 coincide well, in a large part, because of the disease-inducing plasmids, tumor-inducing 

59 (pTi) and hairy root-inducing (pRi), are readily transmissible plasmids (Young et al. 

60 2001).

61 Many widely used approaches for bacterial species definition include composition 
62 of peptidoglycan, base composition of DNA, fatty acid and 16S rDNA sequence 
63 (Stackebrandt et al. 2002) in addition to newer methods based on the whole-genome 
64 analysis (Coutinho et al. 2016; Jain et al. 2017), horizontal gene transfer analysis 
65 (Bobay & Ochman 2017) or the core genome analysis (Moldovan & Gelfand 2018) 
66 which is used in the present study.  The genus Agrobacterium is a prime example with 
67 many proposals and oppositions regarding the amalgamation of Agrobacterium and 
68 Rhizobium over the last three or four decades (Farrand et al. 2003; Gaunt et al. 2001; 
69 Young et al. 2001; Young et al. 2003). However, more recent studies appear to favor 
70 the preservation of the genus Agrobacterium backed by strong genetic and genomic 
71 evidence (Gan & Savka 2018; Ramírez-Bahena et al. 2014). Within the genus 
72 Agrobacterium, the taxonomic status of A. radiobacter and A. tumefaciens remains 
73 contentious (Sawada et al. 1993; Young 2008; Young et al. 2006). Agrobacterium 
74 radiobacter (originally proposed as Bacillus radiobacter) is a non-pathogenic soil 
75 bacterium associated with nitrogen utilization isolated more than a century ago in 1902 
76 (Beijerinck & van Delden 1902; Conn 1942). On the other hand, A. tumefaciens 
77 (previously Bacterium tumefaciens) is a plant pathogen capable of inducing 
78 tumorigenesis (Smith & Townsend 1907). However, the descriptive assignment for A. 
79 tumefaciens was later found to be contributed by a set of genes located on the large Ti 
80 plasmid that can be lost (Gordon & Christie 2014). In other words, the curing of Ti 
81 plasmid in A. tumefaciens will change its identity to the non-pathogenic species, A. 
82 radiobacter. Furthermore, comparative molecular analysis based on single-copy 
83 housekeeping genes also supports the close relatedness of A. radiobacter and A. 
84 tumefaciens, blurring the taxonomic boundaries between these species (Mousavi et al. 
85 2015; Shams et al. 2013). As taxa are reclassified into different populations that do not 
86 conform to the characteristics of the original description, the given names lose their 
87 significant and descriptive importance. Consistent with the Judicial Commission 
88 according to the Rules of the International Code of Nomenclature of Bacteria, Tindall 
89 (2014) concluded that “the combination of A. radiobacter has priority over the 
90 combination A. tumefaciens when the two are treated as members of the same species 
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91 since A. radiobacter was the first proposed and described in 1902 whereas A 
92 tumefaciens was first proposed and described in 1907) (Tindall 2014). However, given 
93 that A. tumefaciens has been more widely studied than A. radiobacter due to its strong 
94 relevance to agriculture (Bourras et al. 2015), it remains unclear but interesting to see if 
95 the broader scientific community will obey this rule by adopting the recommended 
96 species name change in future studies.
97

98 To our knowledge, a detailed comparative genomics analysis of A. radiobacter 
99 and A. tumefaciens type strains has not been reported despite their genome availability 

100 (Zhang et al. 2014). The high genomic relatedness of both type strains was briefly 
101 mentioned by Kim and Gan (2017) through whole genome alignment and pairwise 
102 nucleotide identity calculation from homologous regions. However, evidence is now 
103 mounting that the A. radiobacter DSM 30147T reported by Zhang et al. (2014) is 
104 contaminated, warranting immediate investigation (Jeong et al. 2016). The assembled 
105 genome is nearly 7 MB, the largest among Agrobacterium currently sequenced at that 
106 time with up to 6,853 predicted protein-coding genes contained in over 600 contigs. At 
107 sequencing depth of nearly 200×, its genome assembly is unusually fragmented even 
108 for a challenging microbial genome (Utturkar et al. 2017). Furthermore, the 
109 phylogenomic placement of A. radiobacter DSM 30147T based on this genome 
110 assembly has been questionable as evidenced by its basal position and substantially 
111 longer branch length relative to other members of the species (Gan & Savka 2018). The 
112 overly fragmented nature of this assembly also precludes fruitful comparative genomics 
113 focusing on gene synteny analysis. More importantly, analysis done on a contaminated 
114 assembly but with the assumption that it is not, will likely lead to incorrect biological 
115 interpretations (Allnutt et al. 2018).
116

117 In this study, we sequenced the whole genome of A. radiobacter using a type 
118 strain that was sourced from the National Collection of Plant Pathogenic Bacteria 
119 (NCPPB).  We produced a contiguous genome assembly exhibiting genomic statistics 
120 that are more similar to other assembled Agrobacterium genomes. We show here, 
121 through comparative genomics and phylogenetics, that the previously assembled A. 
122 radiobacter DSM 30147T genome contains substantial genomic representation from 
123 another Agrobacterium sp. isolated and sequenced by the same lab, consistent with our 
124 initial suspicion of strain contamination. Using the newly assembled genome for 
125 subsequent comparative analysis, we provide genomic evidence that A. radiobacter 
126 DSM 30147T and A. tumefaciens B6T are the same species. However, strain DSM 
127 30147T should not be considered as a merely non-tumorigenic strain of A. tumefaciens 
128 as substantial genomic variation exists between these two type strains notably in the 
129 nucleotide sugar metabolism pathway that may contribute to their ecological niche 
130 differentiation. 
131

132 MATERIALS & METHODS
133

134 DNA extraction and whole genome sequencing
135 Approximately 10 bacterial colonies were scrapped using a sterile P200 pipette tip from 
136 a 3-day-old nutrient agar culture and resuspended in lysis buffer with proteinase K 
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137 (Sokolov 2000) followed by incubation at 56 oC for 3 hours. DNA purification was 
138 performed as previously described. The extracted DNA was normalized to 0.2 ng/uL 
139 and prepared using the Nextera XT library preparation kit (Illumina, San Diego, CA) 
140 according to the manufacturer’s instructions. The library was sequenced on an Illumina 
141 MiSeq desktop sequencer located at the Monash University Malaysia Genomics Facility 
142 (2 × 250 bp run configuration) that routinely sequences mostly decapod crustacean 
143 mitogenomes (Gan et al. 2016a; Gan et al. 2016b; Tan et al. 2015) and occasionally 
144 microbial genomes (Gan et al. 2015; Gan et al. 2014; Wong et al. 2014) without prior 
145 history of processing any member from the Agrobacterium genomospecies 4. 
146

147 De novo assembly and genome completeness assessment
148 Raw paired-end reads were adapter-trimmed using Trimmomatic v0.36 (Bolger et al. 
149 2014) followed by error-correction and de novo assembly using Spades Assembler v3.9 
150 (Bankevich et al. 2012) (See Data S1 for specific trimming and assembly settings). 
151 Genome completeness was assessed with BUSCOv3 (Rhizobiales database) 
152 (Waterhouse et al. 2017).
153

154 Protein clustering
155 Gene prediction used Prodigal v2.6 (Hyatt et al. 2010). Clustering of the predicted 
156 coding sequence (CDS) was performed with CD-HIT-EST using the settings “-C 0.95, -T 
157 0.8” (Li & Godzik 2006). Identification of unique and shared clusters were done using 
158 basic unix commands e.g. csplit, grep, sort and uniq. The specific commands used and 
159 files generated during clustering can be found in the Zenodo database 
160 (https://doi.org/10.5281/zenodo.1489356). 
161

162 Phylogenetic analysis
163 Reconstruction of the Agrobacterium phylogeny used PhyloPhlAN (Segata et al. 2013). 
164 PhyloPhlAN is a bioinformatic pipeline that identifies conserved proteins (400 markers) 
165 from microbial genomes and uses them to construct a high-resolution phylogeny using 
166 maximum likelihood inference approach (Price et al. 2010). For single gene tree 
167 construction, protein sequences were aligned with mafft v7.3 (Katoh & Standley 2013) 
168 using the the most accurate setting (--localpair --maxiterate 1000) followed by 
169 phylogenetic tree construction via IqTree v1.65 with optimized model (Kalyaanamoorthy 
170 et al. 2017; Nguyen et al. 2014). Visualization and annotation of phylogenetic trees was 
171 performed with Figtree v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). 
172

173 Pan-genome construction and phylogenomics
174 Whole genome sequences were reannotated with Prokka v1.1 using the default setting 
175 (Seemann 2014). The Prokka-generated gff files were used as the input for Roary 
176 v3.12.0 to calculate the pan-genome (Page et al. 2015). Maximum likelihood tree 
177 construction of the core-genome alignment and tree visualization used FastTree2 
178 v2.1.10 (-nt -gtr) (Price et al. 2010) and FigTree v 1.4.3, respectively. Input and output  
179 files associated with the Roary analysis have been deposited in the Zenodo database 
180 (https://doi.org/10.5281/zenodo.1489356).
181

182 Detection and visualization of Ti plasmid
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183 Genome sequences of each member of the genomospecies 4 except for the 
184 problematic DSM 37014T strain were used as the query for blastN search (-evalue 1e-
185 100) against the octopine-type Ti plasmid (Altschul et al. 1990). The result of the 
186 similarity search was subsequently visualized in Blast Ring Image Generator (BRIG) 
187 v0.95 (Alikhan et al. 2011).
188

189 Genome annotation and KEGG pathway reconstruction
190 Whole genome sequences of A. tumefaciens B6T and A. radiobacter NCPPB 3001T 
191 were submitted to the online server GhostKoala (Kanehisa et al. 2016b) for annotation 
192 and the annotated genomes were subsequently used to reconstruct KEGG pathways 
193 (Kanehisa et al. 2016a) in the same webserver. Identification of proteins with TIGRFAM 
194 signatures of interest (Haft et al. 2003) used HMMsearch v3.1b2 with the option “--
195 cut_tc” activated to filter for only protein hits passing the TIGRFAM trusted cutoff values 
196 (Johnson et al. 2010). 
197

198 RESULTS

199

200 An improved Agrobacterium radiobacter type strain genome
201

202 Raw sequencing data and whole genome assembly for strains B6 and NCPPB3001 
203 reported in this study are linked to the NCBI Bioproject IDs PRJNA300485 and 
204 PRNA300611, respectively. The newly assembled genome of A. radiobacter type strain 
205 that was sourced from the National Collection of Plant Pathogenic Bacteria (NCPPB) is 
206 approximately 30% smaller than the first reported A. radiobacter  DSM 30147T genome 
207 with 96% less contigs (22 vs 612), 20-fold longer N50 (480 kb vs 23 kb) and assembled 
208 length that is much more similar to other Agrobacterium spp. (Table 1). In addition, it is 
209 near-complete with 685 out of 686 BUSCO Rhizobiale single-copy genes detected as 
210 either partial or complete with minimal evidence of contamination as indicated by the 
211 near absence of duplicated single-copy gene(<0.1%). On the contrary, the current DSM 
212 30147 genome is missing 25.1% of the single copy gene with up to 34.8% duplication 
213 rate. At the time of this manuscript writing, another genome of A. radiobacter type strain 
214 that was sourced from another culture collection centre e.g. the Belgian Coordinated 
215 Collections of Microorganisms has been deposited in the NCBI wgs database (A. 
216 radiobacter LMG140T, Table 1) with assembly statistics that are highly similar to the 
217 type strain genome reported in this study.
218  
219 The inflated genome size of Agrobacterium radiobacter DSM 30147(T) is due to 
220 technical errors
221

222 Instead of sharing a recent common ancestor as would be expected for a recently 
223 duplicated gene, the duplicated single copy genes coding for seryl-tRNA synthetase in 
224 A. radiobacter DSM 30147T were placed in two distinct clusters with one affiliated to 
225 genomospecies 4 and the other affiliated to genomospecies 7 (Figure 1A). Such an 
226 unexpected clustering pattern raises the suspicion of genome assembly from two or 
227 more non-clonal bacterial strains. In addition, by performing comparison at the genome-
228 scale based on whole proteome clustering of A. radiobacter DSM 30147T /NCPPB 
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229 3001T (Previous study, GCF_000421945 ; This study, GCF_001541305), A. sp. TS43 
230 (unpublished, GCF_001526605) and A. tumefaciens B6 (GCF_001541315), we 
231 observed a high number of proteins that were exclusively shared between Zhang et al 
232 A. radiobacter DSM 30147 and A. sp. TS43 belonging to genomospecies 7 (Figure 1B). 
233 Coincidentally, despite not sharing the same Bioproject ID, the whole genomes of 
234 strains DSM 30147T and TS43 were sequenced by the Zhang et al., and  submitted to 
235 NCBI on the same date, 30-May-2013, hinting strain contamination during sample 
236 processing in the lab.
237

238 Genome-scale average nucleotide identity calculation supports the amalgamation 
239 of A.radiobacter and A.tumefaciens into a single genomospecies 
240

241 Single gene tree shows that A. radiobacter NCPPB 3001T and A. tumefaciens B6T 
242 belong to the genomospecies 4 clade (Figure 1A), corroborating with the PhyloPhlAN 
243 phylogenomic tree that was constructed based on the alignment of 400 universal single-
244 copy proteins (Figure S1). The pairwise average nucleotide (ANI) among strains within 
245 this clade is consistently more than 95% further supporting their affiliation to the same 
246 genomospecies (Figure 2) (Coutinho et al. 2016; Jain et al. 2017). As expected, 
247 pairwise ANI of less than 92% was observed when they were compared with strains 
248 from genomospecies 7 (strains RV3 and Zutra 3/1). A 100% pairwise ANI was observed 
249 between A. radiobacter type strains that were sourced from NCPPB and LMG. In 
250 addition, non-type strains B140/95 and CFBP5621 also exhibit a strikingly high pairwise 
251 ANI (>99%) to the type strains of A. tumefaciens and A. radiobacter, respectively, 
252 leading to the formation of sub-clusters within genomospecies 4 (Figure 2).
253

254 Is A. radiobacter a non-tumorigenic strain of A. tumefaciens?
255

256 A majority of the currently sequenced strains from genomospecies 4 are non-
257 tumorigenic as evidenced by the near complete lack of genomic region with significant 
258 nucleotide similarity to the octopine-type Ti reference plasmid (Figure 3). Of the 14 
259 genomes analyzed, only strains B6T and B140/95 exhibit a complete coverage of the Ti 
260 plasmid with near 100% sequence identity while strain 186 shows hits mainly to the 
261 essential gene clusters of a Ti plasmid such as the vir gene cluster (black rings and 
262 gene labels in Figure 3) at a substantially lower sequence identity (50%<x<90%) (Figure 
263 3), suggesting that it may be harboring a dissimilar variant of Ti plasmid e.g. different 
264 opine type. In addition, although lacking hits to the virulence gene of the Ti plasmid, the 
265 tra and trb clusters involved in plasmid conjugal transfer are present in strains Kerr 14, 
266 CCNWGS0286 and UNC420CL41Cvi. Despite belonging to the same genomospecies, 
267 core genome alignment and phylogenomic analysis indicates that A. radiobacter 
268 NCPPB3001T is sufficiently divergent from A. tumefaciens B6T leading to their 
269 separation into two distinct sub-clusters (Figure 4A). This is also resonated by their 
270 different sub-cluster placement in the pairwise ANI heatplot (Figure 2). Furthermore, 
271 strains from both subclades could be broadly differentiated by the set of core accessory 
272 genes that they harbor (Figure 4B). Therefore, even though A. radiobacter does not 
273 harbor a Ti plasmid, it cannot be considered as a non-tumorigenic strain of A. 
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274 tumefaciens given multiple lines of evidence indicating its substantial genomic 
275 divergence from A. tumefaciens.   
276

277

278 Agrobacterium genomospecies 4 strains differ in their genomic potential for 
279 nucleotide sugar metabolism
280

281 Individual comparison of the reconstructed KEGG pathways in A. tumefaciens (Figure 
282 5A) and A. radiobacter (Figure 5B) revealed stark contrast in the anabolism of dTDP-L-
283 rhamnose which is commonly found in the O-antigen of LPS in gram-negative bacteria. 
284 Surprisingly, the entire enzyme set required for the generation of dTDP-L-rhamnose 
285 from D-glucose-phosphate (Table 2) is absent in A. tumefaciens B6, suggesting that this 
286 common nucleotide sugar may be absent from the LPS O-antigen of strain B6. A 
287 manual inspection of the accessory genes uniquely shared by A. tumefaciens strains B6 
288 and B140/95 identified a homolog cluster containing GDP-L-fucose synthase (EC 
289 1.1.1.271) that is involved in the enzymatic production of GDP-L-fucose from GDP-4-
290 dehydro-6-deoxy-D-mannose and NADH (Table 2 and Figure 5C). As expected, the 
291 genes coding for this enzyme and GDP-mannose 4,6-dehydratase involved in the 
292 conversion of GDP-alpha-D-mannose to GDP-4-dehydro-6-deoxy-D-mannose, are 
293 absent in the A. radiobacter NCPPB3001 genome (Figure 5D). Intriguingly, HMMsearch 
294 scan revealed the presence of two protein hits to the TIGR01479 HMM profile in A. 
295 tumefaciens B6 that corresponds to D-mannose 1,6-phosphomutase (EC 5.4.2.8) 
296 required for the synthesis of D-mannose 6-phosphate. In addition to strain B6, its close 
297 relative, strain B140/95, and a more distantly related strain Kerr14 also harbor two 
298 copies of this gene. However, one of the D-mannose 1,6-phosphomutases in strain 
299 Kerr14 is more divergent with a lower TIGRFAM HMM sequence score (Table 2). 
300 Furthermore, it exhibits less than 70% protein identity to the A. tumefaciens B6 and 
301 B140/95 homologs, forming a private protein cluster in the pan-genome (data not 
302 shown).
303  
304 DISCUSSION
305

306 We re-sequenced the genome of Agrobacterium radiobacter type strain using 
307 strain directly obtained from NCPPB. The assembled A. radiobacter genome reported in 
308 this study exhibits assembly statistics that are consistent with a high-quality draft 
309 genome such as high genome completeness and contiguity, near-zero 
310 contamination/duplication and comparable genome size to other closely related strains 
311 (Gan et al. 2018; Parks et al. 2015). Furthermore, given the improved contiguity and 
312 dramatic reduction in the number of contigs of this newly assembled draft genome, we 
313 recommend using this genome in place of the previously published draft genome for 
314 future Agrobacterium comparative studies. 
315

316 The distinct separation of Agrobacterium genomospecies 4 and 7 at 95% ANI 
317 cutoff corroborates with the previously established “genomic yardstick” for species 
318 differentiation (Konstantinidis & Tiedje 2005; Richter & Rosselló-Móra 2009). Using this 
319 percentage cutoff, the ANI approach has been successfully used to provide a near 
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320 “black-and-white” pattern of species separation in even some of the most diverse 
321 bacterial genera such as Pseudomonas, Arcobacter and Stenotrophomonas (Pérez-
322 Cataluña et al. 2018; Tran et al. 2017; Vinuesa et al. 2018). Given the increasing 
323 evidence highlighting the robustness and reliability of the ANI approach in species 
324 delineation, the pairwise ANI between A. tumefaciens and A. radiobacter type strains 
325 that is at least 2.5% higher than the 95% cutoff value is rigorous evidence that they 
326 belong to the same genomospecies, effectively serving as the final nail in the coffin for 
327 the decade-long debate on their taxonomic status. The amalgamation of A. radiobacter 
328 and A. tumefaciens into a single species have been repeatedly suggested in the past 
329 few years but was complicated by the special status of A. tumefaciens as the type 
330 species of the genus Agrobacterium despite the priority that A. radiobacter has over A. 
331 tumefaciens as it was isolated and described 3 years before A. tumefaciens (Young et 
332 al. 2001; Young et al. 2003). Despite sharing numerous morphological and biochemical 
333 features, differences in genomic features such as pairwise ANI, phylogenomic clustering 
334 and core accessory gene contents do exist among members in Agrobacterium 
335 genomospecies 4 that can facilitate the identification of genotypic and phenotypic 
336 variants to accurately delimit sub-species relationships in the future (Brenner et al. 
337 2015; Jezbera et al. 2011; Meier-Kolthoff et al. 2014; Tan et al. 2013). 
338

339

340 To date the LPS for both type strains have been determined (De Castro et al. 
341 2004; De Castro et al. 2002). In stark contrast to A. radiobacter, the A. tumefaciens LPS 
342 consists of D-arabinose and L-fucose that have yet been reported to date in another 
343 members of the genus Agrobacterium (De Castro et al. 2002).  The presence of the L 
344 configuration of fucose is considered to be rare even among plant pathogenic bacteria 
345 but may be associated with the ability of A. tumefaciens to colonize or bind to wounded 
346 plant cell (Lippincott et al. 1977; Whatley et al. 1976; Whatley & Spiess 1977). It has 
347 been previously shown that the LPS of A. tumefaciens but not A. radiobacter can bind to 
348 the plant cells thus providing protection against subsequent infection by pathogenic 
349 strains (Whatley et al. 1976). The presence and absence of nucleotide sugars in the O-
350 chain constituent of LPS in both type strains corroborates with their observed genomic 
351 potential in the nucleotide sugar metabolism pathway thus underscoring the utility of 
352 comparative genomics in facilitating the prediction of microbial host range and 
353 ecological niche (Klosterman et al. 2011). For example, the absence of L-rhamnose and 
354 L-fucose in the LPS of A. tumefaciens B6 and A. radiobacter DSM30147, respectively, 
355 is consistent with the lack of genes coding for enzymes involved with the particular 
356 nucleotide sugar metabolism. Generation of Agrobacterium tumefaciens B6 LPS mutant 
357 via targeted gene deletion (Kaczmarczyk et al. 2012) or the classical but more laborious 
358 transposon mutagenesis approach followed by characterization of the LPS mutant host-
359 range and phytopathogenicity will be instructive (Gan et al. 2011; Reuhs et al. 2005).
360

361 Our current genomic sampling indicates that the Ti plasmid appears to be 
362 restricted to the A. tumefaciens subclade. The maintenance of the Ti plasmid is 
363 metabolically taxing given its large size (Barker et al. 1983; Glick 1995). Even if the Ti 
364 plasmid was conjugally transfer for example, to A. radiobacter, the inability of A. 
365 radiobacter to colonize plant host as evidenced by its LPS incompatibility will not confer 

PeerJ reviewing PDF | (2018:10:32069:1:1:NEW 2 Dec 2018)

Manuscript to be reviewed



366 an advantage to the new plasmid host in a natural environment (Thomashow et al. 
367 1980). Furthermore, in the absence of high density AHL signals which is required to 
368 trigger Ti plasmid conjugation (Fuqua & Winans 1994; Pappas 2008; Zhang et al. 2002), 
369 the newly acquired Ti plasmid in A. radiobacter may be cured in its natural soil habitat 
370 after a few generations. Although the spontaneous transfer of the Ti plasmid from 
371 tumorigenic A. tumefaciens to A. radiobacter K84 has been reported previously, strain 
372 K84 was re-classified based on a recent core gene analysis to Rhizobium rhizogenes 
373 K84 (Velázquez et al. 2010; Vicedo et al. 1996), reiterating the pervasive taxonomic 
374 inconsistency within the genus Agrobacterium that may have confound previous 
375 biological interpretations (De Ley et al. 1966; Lindström et al. 1995; Young 2008). Given 
376 that a large majority of Agrobacterium genetics was performed during the pre-NGS era 
377 (Gan & Savka 2018), it remains unknown as to how many A. tumefaciens and A. 
378 radiobacter strains have been molecularly misclassified due to their high genomic 
379 relatedness. 
380

381 The inability to accurately identify plasmid and chromosomal-derived contigs 
382 among the draft genomes means that some of the core accessory genes among 
383 tumorigenic strains may be plasmid-derived and should be treated with caution as the 
384 low-copy-number Ti-plasmid is prone to curing in the absence of AHL signals. Despite 
385 the value of complete genome assembly in enabling the accurate partitioning of plasmid 
386 and chromosomal genomic region (Arredondo-Alonso et al. 2017), the representation of 
387 complete Agrobacterium genomes in current database is still very low as a majority of 
388 the genomes were assembled from short Illumina reads that cannot effectively span 
389 repetitive region (Wibberg et al. 2011; Wood et al. 2001). Furthermore, most 
390 Agrobacterium strains harbor multiple large plasmids that further complicate short-read-
391 only assembly graph (Kado et al. 1981; Lowe et al. 2009; Shao et al. 2018). Given the 
392 currently available genomic resources for Agrobacterium, defining subspecies within the 
393 Agrobacterium genomospecies 4 based on the identification of lineage-specific gene set 
394 (Moldovan & Gelfand 2018) will be challenging. However, we anticipate that the advent 
395 of high throughput long-read sequencing that can span large repetitive region in recent 
396 years is likely going to overcome this limitation allowing a more accurate depiction of 
397 microbial pangenome (Gan et al. 2012; Gan et al. 2017; Schmid et al. 2018a; Schmid et 
398 al. 2018b). Future hybrid genome assemblies (Illumina and Nanopore/PacBio reads) of 
399 members from genomospecies 4 with comprehensive metadata and reliable phenotypic 
400 information, will be instructive.
401

402 CONCLUSIONS

403

404 Despite belonging to the same genomospecies, A. tumefaciens and A. radiobacter are 
405 by no means clonal at the chromosomal level and instead demonstrate sufficient 
406 genomic characters that qualify their separation into two sub-species. In addition, the 
407 difference in the LPS profile among two type strains will have implications to host 
408 specificity leading to geographical separation. In the spirit of preserving the naming of 
409 both species but at the same time respecting the taxonomic jurisdiction for strain 
410 priority, we propose A. tumefaciens to be reclassified as A. radiobacter subsp. 
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411 tumefaciens and for A. radiobacter  to retains its species status with the proposed name 
412 of A. radiobacter subsp. radiobacter. 
413
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Figure 1

Phylogenetic and genomic evidence indicating contamination in the published  A.

radiobacter  DSM 30147T genome.

(A) Maximum likelihood phylogenetic tree of seryl-tRNA synthetases from Agrobacterium

genomospecies 4 and 7. Codes after the tildes are contigs containing the corresponding

homologs. Node labels indicate ultra-fast bootstrap support value and branch length

indicates number of substitutions per site. Duplicated homologs in the problematic A.

radiobacter DSM 30147 genome were colored red. (B) Venn diagram of the core proteome of

selected Agrobacterium strains from genomospecies 4. Numbers in the overlapping regions

indicate the number of coding sequences (CDS) that shared by two or more groups at 95%

nucleotide identity cutoff.
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Figure 2

A heatmap showing the hierarchical clustering of  Agrobacterium  strains based on

genomic distance.

Values in boxes indicate pairwise average nucleotide identity. Horizontal colored bar below

the heatmap indicate the genomospecies assigned to each genome (G7, genomospecies 7 ;

G4, genomospecies 4). Boxed labels indicate genomes sequenced in this study.
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Figure 3

Prevalence and sequence conservation of the octopine-type Ti plasmid among 

Agrobacterium  genomospecies 4.

Each genome (labelled 1-15) is represented by a colored ring shaded based on nucleotide

percentage similarity to the reference Ti plasmid (min. 50%; max. 100%). The outermost ring

highlights the gene regions involved in tumorigenesis (vir, iaa and ipt) and plasmid

conjugation (trb and tra). Asterisks indicate genomes sequenced in this study
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Figure 4

Genomic divergence among genomospecies 4 strains.

(A) Unrooted maximum likelihood tree constructed based on the core genome alignment.

Branch length and node labels indicate number of substitutions per site and FastTree2 SH-

like support values, respectively. Putative subclades were colored blue, red and purple (B)

Distribution of accessory (non-core) gene clusters among strains determined with Roary and

plotted with the perl script roary2svg.pl (https://github.com/sanger-

pathogens/Roary/blob/master/contrib/roary2svg/roary2svg.pl). A total of 7,906 accessory

gene clusters were identified by Roary and the number of accessory genes presence in each

genome are shown in the most right column. Vertical grey lines/bars along the plot indicate

presence of accessory gene. Asterisks indicate genomes sequenced in this study
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Figure 5

KEGG pathway of nucleotide sugar metabolism associated with  Agrobacterium 

lipopolysaccharide synthesis.

(A) and (B), genomic potential of A. tumefaciens B6 and A. radiobacter DSM

30147,respectively, in the biosynthesis of dTDP-L-rhamnose. (C) and (D), genomic potential

of A. tumefaciens B6 and A. radiobacter DSM 30147,respectively, in the biosynthesis of GDP-

L-Fucose. Numbers in boxes indicate Enzyme Commission numbers. White and green boxes

indicate absence and presence of the corresponding enzymes, respectively, based on

GhostKoala annotation (Kanehisa et al. 2016).
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Table 1(on next page)

Genome statistics of publicly available  Agrobacterium  genomospecies 4 whole genome

sequences
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Table 1: Genome statistics of publicly available Agrobacterium genomospecies 4 whole genome sequences

Assembly 
accession Strain Isolation Source Country Size GC%

# 
Contig

GCF_900045375 B6 Apple Gall (Iowa) USA 5.8 59.07 4

GCF_001541315* B6 Apple Gall (Iowa) USA 5.6 59.32 52

GCF_001692245 B140/95 Peach/Almond Rootstock USA 5.7 59.23 45

GCF_002179795 LMG 215 Humulus lupulus gall (USA) USA 5.4 59.48 33

GCF_000233975 CCNWGS0286 R. pseudoacacia nodules China 5.2 59.53 49

GCF_900011755 Kerr 14= LMG 15 = CFBP 
5761

Soil around Prunus dulcis Australia 5.9 59.04 5

GCF_002591665 186 English Walnut gall California 5.7 59.42 22

GCF_002008215 LMG 140 = NCPPB 3001 
=CFBP 5522= DSM 30147

saprobic soil Germany 5.5 59.34 22

GCF_000421945 LMG 140 = NCPPB 3001 
=CFBP 5522= DSM 30147

saprobic soil Germany 7.17 59.86 612

GCF_001541305* LMG 140 = NCPPB 3001 
=CFBP 5522= DSM 30147

saprobic soil Germany 5.5 59.36 22

GCF_900012605 CFBP 5621 Lotus corniculata, root tissue 
commensal

France 5.4 59.32 3

GCF_003031125 LAD9 (CGMCC No. 2962) landfill leachate treatment system China 5.9 59.13 49

GCF_000384555 224MFTsu31 rhizosphere of L. luteus in Hungary, 
formerly R. lupini H13-3

USA 4.8 59.73 21

GCF_900188475 719_389 Rhizosphere and endosphere of 
Arabidopsis thaliana.

USA 4.9 59.73 18
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GCF_000384555 UNC420CL41Cvi Plant associated USA 5 59.69 18

1 *Reported in this study
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Table 2(on next page)

Identification of  Agrobacterium  proteins with TIGRFAM domains involved in the

biosynthesis of nucleotide sugar.

Numbers indicate bit scores calculated based on protein alignment to the model with higher

scores indicating stronger and more significant hits.
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1 Table 2. Identification of Agrobacterium proteins with TIGRFAM domains involved in the biosynthesis of nucleotide 
2 sugar. Numbers indicate bit scores calculated based on protein alignment to the model with higher scores indicating 
3 stronger and more significant hits. 

4
5
6
7 *Formed a separate protein cluster from the rest of genomospecies 4 GDP-mannose-4,6-dehydratase orthologs (<70% pairwise 
8 protein identity)

9

Assembly ID Strain
TIGR01479
(EC 5.4.2.8)

TIGR01472
(EC 
4.2.1.47)

TIGR01207
(EC 
2.7.7.24)

TIGR0118
1
(EC 
4.2.1.46)

TIGR0122
1
(EC 
5.1.3.13)

TIGR0121
4
(EC 
1.1.1.133)

1st hit 2nd hit

GCF_9000453
75

B6 690.2 566.6 589.5

GCF_0015413
15

B6 690.2 566.6 589.5

GCF_0016922
45

B140/95 690.2 566.6 589.5

GCF_9000117
55

Kerr14 691.3 690.2 428.6*

GCF_0015413
05

NCPPB3001 690.2 494.6 488.5 215.4 331.5

GCF_0020082
15

LMG140 690.2 494.6 488.5 215.4 331.5

GCF_9000126
05

CFBP5621 689.3 494.6 489.5 215.4 331.5

GCF_0025916
65

186 689.3 494.6 488.5 215.4 331.8

GCF_0030311
25

LAD9 688.5 494.4 487.9 215.4 329.9

GCF_0002339
75

CCNWGS 644.8 494.6 487.5 215.4 331.8

GCF_0021797
95

LMG215 690.2

GCF_0003845
55

224MFTsu31 644.8

GCF_0004822
85

UNC420CL41
Cvi

644.8

GCF_9001884
75

719_389 687.5
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