Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery (#29329)

First revision

Editor guidance

Please submit by 1 Nov 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 1 Tracked changes manuscript(s)
- 1 Rebuttal letter(s)
- 6 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our <u>article requirements</u>?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to Peerl standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery

Kyle J Boddy $^{Corresp.,\ 1}$, Joseph A Marsh 1 , Alex Caravan 1 , Kyle E Lindley 1 , John O Scheffey 1 , Michael E O'Connell 1

Corresponding Author: Kyle J Boddy Email address: kyle@drivelinebaseball.com

Background. Improvements in data processing, increased understanding of the biomechanical background behind kinetics and kinematics, and technological advancements in Inertial Measurement Unit (IMU) sensors have enabled high precision in the measurement of joint angles and acceleration on human subjects. This has resulted in new devices that reportedly measure joint angles, arm speed, and stresses to the pitching arms of baseball players. This study seeks to validate one such sensor, the MotusBASEBALL unit, with a marker-based motion capture laboratory.

Hypothesis. We hypothesize that the joint angle measurements ("Arm Slot" and "Shoulder Rotation") of the MotusBASEBALL device will hold a statistically significant level of reliability and accuracy, but that the "Arm Speed" and "Stress" metrics will not be accurate due to limitations in IMU technology.

Methods. 10 healthy subjects threw 5-7 fastballs followed by 5-7 breaking pitches (slider or curveball) in the motion capture lab. Subjects wore retroreflective markers and the MotusBASEBALL sensor simultaneously.

Results. It was found that the Arm Slot (P < 0.001), Shoulder Rotation (P < 0.001), and Stress (P = 0.001 when compared to elbow torque, P = 0.002 when compared to shoulder torque) measurements were all significantly correlated with the results from the motion capture lab. Arm Speed showed significant correlations to shoulder internal rotation speed (P = 0.001) and shoulder velocity magnitude (P = 0.002). For the entire sample, Arm Slot and Shoulder Rotation measurements were on a similar scale, or within 5-15% in absolute value, of magnitude to measurements from the motion capture test, averaging 8 degrees less and 9 degrees less respectively. Arm Speed had a much larger difference, averaging 3745 deg/s lower than shoulder internal rotation velocity, and 3891 deg/s less than the shoulder velocity magnitude. The Stress metric was found to be 41 Nm less when compared to elbow torque, and 42 Nm less when compared to shoulder torque. Despite the differences in magnitude, the correlations were extremely strong, indicating that the MotusBASEBALL sensor had high reliability for casual use.

Conclusion. This study attempts to validate the use of the MotusBASEBALL for future studies that look at the Arm Slot, Shoulder Rotation, Arm Speed, and Stress measurements from the MotusBASEBALL sensor. Excepting elbow extension velocity, all metrics from the MotusBASEBALL unit showed significant correlations to their corresponding metrics from motion capture and while some magnitudes differ substantially and therefore fall short in validity, the link between the metrics is strong enough to indicate reliable casual use. Further research should be done to further investigate the validity and reliability of the Arm Speed metric.

 $^{^{}m 1}$ Research and Development, Driveline Baseball, Inc, Kent, Washington, United States of America

1	
2	Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery
4 5	Kyle J. Boddy ¹ , Joseph A. Marsh ² , Alex Caravan ³ , Kyle E. Lindley ⁴ , John O. Scheffey ⁵ , Michael E. O'Connell ⁶
6	1, 2, 3, 4, 5, 6 Driveline Baseball, Research & Development, Kent, WA USA
7	
8	Corresponding Authors:
9 .0 .1	Kyle J. Boddy 19612 70th Avenue South, Unit 2-4 Kent, WA 98032
2	Email address: kyle@drivelinebaseball.com
.3	
.4	
.5	
.6	
.7	
.8	
9	
20	
21	
22	
23	
24	
25	
26	
27	
28	
9	
80	

- 31 Abstract
- 32 **Background.** Improvements in data processing, increased understanding of the biomechanical
- 33 background behind kinetics and kinematics, and technological advancements in Inertial
- 34 Measurement Unit (IMU) sensors have enabled high precision in the measurement of joint
- angles and acceleration on human subjects. This has resulted in new devices that reportedly
- measure joint angles, arm speed, and stresses to the pitching arms of baseball players. This study
- 37 seeks to validate one such sensor, the MotusBASEBALL unit, with a marker-based motion
- 38 capture laboratory.
- 39 **Hypothesis.** We hypothesize that the joint angle measurements ("Arm Slot" and "Shoulder
- 40 Rotation") of the MotusBASEBALL device will hold a statistically significant level of reliability
- and accuracy, but that the "Arm Speed" and "Stress" metrics will not be accurate due to
- 42 limitations in IMU technology.
- 43 **Methods.** 10 healthy subjects threw 5-7 fastballs followed by 5-7 breaking pitches (slider or
- 44 curveball) in the motion capture lab. Subjects wore retroreflective markers and the
- 45 MotusBASEBALL sensor simultaneously.
- 46 **Results.** It was found that the Arm Slot (P < 0.001), Shoulder Rotation (P < 0.001), and Stress (P < 0.001).
- = 0.001 when compared to elbow torque, P = 0.002 when compared to shoulder torque)
- 48 measurements were all significantly correlated with the results from the motion capture lab. Arm
- 49 Speed showed significant correlations to shoulder internal rotation speed (P = 0.001) and
- shoulder velocity magnitude (P = 0.002). For the entire sample, Arm Slot and Shoulder Rotation
- 51 measurements were on a similar scale, or within 5-15% in absolute value, of magnitude to
- 52 measurements from the motion capture test, averaging 8 degrees less and 9 degrees less
- respectively. Arm Speed had a much larger difference, averaging 3745 deg/s lower than shoulder
- internal rotation velocity, and 3891 deg/s less than the shoulder velocity magnitude. The Stress
- 55 metric was found to be 41 Nm less when compared to elbow torque, and 42 Nm less when
- 56 compared to shoulder torque. Despite the differences in magnitude, the correlations were
- 57 extremely strong, indicating that the MotusBASEBALL sensor had high reliability for casual
- 58 use.
- 59 **Conclusion.** This study attempts to validate the use of the MotusBASEBALL for future studies
- 60 that look at the Arm Slot, Shoulder Rotation, Arm Speed, and Stress measurements from the
- 61 MotusBASEBALL sensor. Excepting elbow extension velocity, all metrics from the
- 62 MotusBASEBALL unit showed significant correlations to their corresponding metrics from
- 63 motion capture and while some magnitudes differ substantially and therefore fall short in
- validity, the link between the metrics is strong enough to indicate reliable casual use. Further
- research should be done to further investigate the validity and reliability of the Arm Speed
- 66 metric.

68 Introduction

- 69 Technological advancements in the motion capture field have enabled coaches and athletes to
- 70 better quantify the locomotor demands of their sport. Marker-based motion capture has been
- shown in research to be capable of measuring the kinematics and kinetics of a baseball pitch
- 72 (Richards, 1999). The OptiTrack camera system (Natural Motion / OptiTrack; Corvallis, Oregon)
- used in this study has also been shown in research to be comparable to other high-end motion
- 74 capture systems (Thewlis et al., 2013).
- 75 Marker-based motion capture, however, requires technical expertise and labor, and can be
- 76 prohibitively expensive to many coaches and athletes. Inertial Measurement Unit (IMU) based
- sensors have been used to quantify human movement and have undergone a lot of technological
- 78 improvements to become increasingly more accurate.
- 79 IMU sensors have been validated in research for joint angle measurements in the lower body
- 80 (Leardini et al., 2014), as well as in the upper body (Morrow et al., 2017). IMU sensors have
- been validated for biomechanical analysis in movement-based areas like gait analysis (Kavanagh
- and Menz, 2008), running kinematics (Provot et al., 2017), and swimping biomechanics (de
- Magalhaes et al., 2014). IMU sensors have started to gain popularity measuring the kinematics
- of throwers, but validation of such sensors has been limited; specifically for throwing-based
- 85 movements, one study placed wearable IMU sensors on the arms and measured kinematic
- positions to determine whether a cricket bowl qualified as legal or not (Wixted et al. 2012).
- 87 Another study used inertial sensors to determine the peak outward acceleration of several cricket
- 88 bowlers (Spratford et al., 2014).
- 89 In baseball, one study used IMU sensors to measure kinematics of youth pitchers, but the study
- 90 focused primarily on pelvis and torso rotation; the sensor attached to the wrist was only used to
- 91 identify the timing of the throwing motion's acceleration phase (Grimpampi et al., 2016).
- 92 Another study compared the kinematics of 4 different pitchers with a 5-node IMU setup to an
- 93 optical lab, but relationships were primarily established qualitatively, and only shoulder rotation
- 94 speed was analyzed with any statistical rigor (Lapinski, et al. 2009). Additionally, the
- 95 sportSemble device used in the study is not commercially available, justifying an investigation
- 96 into more consumer-grade IMU-based sensors.
- 97 The MotusBASEBALL unit (Motus; New York, NY) is a popular IMU sensor that purports to
- 98 measure the biomechanics of a thrower's elbow. The only existing validation of the unit comes
- 99 from Camp et al., 2017, which states that the MotusBASEBALL sensor was evaluated
- simultaneously with an 8-camera motion capture system. Correlation coefficients ('r'-values)
- between measurements with the 2 systems were found to be "good to excellent" for
- measurements, though no supplemental data were provided. Following studies have used the
- MotusBASEBALL unit to look at elbow torque and other parameters in pitchers throwing
- fastballs and off-speed pitches, but did not provide an attempt at possible validation (Makhni et
- 105 al., 2018).
- The purpose of this study is to validate the outputs of the MotusBASEBALL sensor, which are
- Arm Speed, Arm Slot, Shoulder Rotation, and Stress, against the OptiTrack motion capture

system. The hypothesis was that the joint angle measurements of Arm Slot and Shoulder 108 Rotation would be validated as accurate and reliable, while the Arm Speed and Stress metrics 109 110 might not be as accurate. The hypothesis was more optimistic about the former two measurements because of the past validation research done around IMU sensors in measuring 111 position or joint angles and rotation around one axis, while being more pessimistic about the 112 113 latter two measurements as arm movement in three separate planes is more difficult to quantify and the inclusion of acceleration in calculating stress and inverse dynamics could likely lead to a 114 propagation of errors through the multiple derivations of the position. 115 Methods 116 Ten healthy pitchers, all of collegiate or pro-level experience, volunteered to participate in the 117 study: nine threw overhead, one threw sidearm and all were right-handed. Participants were 118 provided a verbal explanation of the study and its risks and were asked to read and sign an 119 Informed Consent document before testing. The Informed Consent documents were generated 120 once Hummingbird IRB approved the study and granted ethical approval to carry out the data 121 collection at the author's facilities (Hummingbird IRB #: 2018-10). Testing proceeded once 122 investigators received verbal confirmation and obtained a witnessed legal signature from the 123 124 athlete. Heights, weights, and ages of the participants were recorded before the beginning of 125 testing. (Table 1) 126 [Table 1] 127 128 Testing Procedure 129 Athletes were given as much time as necessary to prepare and warm-up to throw off of the 130 pitching mound. Once ready, pitchers were fitted with reflective markers in preparation for the 131 motion capture test. Forty-seven reflective markers were attached bilaterally on the third distal 132 phalanx, lateral and medial malleolus, calcaneus, tibia, lateral and medial femoral epicondyle, 133 femur, anterior and posterior iliac spine, iliac crest, acromial joint, midpoint of the humerus, 134 lateral and medial humeral epicondyle, midpoint of the ulna, radial styloid, ulnar styloid, distal 135 end of index metacarpal, parietal bone, and frontal bone, as well as on the inferior angle of 136 scapula, C7 and T10 vertebrae, the sternal end of the clavicle, and the xiphoid process. 137 The motion capture system was calibrated using Motive:Body software (Natural Motion / 138 OptiTrack; Corvallis, Oregon) and the ground plane was set; the system typically showed 1mm 139 or less of mean three-dimensional error, and never exceeded 2mm. 140 The pitchers simultaneously were outfitted with the MotusBASEBALL sensor. Said sensor is 141 typically inserted into a sleeve that the athlete wears, so that the small arrow on the sensor points 142 towards the distal end of the athlete's throwing arm. The sleeve is then worn and adjusted such 143 that the sensor is placed over the flexor bundle of the athlete. For this study, the Motus sensor 144 was fixed to the athlete in accordance with the directions on the Motus app, with the designated 145

146 147 148	placer strapping it two finger widths below the medial epicon of the inside edge of the athletes throwing forearm using double sided skin-tape to avoid the sleeve causing interference with any of the markers. (Figure 1) This is the less common application of the Motus sensor, and
149	is addressed further down as a possible limitation of the study.
150	
151	[Figure 1]
152	
153 154 155 156 157 158	Pitchers then threw 5-7 fastballs, followed by 5-7 off-speed pitches (either curveballs or sliders dependent on each individual's comfort levels), with approximately 30-60 seconds of rest in between throws. All pitches were thrown at a medium effort level. Research has shown that off-speed pitches may result in significant changes to kinetics and kinematics (Escamilla et al., 2017; Fleisig et al., 2006). For this reason, athletes were asked to throw their preferred off-speed pitch. Fatigue was assumed to be negligible with such a low pitch count.
159 160 161 162	Throws were made using a 5-oz. (142g) regulation baseball off the mound to a strike zone target (Oates Specialties, LLC, Huntsville, TX) located above home plate, which was 60' 6'' (18.4 m) away. Testing concluded when the investigators were satisfied they had at least five valid motion capture takes of each pitch type for analysis.
163 164 165 166 167 168 169 170	For each trial, ball velocity was measured by a Doppler radar gun (Applied Concepts; Stalker Radar, Richardson, Texas). Additionally, for all trials, the three-dimensional motions of the reflective markers were tracked with a multi-camera motion-capture system, sampling at 240 Hz (Natural Motion / Optitrack, Corvallis, Oregon). This motion-capture system contained a mixture of Prime 13 and Prime 13W cameras, totaling 15 cameras. These cameras were placed symmetrically around the capture volume, approximately 8-12 feet from the center of the pitching mound at varying heights. A total of 6 cameras were mounted on a truss system in front of the pitcher to avoid collisions; all 15 cameras used were encapsulated by black squares for better clarity in Figure 2.
172	
173	[Figure 2]
174	
175 176 177 178 179 180 181 182 183	Joint centers of the model were estimated based on markers ed on the joint and local coordinate systems (Dillman et al., 1993). Position data was filtered using a 20 Hz fourth-order Butterworth low-pass filter, after which kinematics and kinetics were calculated in Visual3D (C-Motion Inc., Germantown, MD). The model was scaled for body e, and inertial properties of the hand, forearm, and upper arm were based on cadaveric data. The baseball was modeled as a 0.142 kg point mass at the metacarpal marker until the ball was released, while after release the mass was omitted from the model (Fleisig et al., 2005) All kinematic and kinetic values were calculated using the ISB recommended model of joint coordinate systems (Wu et al., 2005). In total, 10 kinematic and kinetic values (3 position, 5 velocity, and 2 kinetic) were calculated and

- the mean values of each participant's 5 clearest throws of each pitch type were used (Escamilla
- 185 et al., 1998).
- 186 Three position values for the motion capture system were all found at burlelease (BR): trunk
- lateral tilt, shoulder abduction, and maximum shoulder external rotation. Measurements were
- taken as their local joint angles measured in degrees. The five velocity parameters were taken as
- the maximum speeds of shoulder internal rotation, shoulder abduction, shoulder horizontal
- abduction, elbow angular extension and forearm angular extension, as per the precedents set
- 191 from the Fleisig model. All velocities were calculated as the rate of change in the joint angle,
- measured in degrees/second. The two kinetic values calculated were the maximum elbow varus
- torque and shoulder internal rotation torque, which were measured in Newton meters (Nm).
- All MotusBASEBALL data were collected with an iPhone (Apple Inc., Cupertino CA) and the
- supplied app, "Motus Throw", which was then manually transferred into labeled spreadsheets for
- storage and later analysis. The app generated the Arm Slot, Arm Speed, Arm Stress, and
- 197 Shoulder Rotation metrics. Arm Slot was reported as taken at ball release while Arm Speed was
- taken at the peak value slightly after ball release; the Arm Stress and Shoulder Rotation measures
- were dependent on the athlete's max external rotation.
- 200 Statistical Analysis
- The data metrics were analyzed as both a total sample of twenty (20) pitches and two separate
- equal-sized groups classified by the type of pitch: fastballs (10) and off-speed pitches (10). Each
- pitch was an average of the five pitches analyzed by each of the two systems in question.
- 204 Anticipating a difference in the scale of the respective magnitudes for the two systems, the
- statistical analyses centered on a correlation test based around Pearson's product moment of
- 206 correlation coefficient and an n-2 number of degrees of freedom. The correlation test was used to
- test the hypothesis of a linear relationship between the set of metrics obtained for each of the two
- systems. Statistical significance was based on a default alpha value of 0.05.
- 209 In order to create measurement analogues between the motion capture trial and the
- 210 MotusBASEBALL metrics, additional calculations were done. Corrections to the metrics were
- 211 done following Motus's guidelines which were communicated via email by representatives from
- 212 Motus; those corrections follow below.
- 213 Arm Slot (Motion Capture system) was taken as the sum of the lateral trunk tilt and shoulder
- abduction at BR. Shoulder Rotation was measured as the maximum amount of shoulder external
- 215 rotation measured in the global coordinate system. MotusBASEBALL's Arm Speed metric,
- 216 which was taken from the MotusTHROW app, was compared to elbow extension velocity and
- 217 shoulder internal rotation velocity, which are the most common standards for measuring arm
- speed. Per Motus's recommendation, Arm Speed was also compared to the magnitude of the
- resultant angular velocity of the shoulder, which is compromised of the following components:
- the square root of the sum of the squares of shoulder abduction velocity, ω_{Sa} , shoulder horizontal
- abduction velocity, ω_{Sha} , and shoulder internal rotation velocity, ω_{Sir} . $\sqrt{\omega_{Sa} + \omega_{Sha} + \omega_{Sir}}$.

In addition, the angular velocity of the forearm extension as taken on the motion capture system 222 as another Arm Speed metric to use based on Motus defining their arm speed metric as the 223 224 "resultant angular velocity of the forearm segment." MotusBASEBALL stress was compared to elbow varus torque and shoulder internal rotation torque, which are the two most commonly 225 226 addressed kinetic markers in pitching research. All torque metrics were in Nm. First, the descriptive metrics (means and standard errors of means) for the holistic group and 227 228 subgroups for all the marker-based biomechanics measurements and MotusBASEBALL 229 measurements were outlined and recorded. Then these metrics were matched together across 230 paired results (each subject having been recorded on the two separate systems), and had both their Pearson correlation coefficient o calculated along with its 95% confidence interval and its 231 232 associated p-value, following a Student's T test distribution. The correlation test posits the hypothesis of there being a significant linear association versus the null hypothesis of there being 233 no correlation, or $\rho = 0$. In addition, Bland Altman plots were used for each fastball and off-234 speed metric comparison to investigate the reliability of the two metrics despite their frequent 235 differences in absolute magnitudes. All the aforementioned statistical analysis was performed 236 using the program open-source statistical Program R (www.r-project.org). 237 Results 238 239 The results for the three separate groups are displayed in Tables 2 and 3: 240 [Table 2] 241 242 [Table 3] 243 244 As is somewhat intuitive given the nature of the more similar sub-populations, the correlation 245 coefficient is higher within said smaller groups, due to the smaller sample sizes and subsequent 246 degrees of freedom. The fastball group found significant associations between four of the metrics 247 (Arm Slot, Shoulder Rotation, and the second and third Arm Speed metrics), while the off-speed 248 group found significant associations between six metrics (Arm Slot, Shoulder Rotation, the 249 second and third Arm Speed metrics, and both Stress metrics). Confidence Intervals were 250 included to give a clearer picture of the correlation's reliability and confirm that the significant 251 correlations indicate some degree of positive linear relationship. Bland-Altman plots were 252 generated below in Figures 3 through 6 for analysis of the different measurement systems and 253 their subsequent reliability. Their reliability appears to be quite high as the individual data points 254 all fell within the confidence intervals of the differences between the systems' magnitudes for the 255 majority of the metrics, and no one metric had more than a single point outside of said 256 confidence intervals. 257 258

259	[Figure 3]
260	
261	[Figure 4]
262	
263	[Figure 5]
264	
265	[Figure 6]
266	
267	Discussion
268 269 270	Arm slot was found to be near perfectly correlated across all groups, though MotusBASEBALL's arm slot was roughly 7-10 degrees lower than the results from our motion capture system.
271 272 273	Shoulder rotation was also strongly correlated between the two systems. On average the shoulder rotation measured by MotusBASEBALL was 9 degrees lower than what the motion capture system detected for the total group.
274 275 276 277 278	Arm speed from MotusBASEBALL showed strong correlations to both shoulder rotation speed metrics, but no correlation to elbow extension speed or the forearm extension. This could be due to the fact that the MotusBASEBALL sensor is placed very close to the elbow joint, so movement of the forearm caused by elbow extension is much less detectable due to the shorter lever arm that it detects rotation from.
279 280 281 282 283 284 285 286	The numerical difference between the two systems is fairly substantial. Average MotusBASEBALL arm speed, which was 925 deg/s, was dramatically lower than the measured shoulder internal rotation speeds and magnitude of both shoulder rotational velocities and forearm velocities, which were 4670 deg/s, 4816 deg/s and 5744 deg/s respectively. It is also worth noting that the arm speed metric that MotusBASEBALL outputs in the app is different than the metric that is in their web-based portal. Because MotusBASEBALL's arm speed metric in the app would scale linearly to the metric in the portal, it follows that the comparison of motion capture arm speed metrics to the arm speed in the app would still be reliable.
287 288 289 290 291 292 293 294 295	Both comparisons to MotusBASEBALL's Stress metric were significant. Both stress measurements (from MotusBASEBALL and from motion capture) were shown to be consistent across the holistic sample of subjects. Kinetics calculations are heavily dependent on the athlete's height and weight, along with the weight of the ball (Feltner and Dapena, 1986). Motus has stated that their calculation also takes these factors into consideration and are part of the inputs required to use the MotusBASEBALL sensor. The fact that those inputs are considered could explain part of the statistically significant correlation between the two stress metrics. Conversely, while the stress correlation exists for the whole sample and the off-speed subsample, it is not significant for the fastball sample; potential variables that could explain the

disparity in correlations include the differences across the systems in marker placement and 296 297 inertial parameters set in their respective algorithms. Because the numerical outputs from the MotusBASEBALL unit are noticeably different from the 298 outputs from marker-based motion capture outputs, which is the gold standard of biomechanical 299 analysis, MotusBASEBALL's best use may be in relative comparisons of the same athlete. This 300 gap in absolute value potentially stems from the difference in measurement units the two systems 301 use; as the Bland-Altman plots above show, the majority of the data points fall within the 95% 302 303 confidence intervals for all eight metric comparisons in both the fastball and off-speed 304 populations: the only exceptions being a solo arm slot data point for both off-speed and fastball pitches, and a solo data point for the fastball metric comparison of Motus's arm speed and 305 306 MoCap's shoulder internal rotation angular velocity. Nevertheless, these findings, while supporting the reliability of the Motus metrics, fail to validate them as validation in research, by 307 definition, necessitates the magnitude of the scale to be confirmed as accurate. 308 309 These differences in magnitudes are likely in large part from the aforementioned escalating error that stems from IMU sensors attempting to measure movement in three planes and correctly 310 311 quantify acceleration, the second derivative of position with respect to time. Nevertheless, there are multiple instances of concurrent technologies having significant correlations, and by 312 extension acceptable reliability, while exhibiting numerical differences in absolute magnitude 313 that impede its validity (O'Donnell et al., 2018). In addition, there is also a specific history in the 314 world of baseball player development in using technology that may be highly reliable while 315 measuring outcomes on different scales of magnitude, like the tachistoscope test correlating with 316 a player's batting average (Reichow et a., 2011). 317 In addition, MotusBASEBALL has shown to be internally consistent when used by the same 318 athlete as evidenced by the subjects' individual coefficient of variation scores on their five 319 Motus-recorded throws, which makes it an efficient tool for noting significant changes to an 320 athlete's mechanics. (Table 4) 321 322 323 [Table 4] 324 While the MotusBASEBALL unit cannot replace the gold-standard of motion capture, it has a 325 significant advantage in that it can be used in live competition and practice situations without 326 serious preparation. The MotusBASEBALL unit is likely best applied by laypeople, coaches, and 327 those who do not have regular access to a sophisticated motion capture system, or the time to 328 329 implement said analysis. 330 Limitations There are a few noteworthy limitations to this study. As mentioned previously, the more 331 commercial sleeve was not used to place the sensor. Using a sleeve would have prevented the 332 ability to take simultaneous motion capture takes as the markers could not have been placed on 333

PeerJ

334 335 336	as they throw to maintain accurate readings as movement of the sleeve from the intended sensor location will likely change the readings.
337 338 339 340 341 342	In addition, the smaller sample size still leaves questions as to the validity of the findings and the significant correlations did not always carry over across different pitch types: for example, the Stress metric was significant in the off-speed pitch sample and not in the fastball pitch sample. Further research should be done with a larger sample size to both further investigate the Arm Speed metric in order to find a more intuitive significant correlation to a respective motion capture measurement and to further investigate the large numerical differences in the angular velocities of the two systems.
344	Conclusion
345 346 347 348 349 350 351 352 353	This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weaker correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and shoulder torque respectively. While differences in magnitudes prevented validation of the Motus scores, the high reliability of these three metrics in particular could reasonably be used in future
355	studies and for use in monitoring an individual athlete's mechanics from session to session.
356	
357	
358	
359	

387

- 360 References
- 361 Christopher CL, Tubbs TG, Fleisig GS, Dines JS, Dines DM, Altchek DW, Dowling B. "The
- 362 Relationship of Throwing Arm Mechanics and Elbow Varus Torque: Within-Subject Variation
- 363 for Professional Baseball Pitchers Across 82,000 Throws." The American Journal of Sports
- 364 *Medicine*, vol. 45, no. 13, Nov. 2017, pp. 3030–35. *PubMed*, doi:10.1177/0363546517719047.
- de Magalhaes, FA, Vannozzi G, Gatta G, Fantozzi S. "Wearable Inertial Sensors in Swimming
- Motion Analysis: A Systematic Review." *Journal of Sports Sciences*, vol. 33, no. 7, 2015, pp.
- 367 732–45. *PubMed*, doi:10.1080/02640414.2014.962574.
- 368 Charles DJ, Fleisig GS, Andrews JR. "Biomechanics of Pitching With Emphasis Upon Shoulder
- Kinematics." Journal of Orthopaedic & Sports Physical Therapy, vol. 18, no. 2, Aug. 1993, pp.
- 370 402–08. *Crossref*, doi:10.2519/jospt.1993.18.2.402.
- Escamilla RF, Fleisig GS, Barrentine SW, Zheng N, Andrews JR. 1998. Kinematic Comparisons
- of Throwing Different Types of Baseball Pitches. *Journal of Applied Biomechanics* 14:1-23
- 374 DOI: 10.1123/jab.14.1.1
- 375 Escamilla RF, Fleisig GS, Groeschner D, Akizuki K. "Biomechanical Comparisons Among
- Fastball, Slider, Curveball, and Changeup Pitch Types and Between Balls and Strikes in
- 377 Professional Baseball Pitchers , Biomechanical Comparisons
- 378 Among Fastball, Slider, Curveball, and Changeup Pitch Types and Between Balls and Strikes in
- Professional Baseball Pitchers." The American Journal of Sports Medicine, vol. 45, no. 14, Dec.
- 380 2017, pp. 3358–67. SAGE Journals, doi:10.1177/0363546517730052.
- Feltner M., Dapena J. 1986. Dynamics of the shoulder and elbow joints of the throwing arm
- during a baseball pitch. *International Journal of Sport Biomechanics* 2:235–259.
- Fleisig GS, Kingsley DS, Loftice JW, Dinnen KP, Ranganathan R, Dun S, Escamilla RF,
- Andrews JR. "Kinetic Comparison among the Fastball, Curveball, Change-up, and Slider in
- Collegiate Baseball Pitchers." *The American Journal of Sports Medicine*, vol. 34, no. 3, Mar.
- 386 2006, pp. 423–30. *Crossref*, doi:10.1177/0363546505280431.
- Fleisig GS., Diffendaffer AZ., Aune KT., Ivey B., Laughlin WA. 2017. Biomechanical Analysis
- of Weighted-Ball Exercises for Baseball Pitchers. Sports Health: A Multidisciplinary Approach
- 390 9:210–215. DOI: 10.1177/1941738116679816.
- 391 Grimpampi E, Masci I, Pesce C, Vannozzi G. "Quantitative Assessment of Developmental
- 392 Levels in Overarm Throwing Using Wearable Inertial Sensing Technology." *Journal of Sports*
- 393 *Sciences*, vol. 34, no. 18, Sept. 2016, pp. 1759–65. *PubMed*,
- 394 doi:10.1080/02640414.2015.1137341.
- 395 Kavanagh JJ, Hylton MB. "Accelerometry: A Technique for Quantifying Movement Patterns
- during Walking." Gait & Posture, vol. 28, no. 1, July 2008, pp. 1–15. PubMed,
- 397 doi:10.1016/j.gaitpost.2007.10.010.
- Lapinski M., Berkson E, Gill T, Reinold M, Paradiso J. "A Distributed Wearable, Wireless
- 399 Sensor System for Evaluating Professional Baseball Pitchers and Batters." 2009 International

- 400 Symposium on Wearable Computers, 2009, pp. 131–38. IEEE Xplore,
- 401 doi:10.1109/ISWC.2009.27.

- 403 Leardini A, Lullini G, Giannini S, Berti L, Ortolani M, Caravaggi P.. "Validation of the Angular
- 404 Measurements of a New Inertial-Measurement-Unit Based Rehabilitation System: Comparison
- with State-of-the-Art Gait Analysis." *Journal of NeuroEngineering and Rehabilitation*, vol. 11,
- 406 Sept. 2014, p. 136. *BioMed Central*, doi:10.1186/1743-0003-11-136.
- 407 Makhni EC, Lizzio VA, Meta F, Stephens JP, Okoroha KR, Moutzouros V. "Assessment of
- 408 Elbow Torque and Other Parameters During the Pitching Motion: Comparison of Fastball,
- 409 Curveball, and Change-Up." Arthroscopy: The Journal of Arthroscopic & Related Surgery:
- 410 Official Publication of the Arthroscopy Association of North America and the International
- 411 Arthroscopy Association, vol. 34, no. 3, Mar. 2018, pp. 816–22. PubMed,
- 412 doi:10.1016/j.arthro.2017.09.045.
- 413 Morrow, MMB., Lowndes B, Fortune E, Kaufman KR, Hallbeck MS. "Validation of Inertial
- Measurement Units for Upper Body Kinematics." *Journal of Applied Biomechanics*, vol. 33, no.
- 415 3, June 2017, pp. 227–32. *Crossref*, doi:10.1123/jab.2016-0120.

416

- 417 O'Donnell S., Tavares F., McMaster D., Chambers S., Driller M. 2018. The validity and
- reliability of the GymAware linear position transducer for measuring counter-movement jump
- 419 performance in female athletes. Measurement in Physical Education and Exercise Science
- 420 22:101–107. DOI: 10.1080/1091367X.2017.1399892.

421

- Provot T, Chiementin X, Oudin E, Bolaers F, Murer S. "Validation of a High Sampling Rate
- 423 Inertial Measurement Unit for Acceleration During Running." Sensors (Basel, Switzerland), vol.
- 424 17, no. 9, Aug. 2017. PubMed, doi:10.3390/s17091958.
- Reichow AW., Garchow KE., Baird RY. 2011. Do scores on a tachistoscope test correlate with
- baseball batting averages? Eye & Contact Lens 37:123–126. DOI:
- 427 10.1097/ICL.0b013e3182188a77.
- 428 Richards JG. "The Measurement of Human Motion: A Comparison of Commercially Available
- 429 Systems." Human Movement Science, 1999, pp. 589–602.
- 430 Spratford W, Portus M, Wixted A, Leadbetter R, James DA. "Peak Outward Acceleration and
- Ball Release in Cricket." *Journal of Sports Sciences*, vol. 33, no. 7, Apr. 2015, pp. 754–60.
- 432 *Crossref*, doi:10.1080/02640414.2014.962577.

433

- Thewlis D, Bishop C., Daniell N., Paul G. 2013. Next-generation low-cost motion capture
- 435 systems can provide comparable spatial accuracy to high-end systems. *Journal of applied*
- 436 *biomechanics* 29:112–117.
- 437 Wixted A, Portus M, Spratford W, James D. "Detection of Throwing in Cricket Using Wearable
- 438 Sensors." *Sports Technology*, vol. 4, no. 3–4, Aug. 2011, pp. 134–40. *Crossref*,
- 439 doi:10.1080/19346182.2012.725409.

440

- Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, Whittle M, D'Lima DD,
- 442 Cristofolini L, Witte H, Schmid O, Stokes I."ISB Recommendation on Definitions of Joint

PeerJ

- Coordinate System of Various Joints for the Reporting of Human Joint Motion--Part I: Ankle,
- Hip, and Spine. International Society of Biomechanics." Journal of Biomechanics, vol. 35, no. 4,
- 445 Apr. 2002, pp. 543–48.
- 446

Table 1(on next page)

Participants' Descriptive and Performance Characteristics

Biological and performance data on the subjects in the study.

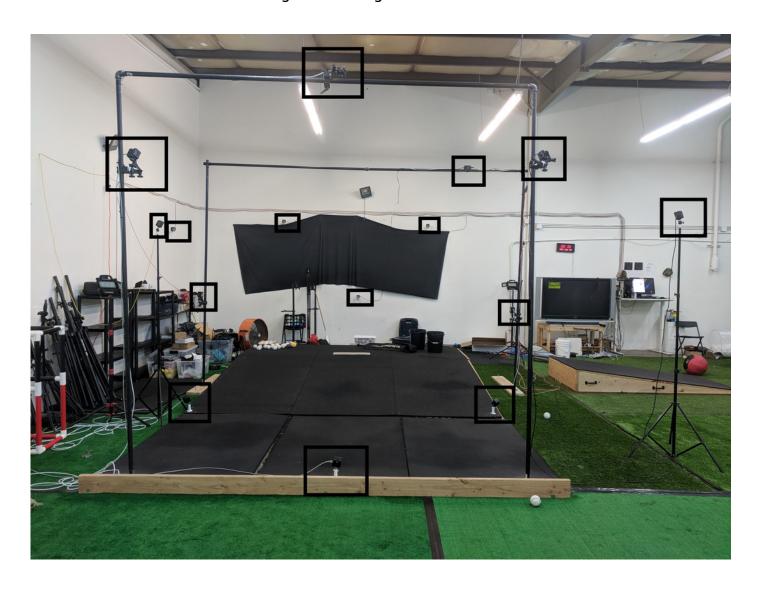
TABLE 1: Participants' Descriptive and Performance Characteristics

1 2

10 Subjects Height (in) Weight (lbs)		FB Velocity (mph)	OS Velocity (mph)	
Age: 23.8 ± 4.0	73.3 ± 0.8	206.1 ± 5.5	83.8 ± 3.5	71.0 ± 3.6

3

4


Placement of the motusBASEBALL sensor on the elbow

How we affixed the motusBASEBALL sensor to the arm using adhesive instead of the provided sleeve.

The Motion Capture System

The multi-camera OptiTrack camera system consisting of Prime 13 and Prime 13W cameras, used to evaluate pitcher kinematics and kinetics, with each camera identified by squares for clearer black-and-white rendering of the image.

Table 2(on next page)

Averages of the Metrics Taken from Motion Capture Analysis Compared with the Corresponding Metrics from MotusBASEBALL

A comparison of the Motion Capture System using high-precision OptiTrack cameras compared with the metrics the motusBASEBALL unit provides.

3

TABLE 2: Averages of the Metrics Taken from Motion Capture Analysis Compared with the Corresponding Metrics from MotusBASEBALL

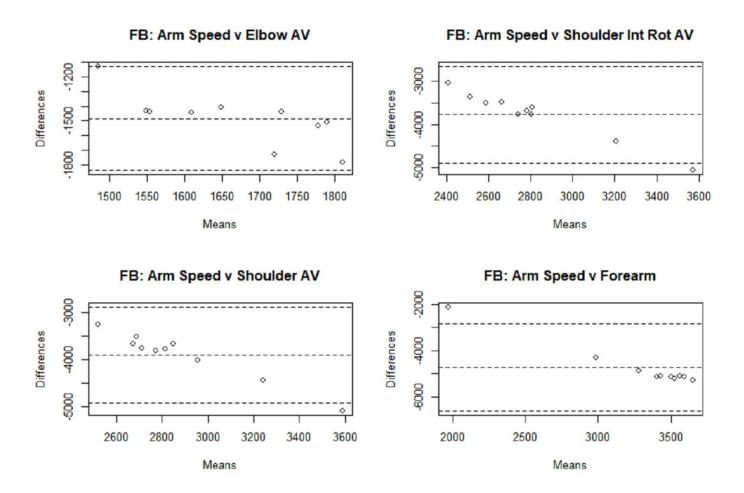
Group	All		Fast	ball	Off-Speed		
Sample Size	2	0	10)	10		
			MotusB			MotusB	
	Motion	MotusBA	Motion	ASEBA	Motion	ASEBA	
Metric	Capture	SEBALL	Capture	LL	Capture	LL	
Arm slot							
(deg)	62 ± 3	54 ± 8	63 ± 5	53 ± 8	61 ± 5	54 ± 5	
Shoulder							
rotation (deg)	167 ± 2	158 ± 5	167 ± 3	156 ± 5	168 ± 3	157 ± 3	
Arm speed -							
elbow							
extension			2398 ±	945 ±		935 ±	
speed (deg/s)	2404 ± 38	925 ± 24	49	33	2410 ± 61	20	
Arm speed -							
shoulder							
internal							
rotation speed	$4670 \pm$		4648 ±	94	4692 ±	935 ±	
(deg/s)	130	925 ± 24	178	5 ± 33	199	20	
Arm speed -							
shoulder							
velocity							
magnitude	4816 ±		4795 ±	945 ±	4838 ±	935 ±	
(deg/s)	120	925 ± 24	167	33	181	20	
Stress - Varus							
torque (Nm)	106 ± 4	65 ± 3	103 ± 5	62 ± 2	110 ± 6	64 ± 2	
Stress -							
shoulder IR							
torque (Nm)	107 ± 4	65 ± 3	104 ± 5	62 ± 2	111 ± 6	64 ± 2	

Table 3(on next page)

P-Values and Correlations with Confidence Intervals for Metric Comparisons

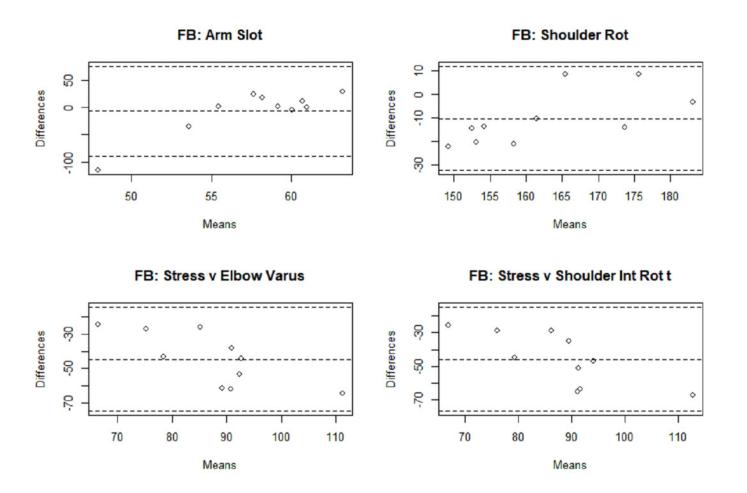
Statistical analysis of the comparisons between Motion Capture System and the motusBASEBALL unit, indicating high correlation.

TABLE 3: P-Values and Correlations with Confidence Intervals for Metric Comparisons

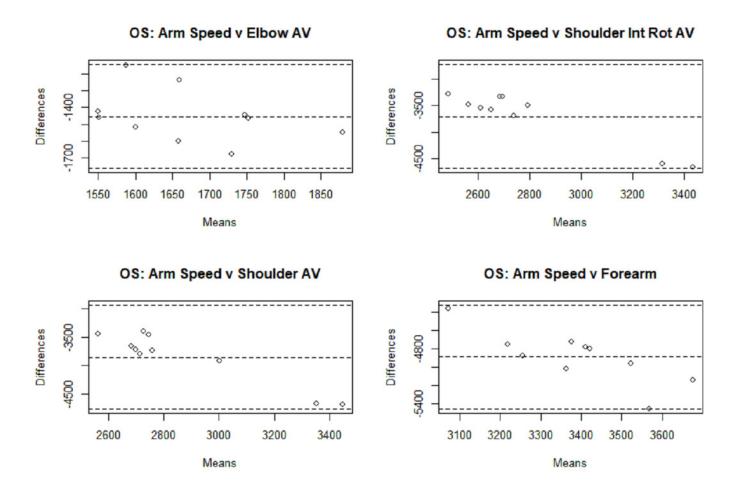

Group	All			Fastball			Off-Speed			
Sample Size	20			10			10			
Metric	P-Value	R	R: C.I.	P-Value	P-Value R R: C.I.		P-Value R		R: C.I.	
Arm Slot	<0.001*	0.975	[0.94,0.99]	<0.001*	0.978	[0.91,0.99]	<0.001*	0.974	[0.89,0.99]	
Shoulder Rotation	<0.001*	0.749	[0.46,0.89]	0.022*	0.71	[0.15,0.93]	0.007*	0.784	[0.30,0.95]	
Arm speed - Elbow Extension Speed	0.207	0.295	[- 0.17,0.65]	0.341	0.337	[-0.37,0.80]	0.413	0.292	[-0.41,0.78]	
Arm Speed - Shoulder Int Rot Speed	0.001*	0.668	[0.32,0.86]	0.010*	0.762	[0.25,0.94]	0.045*	0.643	[0.02,0.91]	
Arm Speed - Shoulder Velocity Magnitude	0.002*	0.659	[0.31,0.85]	0.017*	0.727	[0.18,0.93]	0.041*	0.651	[0.04,0.91]	
Arm Speed - Forearm Velocity Magnitude	0.309	0.239	[- 0.15,0.66]	0.446	0.322	[-0.43,0.77]	0.273	0.365	[-0.39,0.79]	
Stress - Varus Torque	0.001*	0.667	[0.32,0.86]	0.077	0.583	[-0.07,0.89]	0.011*	0.759	[0.66,0.83]	
Stress - Shoulder IR Torque	0.002*	0.653	[0.30,0.85]	0.094	0.557	[-0.11,0.88]	0.010*	0.763	[0.26,0.94]	

^{*} indicates that the metric was found to be statistically significant at a P < 0.05 value

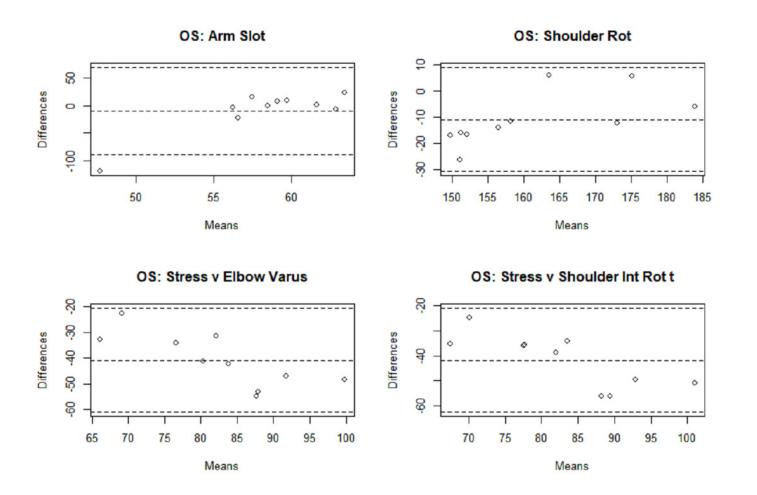
Bland-Altman Plots for Fastball Arm Speed Comparisons


Bland-Altman Plots among the fastball pitches for all four motion capture measurements compared to the Motus Arm Speed Metric: Elbow Angular Velocity, Shoulder Internal Rotational Velocity, Shoulder Angular Velocity, and Forearm Extension Velocity.

Bland-Altman Fastball Arm Slot, Shoulder Rotation, and Arm Stress Comparisons


Bland-Altman Plots among the fastball pitches for the Arm Slot, Shoulder Rotation, and Arm Stress (against Elbow Varus Torque and Shoulder Internal Rotation Torque) Motus comparisons

Bland-Altman Plots for Off-Speed Arm Speed Comparisons


Bland-Altman Plots among the off-speed pitches for all four motion capture measurements compared to the Motus Arm Speed Metric: Elbow Angular Velocity, Shoulder Internal Rotational Velocity, Shoulder Angular Velocity, and Forearm Extension Velocity.

Bland-Altman Off-Speed Arm Slot, Shoulder Rotation, and Arm Stress Comparisons

Bland-Altman Plots among the off-speed pitches for the Arm Slot, Shoulder Rotation, and Arm Stress (against Elbow Varus Torque and Shoulder Internal Rotation Torque) Motus comparisons

Table 4(on next page)

Coefficient of Variation for MotusBASEBALL Metrics by Individual Athletes

An athlete-by-athlete analysis of the Coefficient of Variation scores for all 5 throws across all Motus-generated metrics.

TABLE 4: Coefficient of Variation for MotusBASEBALL Metrics by Individual Athletes

2

1

		Fastball I	Pitches		Off-Speed Pitches				
	Arm	Shoulder	Arm		Arm	Shoulder	Arm		
Athlete	Slot	Rot	Speed	Stress	Slot	Rot	Speed	Stress	
1	4.28%	1.22%	5.77%	2.18%	2.99%	1.36%	1.87%	1.53%	
2	4.89%	1.61%	10.96%	5.10%	3.90%	1.68%	10.40%	3.37%	
3	8.44%	2.62%	8.52%	3.86%	5.99%	1.62%	16.44%	10.37%	
4	6.35%	2.47%	10.19%	6.58%	5.50%	0.95%	4.24%	10.57%	
5	-9.32%	0.84%	5.19%	10.16%	-16.67%	0.82%	3.00%	10.68%	
6	5.68%	1.39%	9.90%	10.01%	17.89%	2.11%	8.74%	5.83%	
7	3.33%	1.82%	4.84%	12.00%	4.08%	1.39%	2.32%	3.93%	
8	7.84%	1.03%	10.12%	2.37%	9.04%	1.59%	10.72%	13.93%	
9	3.31%	1.68%	6.13%	6.25%	2.52%	0.97%	8.31%	6.75%	
10	3.33%	1.79%	9.04%	7.38%	2.88%	1.69%	2.77%	2.01%	

4

5