Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery (#29329)

First submission

Editor guidance

Please submit by 24 Jul 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Custom checks

Make sure you include the custom checks shown below, in your review.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

- 2 Figure file(s)
- 4 Table file(s)
- 1 Raw data file(s)

Q Custom checks

Human participant/human tissue checks

- Have you checked the authors <u>ethical approval statement?</u>
- Does the study meet our article requirements?
- Has identifiable info been removed from all files?
- Were the experiments necessary and ethical?

2

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to Peerl standards, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery

Kyle J Boddy $^{\text{Corresp.}-1}$, Joseph A Marsh 1 , Alex Caravan 1 , Kyle E Lindley 1 , John O Scheffey 1 , Michael E O'Connell 1

Corresponding Author: Kyle J Boddy Email address: kyle@drivelinebaseball.com

Background. Technological advancements in Inertial Measurement Unit (IMU) sensors have enabled high precision in the measurement of joint angles and acceleration on human subjects. This hap sulted in new devices that reportedly measure joint angles, arm speed, and stresses of baseball players. This study seeks to validate one such sensor, the MotusBASEBALL unit, with a marker-based motion capture laboratory.

Hypothesis. We hypothesize that the joint angle measurements ("Arm Slot" and "Shoulder Rotation") of the device will be accurate and reliable, but that the "Arm Speed" and "Stress" metrics will not be accurate due to limitations in IMU technology.

Methods. 10 healthy subjects threw 5-7 fastballs followed by 5-7 breaking pitches (slider or curveball) in the motion capture lab. Subjects will be wearing retroreflective markers and the MotusBASEBALL sensor simultaneously.

Results. It was found that the Arm Slot (P < 0.001), Shoulder Rotation (P < 0.001), and Stress (P = 0.001) when compared to elbow torque, P = 0.002 when compared to shoulder torque) measurements were all significantly correlated with the results from the motion capture lab. Arm Speed showed significant correlations to shoulder interprotation speed (P = 0.001) and shoulder velocity magnitude (P = 0.002). For the entire test population, Arm Slot and Shoulder Rotation measurements were very close to measurements from the motion capture test, averaging 8 degrees less and 9 degrees less respectively. Arm Speed had a much larger difference, averaging 3745 deg/s lower than shoulder internal rotation velocity, and 3891 deg/s less than the shoulder velocity magnitude. The Stress metric was found to be 41 Nm less when compared to elbow torque, and 42 Nm less when compared to shoulder torque. Despite the differences in magnitude the correlations were extremely strong, indicating that the MotusBASEBALL sensor could be valid for casual use.

Conclusions. This study validates the use of the MotusBASEBALL for future studies that look at the Arm Slot, Shoulder Rotation, Arm Speed, and Stress measurements from the MotusBASEBALL sensor. Excepting elbow extension velocity, all metrics from the MotusBASEBALL unit showed significant correlations to their corresponding metrics from motion capture. While magnitudes differ significantly in the Arm Speed and Stress metrics between MotusBASEBALL and the motion capture lab, the link between the metrics is strong enough to indicate valid casual use. Further research should be done to further investigate the validity and reliability of the Arm Speed metric.

 $^{^{}m 1}$ Research and Development, Driveline Baseball, Inc, Kent, Washington, United States of America

1	
2	Exploring wearable sensors as an alternative to marker-based motion capture in the pitching delivery
4 5	Kyle J. Boddy ¹ , Joseph A. Marsh ² , Alex Caravan ³ , Kyle E. Lindley ⁴ , John O. Scheffey ⁵ , Michael E. O'Connell ⁶
6	1, 2, 3, 4, 5, 6 Driveline Baseball, Research & Development, Kent, WA USA
7	
8	Corresponding Authors:
9 .0 .1	Kyle J. Boddy 19612 70th Avenue South, Unit 2-4 Kent, WA 98032
2	Email address: kyle@drivelinebaseball.com
.3	
.4	
.5	
.6	
.7	
.8	
9	
20	
21	
22	
23	
24	
25	
26	
27	
28	
9	
80	

- 31 Abstract
- 32 **Background.** Technological advancements in Inertial Measurement Unit (IMU) sensors have
- enabled high precision in the measurement of joint angles and acceleration on human subjects.
- 34 This has resulted in new devices that reportedly measure joint angles, arm speed, and stresses of
- baseball players. This study seeks to validate one such sensor, the MotusBASEBALL unit, with
- a marker-based motion capture laboratory.
- 37 **Hypothesis.** We hypothesize that the joint angle measurements ("Arm Slot" and "Shoulder
- Rotation") of the device will be accurate and reliable, but that the "Arm Speed" and "Stress"
- metrics will not be accurate due to limitations in IMU technology.
- 40 **Methods.** 10 healthy subjects threw 5-7 fastballs followed by 5-7 breaking pitches (slider or
- 41 curveball) in the motion capture lab. Subjects will be wearing retroreflective markers and the
- 42 MotusBASEBALL sensor simultaneously.
- 43 **Results.** It was found that the Arm Slot (P < 0.001), Shoulder Rotation (P < 0.001), and Stress (P < 0.001).
- = 0.001 when compared to elbow torque, P = 0.002 when compared to shoulder torque)
- 45 measurements were all significantly correlated with the results from the motion capture lab. Arm
- Speed showed significant correlations to shoulder internal rotation speed (P = 0.001) and
- shoulder velocity magnitude (P = 0.002). For the entire test population, Arm Slot and Shoulder
- 48 Rotation measurements were very close to measurements from the motion capture test, averaging
- 8 degrees less and 9 degrees less respectively. Arm Speed had a much larger difference,
- averaging 3745 deg/s lower than shoulder internal rotation velocity, and 3891 deg/s less than the
- shoulder velocity magnitude. The Stress metric was found to be 41 Nm less when compared to
- 52 elbow torque, and 42 Nm less when compared to shoulder torque. Despite the differences in
- 53 magnitude, the correlations were extremely strong, indicating that the MotusBASEBALL sensor
- 54 could be valid for casual use.
- 55 **Conclusions.** This study validates the use of the MotusBASEBALL for future studies that look
- at the Arm Slot, Shoulder Rotation, Arm Speed, and Stress measurements from the
- 57 MotusBASEBALL sensor. Excepting elbow extension velocity, all metrics from the
- 58 MotusBASEBALL unit showed significant correlations to their corresponding metrics from
- 59 motion capture. While magnitudes differ significantly in the Arm Speed and Stress metrics
- 60 between MotusBASEBALL and the motion capture lab, the link between the metrics is strong
- enough to indicate valid casual use. Further research should be done to further investigate the
- validity and reliability of the Arm Speed metric.

64 Introduction

- Marker-based motion capture has been wn in research to be suitable in measuring the
- 66 kinematics and kinetics of a baseball throw (Richards, 1999). The OptiTrack camera system
- 67 (Natural Motion / OptiTrack; Corvallis, Oregon) used in this study has also been shown in
- research to be comparable to other high-end motion capture systems (Thewlis et al., 2013).
- 69 Inertial Measurement Unit (IMU) sensors have been validated in research for joint angle
- measurements (Leardini et al., 2014), gait analysis (Kavanagh and Menz, 2008), kinematics of
- 71 runners (Provot et al., 2017), as well as swimming biomechanics (de Magalhaes et al., 2014).
- 72 IMU sensors have started to gain popularity in measuring the kinematics of throwers, but
- validation of such sensors has been limited.
- One study used IMU sensors to measure kinematics of youth throwers, but the study focused
- 75 primarily on pelvis and torso rotation; the sensor attached to the wrist was only used to identify
- 76 the timing of the acceleration phase of the throwing motion (Grimpampi et al., 2016).
- 77 The MotusBASEBALL unit (Motus; New York, NY) is a popular IMU sensor that purports to
- 78 measure the biomechanics of a thrower's elbow. The only existing validation of the unit comes
- 79 from Camp et al., 2017, which states that the MotusBASEBALL sensor was evaluated
- simultaneously with an 8-camera motion capture system. Correlation coefficients (r-values)
- between measurements with the 2 systems were find to be "good to excellent" for all
- measurements, though no supplemental data was provided. Following studies have used the
- 83 MotusBASEBALL unit to look at elbow torque and other paremeters in pitchers throwing
- fastballs and offspeed pitches as well (Makhni et al., 2018)
- A case study performed by Motus showed the MotusONE, a multi-unit IMU device, to be
- 86 comparable to multi-camera motion capture setups, but the study only had one subject, and to
- our knowledge was not published in any peer reviewed journal.
- 88 The purpose of this study is to compare the outputs of the MotusBASEBALL sensor, which are
- 89 Arm Speed, Arm Slot, Shoulder Rotation, and Stress, against the OptiTrack motion capture
- 90 system.

91 Methods

- 92 Ten healthy pitchers were selected to participate in the study, nine threw overhead and one threw
- 93 sidearm and all were right-handed. Participants were provided a verbal explanation of the study
- 94 and its risks and were asked to read and sign an Informed Consent document before testing.
- 95 Testing only proceeded once investigators received verbal confirmation and obtained a witnessed
- 96 legal signature from the athlete.
- 97 Hummingbird IRB approved the study and granted ethical approval to carry out the data
- ollection at the author's facilities (Hummingbird B #: 2018-10).
- 99 Heights, weights, and ages of the participants was recorded before the beginning of testing.
- 100 (Table 1)

Testing Procedure
Athletes were given as much time as necessary to prepare and warm-up to throw off of the pitching mound. Once ready, pitchers were fitted with reflective markers in preparation for the motion capture test. Forty-seven reflective markers were attached bilaterally on the third distal phalanx, lateral and medial malleolus, calcaneus, tibia, lateral and medial femoral epicondyle, femur, anterior and posterior iliac spine, iliac crest, acromial joint, midpoint of the humerus, lateral and medial humeral epicondyle, midpoint of the ulna, radial styloid, ulnar styloid, distal end of index metacarpal, parietal bone, and frontal bone, as well as on the inferior angle of scapula, C7 and T10 vertebrae, the sternal end of the clavicle, and the xiphoid process.
The motion capture system was calibrated using Motive:Body software (Natural Motion / OptiTrack; Corvallis, Oregon) and the ground plane was set; the system typically showed 1mm or less of mean three-dimensional error, and never exceeded 2mm.
The MotusBASEBALL sensor, which is typically applied using a sleeve, was fixed to the athlete
along the medial throwing elbow using double sided skin-tape to avoid the sleeve causing interference with any of the markers. (Figure 1)
(interference with any of the martiers. (i igure 1)
[Figure 1]
[Figure 1]
[Figure 1] Pitchers then threw 5-7 fastballs, followed by 5-7 offspeed pitches, either a curveball or a slider, with approximately 30-60 seconds of rest in between throws. All pitches were made at a medium effort level. Research has shown that offspeed pitches may result in significant changes to kinetics and kinematics (Escamilla et al., 2017; Fleisig et al., 2006). For this reason athletes were asked to throw their preferred offspeed pitch. Fatigue was assumed to be negligible with such a low pitch count.
Pitchers then threw 5-7 fastballs, followed by 5-7 offspeed pitches, either a curveball or a slider, with approximately 30-60 seconds of rest in between throws. All pitches were made at a medium effort level. Research has shown that offspeed pitches may result in significant changes to kinetics and kinematics (Escamilla et al., 2017; Fleisig et al., 2006). For this reason athletes were asked to throw their preferred offspeed pitch. Fatigue was assumed to be negligible with such a

138 139	pitching mound at varying heights. A total of 6 cameras were mounted on a truss system in front of the pitcher to avoid collisions. (Figure 2)
140	
141	[Figure 2]
142	
143 144 145 146 147	In total, 9 kir atic and kinetic values (3 position, 4 velocity, and 2 kinetic) were calculated using personal code based on Fleisig methods eisig et al., 2017) in Visual3D (C-Motion Inc., Germantown MD). Marker position data was filtered using a 20-Hz Butterworth low-pass filter. The mean values for all variables were calculated for each participant based upon their 5 best throws (Escamilla et al., 1998).
148 149 150	Three position values were found at lease (BR): trunk lateral tilt, shoulder abduction, and maximum shoulder external rotation. Measurements were taken as their local joint angles measured in degrees.
151 152 153	The four velocity parameters were taken as the mum speeds of shoulder internal rotation, shoulder abduction, shoulder horizontal abduction, and elbow angular extension. All velocities were calculated as the rate of change in the joint angle, measured in degrees/second.
154	The two kinetic values calculated were elbow varus torque and shoulder internal rotation torque,
155	which were measured in Newton meters (Nm).
156 157 158	All MotusBASEBALL data was collected with an iPhone (Apple Inc., Cupertino CA) and the supplied app, which was then manually transferred into labeled spreadsheets for storage and later analysis.
159	Statistical Analysis
160 161	The differences in metrics were analyzed as both total population of twenty (20) pitches and two separate equal-sized groups controlled for the type of pitch: Fathalls and off-speed pitches.
162	To account for any differences in the scale of magnitude between the motion capture measurements and MotusBASEBALL measurements, the statistical analyses centered on a
163 164	correlation test based around Pearson's product moment of correlation coefficient and an n-2
165	number of degrees of freedom. The product moment of correlation coefficient and an in-2
166	relationship between the two metrics, as opposed to its common statistical compatriot of a T-test,
167	which would rather test for differences in the means of the two metrics.
168	In order to compare measurements from the motion capture trial to the MotusBASEBALL
169	metrics, additional calculations were done. Corrections to the metrics were done following
170	Motus's guidelines which were sent to us via email by representatives from Motus; those
171	corrections follow below
172	Arm Slot was taken as the sum of the lateral trunk tilt and shoulder abduction at BR. Shoulder
173	Rotation was measured as the maximum amount of shoulder external rotation measured in the
174	global coordinate system. MotusBASEBALL's Arm Speed metric, which was taken from the

- MotusTHROW app, was compared to elbow extension velocity and shoulder internal rotation velocity, which are the most common standards for measuring arrived eed. Per Motus's
- recommendation, Arm Speed was also compared to the magnitude of the shoulder angular
- velocities, that is, the square of the sum of the squares of shoulder abduction velocity, ω_{Sa} ,
- shoulder horizontal abduction velocity, ω_{Sha} , and shoulder internal rotation velocity, ω_{Sir} .
- $180 \quad \sqrt{\omega_{Sa} + \omega_{Sha} + \omega_{Sir.}} \quad \bigcirc$
- 181 MotusBASEBALL stress was compared to elbow varus torque and shoulder internal rotation
- torque, which are the two most commonly addressed kinetic markers in pitching research. All
- torque metrics were in Nm.
- First, the descriptive metrics (means and standard errors of means) for the holistic group and
- subgroups for all the marker-based biomechanics measurements and MotusBASEBALL
- measurements were outlined and recorded.
- 187 Then these metrics were matched together across paired results (each subject having been
- recorded on those separate systems), and had both their Pearson correlation coefficient ρ taken,
- as well as their p-value, following a Student's T test distribution. The correlation test posits the
- 190 hypothesis of there being a significant linear association versus the null hypothesis of there being
- 191 no correlation, or $\rho = 0$.

192 Results

- The results for the three separate groups are displayed in Tables 2 and 3:
- 195 [Table 2]

194

- 197 [Table 3]
- 198

 199 As is somewhat intuitive given the nature of the more similar sub-populations, the correlation
- 200 coefficient covers a higher proportion of variability (R^2) within said smaller groups, while also
- 201 simultaneously recording higher p-values, due to the smaller sample sizes and subsequent
- 202 degrees of freedom. Interestingly, the fastball group had more significant p-values for the Arm
- Speed metrics comparisons and the off-speed group had more significant p-values for the Stress
- 204 metrics.
- Following a default alpha value of 0.05, the fastball group found significant associations between
- 206 four of the metrics (Arm Slot, Shoulder Rotation, and the second and third Arm Speed metrics),
- while the off-speed group found significant associations between six metrics (Arm Slot,
- 208 Shoulder Rotation, the second and third Arm Speed metrics, and both Stress metrics).
- 209 Given the small sample size circumstance for these tests, a prudent power analysis on the
- 210 strength of the correlation was also performed. While a typical low p-value cut-off limits the

211 212 213 214 215	chances of making a Type I error, or a false positive, a statistical power analysis is performed to limit the chances of making a Type II error, or a false negative (also referred to as beta). The magnitude of the power is (1 - P(Type II error)), and a usual cutoff of 0.80 and greater is paired with the alpha level of 0.05 and lower of a p-values significance test. Table 4 illustrates the computed power values for each subgroup of pitches.
216	
217	[Table 4]
218 219 220 221 222 223	Reducing the risk of Type I error will lead to increasing the risk of a Type II error, so both our significance and power testing has to be carefully calibrated. Looking at the typical 80% power cut-off with a 5% significance level, the fastball population records robust power for the Arm Slot metric while the off-speed population registers robust power for the Arm Slot and Shoulder Rotation metrics.
224	Discussion
225 226	Arm slot was found to be strong orrelated across all groups, though MotusBASEBALL's arm slot was roughly 6 degrees lower than the results from our motion capture system.
227 228 229	Shoulder rotation was also strongly correlated between the two systems. On average the shoulder rotation measured by MotusBASEBALL was 9 degrees lower than what the motion capture system detected for the total group.
230 231 232 233 234	Arm speed from MotusBASEBALL showed strong correlations to both shoulder rotation speed metrics, but no correlation to elbow extension speed. This could be due to the fact that the MotusBASEBALL sensor is placed very close to the elbow joint, so movement of the forearm caused by elbow extension is much less detectable due to the shorter lever arm that it detects rotation from.
235 236 237 238 239	The numerical difference between the two systems is fairly substantial. Average MotusBASEBALL arm speed, which was 925 deg/s, was dramatically lower than the measured shoulder internal rotation speeds and magnitude of shoulder rotational velocities, which were 4670 deg/s and 4816 deg/s respectively. Motus defines their arm speed metric as the "resultant angular velocity of the forearm segment," which was not directly calculated for this comparison.
240 241 242 243	It is also worth noting that the arm speed metric that MotusBASEBALL outputs in the app is different than the metric that is in their web-based portal. Because MotusBASEBALL's arm speed metric in the app would scale linearly to the metric in the portal, it follows that the comparison of motion capture arm speed metrics to the arm speed in the app would still be valid.
244 245 246 247 248	Both comparisons to MotusBASEBALL's Stress metric were significant. Both stress measurements (from MotusBASEBALL and from motion capture) were shown to be consistent across the athlete population. Kinetics calculations are heavily dependent on the athlete's height and weight, along with the weight of the ball (Feltner and Dapena, 1986). Motus has stated that their calculation also takes these things into consideration and are part of the inputs required to

249	use the MotusBASEBALL sensor. The fact that those inputs are taken into account for both
250	stress calculations could be part of the reason there is a solid correlation between them.
251 252 253 254 255 256 257 258	Because the numerical outputs from the MotusBASEBALL unit are noticeably different from the outputs from marker-based motion capture outputs, which is the gold standard of biomechanical analysis, MotusBASEBALL may best be used for relative comparisons of an ete. MotusBASEBALL has shown to be consistent when used by the same athlete, which makes it a good tool for noting significant changes to an athlete's mechanics. While the MotusBASEBALL unit cannot replace motion capture, the gold-standard of biomechanical analysis, it has a significant advantage in that it can be used in games and practice situations without serious preparation, while clearly a marker-based biomechanics system cannot for various reasons.
259 260	The MotusBASEBALL unit is likely best applied by laypeople, coaches, and those who do not have regular access to a sophisticated motion capture system.
261 262 263 264	As mentioned previously, we did not use a sleeve to place the sensor unlike what athletes would do if they bought the sensor commercially. It therefore is important for athletes and coaches to maintain the position of the sensor as they throw to maintain accurate readings. As movement of the sleeve from the intended sensor location will likely change the readings.
265	Further research should be done with a larger sample size to further investigate the Arm Speed
266	metric to find if there is a more significant correlation to a measurement of arm speed from a
266 267	metric to find if there is a more significant correlation to a measurement of arm speed from a motion capture test.
	· · · · · · · · · · · · · · · · · · ·
267 268 269 270 271 272 273 274 275 276 277	Conclusion This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weak correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and shoulder torque respectively. These three metrics could reasonably be used in future studies, and
267 268 269 270 271 272 273 274 275 276 277	Conclusion This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weak correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and
267 268 269 270 271 272 273 274 275 276 277 278	Conclusion This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weak correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and shoulder torque respectively. These three metrics could reasonably be used in future studies, and
267 268 269 270 271 272 273 274 275 276 277 278	Conclusion This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weak correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and shoulder torque respectively. These three metrics could reasonably be used in future studies, and
267 268 269 270 271 272 273 274 275 276 277 278	Conclusion This results from this study show that MotusBASEBALL could be a suitable low-cost and partial alternative to performing a full biomechanics capture, particularly for the arm slot, shoulder rotation, and stress metrics. Arm speed was shown to have a weak correlation to the results that were found in the motion capture test. It should be noted that while all metrics from MotusBASEBALL had significant variance in values when compared to the motion capture metrics, the numbers were consistent for each subject and across all groups; Arm Slot averaged 8 degrees less than motion capture, Shoulder Rotation averaged 9 degrees less than motion capture, and Stress averaged 41 and 42 Nm less than motion capture for elbow torque and shoulder torque respectively. These three metrics could reasonably be used in future studies, and

- 283 References
- 284 Camp, Christopher L., et al. "The Relationship of Throwing Arm Mechanics and Elbow Varus
- Torque: Within-Subject Variation for Professional Baseball Pitchers Across 82,000 Throws."
- 286 The American Journal of Sports Medicine, vol. 45, no. 13, Nov. 2017, pp. 3030–35. PubMed,
- 287 doi:10.1177/0363546517719047.
- de Magalhaes, Fabricio Anicio, et al. "Wearable Inertial Sensors in Swimming Motion Analysis:
- A Systematic Review." Journal of Sports Sciences, vol. 33, no. 7, 2015, pp. 732–45. PubMed,
- 290 doi:10.1080/02640414.2014.962574.
- 291 Escamilla RF, Fleisig GS, Barrentine SW, Zheng N, Andrews JR. 1998. Kinematic Comparisons
- of Throwing Different Types of Baseball Pitches. *Journal of Applied Biomechanics* 14:1-23
- 293 DOI: 10.1123/jab.14.1.1
- Escamilla, Rafael F., et al. "Biomechanical Comparisons Among Fastball, Slider, Curveball, and
- 295 Changeup Pitch Types and Between Balls and Strikes in Professional Baseball Pitchers
- 296 , Biomechanical Comparisons Among Fastball, Slider,
- 297 Curveball, and Changeup Pitch Types and Between Balls and Strikes in Professional Baseball
- 298 Pitchers." The American Journal of Sports Medicine, vol. 45, no. 14, Dec. 2017, pp. 3358–67.
- 299 SAGE Journals, doi:10.1177/0363546517730052.
- Feltner M., Dapena J. 1986. Dynamics of the shoulder and elbow joints of the throwing arm
- during a baseball pitch. *International Journal of Sport Biomechanics* 2:235–259.
- Fleisig GS., Diffendaffer AZ., Aune KT., Ivey B., Laughlin WA. 2017. Biomechanical Analysis
- of Weighted-Ball Exercises for Baseball Pitchers. Sports Health: A Multidisciplinary Approach
- 304 9:210–215. DOI: 10.1177/1941738116679816.
- 305 Grimpampi, Eleni, et al. "Quantitative Assessment of Developmental Levels in Overarm
- Throwing Using Wearable Inertial Sensing Technology." *Journal of Sports Sciences*, vol. 34, no.
- 307 18, Sept. 2016, pp. 1759–65. *PubMed*, doi:10.1080/02640414.2015.1137341.
- 308 Kavanagh, Justin J., and Hylton B. Menz. "Accelerometry: A Technique for Quantifying
- Movement Patterns during Walking." *Gait & Posture*, vol. 28, no. 1, July 2008, pp. 1–15.
- 310 *PubMed*, doi:10.1016/j.gaitpost.2007.10.010.
- 311 Leardini, Alberto, et al. "Validation of the Angular Measurements of a New Inertial-
- 312 Measurement-Unit Based Rehabilitation System: Comparison with State-of-the-Art Gait
- Analysis." Journal of NeuroEngineering and Rehabilitation, vol. 11, Sept. 2014, p. 136. BioMed
- 314 *Central*, doi:10.1186/1743-0003-11-136.
- 315 Makhni, Eric C., et al. "Assessment of Elbow Torque and Other Parameters During the Pitching
- 316 Motion: Comparison of Fastball, Curveball, and Change-Up." Arthroscopy: The Journal of
- 317 Arthroscopic & Related Surgery: Official Publication of the Arthroscopy Association of North
- 318 America and the International Arthroscopy Association, vol. 34, no. 3, Mar. 2018, pp. 816–22.
- 319 *PubMed*, doi:10.1016/j.arthro.2017.09.045.

- Provot, Thomas, et al. "Validation of a High Sampling Rate Inertial Measurement Unit for
- Acceleration During Running." Sensors (Basel, Switzerland), vol. 17, no. 9, Aug. 2017. PubMed,
- 322 doi:10.3390/s17091958.
- 323 Richards, James G. "The Measurement of Human Motion: A Comparison of Commercially
- Available Systems." *Human Movement Science*, 1999, pp. 589–602.
- Thewlis D., Bishop C., Daniell N., Paul G. 2013. Next-generation low-cost motion capture
- 326 systems can provide comparable spatial accuracy to high-end systems. *Journal of applied*
- 327 *biomechanics* 29:112–117.

Figure 1

Placement of the motusBASEBALL sensor on the elbow

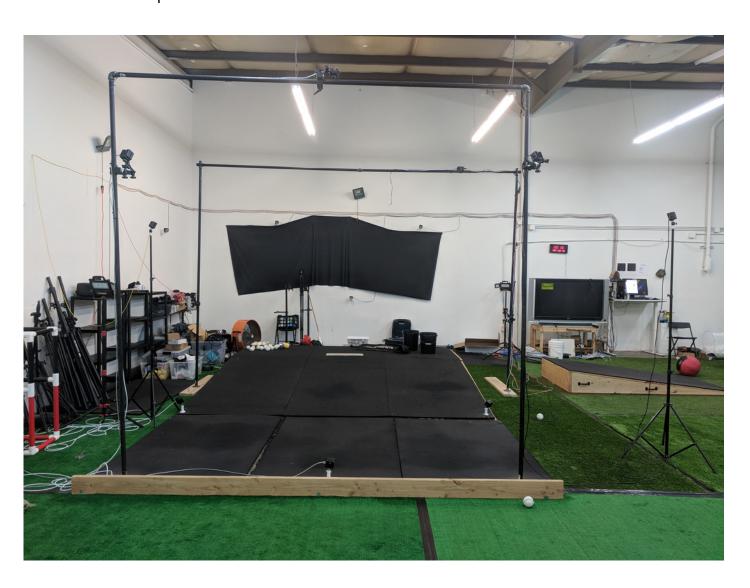

How we affixed the motusBASEBALL sensor to the arm using adhesive instead of the provided sleeve.

Figure 2

The Motion Capture System

The multi-camera OptiTrack camera system consisting of Prime 13 and Prime 13W cameras, used to evaluate pitcher kinematics and kinetics.

Table 1(on next page)

Age, height, weight, fastball (FB) velocity, and offspeed (OS) velocity of the participants in the study

Biological and performance data on the subjects in the study.

TABLE 1: Age, height, weight, fastball (FB) velocity, and offspeed (OS) velocity of the participants in the study

(10 Subjects)	Height (in)	Weight (lbs)	FB Velocity (mph)	OS Velocity (mph)
Age: 23.8 ± 4.0	73.3 ± 0.8	206.1 ± 5.5	(83.8 ± 3.5)	71.0 ± 3.6

Table 2(on next page)

Averages of the Metrics Taken from Motion Capture Analysis Compared with the Corresponding Metrics from MotusBASEBALL

A comparison of the Motion Capture System using high-precision OptiTrack cameras compared with the metrics the motusBASEBALL unit provides.

1 2

3

TABLE 2: Averages of the Metrics Taken from Motion Capture Analysis Compared with the Corresponding Metrics from MotusBASEBALL

Group	A	.11	Fast	ball	Off-S	peed
Sample Size	2	0	10	0	10)
				MotusB		MotusB
	Motion	MotusBA	Motion	ASEBA	Motion	ASEBA
Metric	Capture	SEBALL	Capture	LL	Capture	LL
Arm slot						
(deg)	62 ± 3	54 ± 8	63 ± 5	53 ± 8	61 ± 5	54 ± 5
Shoulder						
rotation (deg)	167 ± 2	158 ± 5	167 ± 3	156 ± 5	168 ± 3	157 ± 3
Arm speed -						
elbow						
extension			2398 ±	945 ±		935 ±
speed (deg/s)	2404 ± 38	925 ± 24	49	33	2410 ± 61	20
Arm speed -						
shoulder						
internal						
rotation speed	$4670 \pm$		$4648 \pm$	94	$4692 \pm$	$935 \pm$
(deg/s)	(130)	925 ± 24	178	5 ± 33	(199 ₎	20
Arm speed -						
shoulder						
velocity						
magnitude	4816 ±		4795 ±	945 ±	4838 ±	935 ±
(deg/s)	120	925 ± 24	167	33	181	20
Stress - Varus						
torque (Nm)	106 ± 4	65 ± 3	103 ± 5	62 ± 2	110 ± 6	64 ± 2
Stress -						
shoulder IR						
torque (Nm)	107 ± 4	65 ± 3	104 ± 5	62 ± 2	111 ± 6	64 ± 2

Table 3(on next page)

P-Values and Correlation Coefficients (R^2)

Statistical analysis of the comparisons between the Motion Capture System and the motusBASEBALL unit, indicating high correlation.

TABLE 3: P-Values and Correlation Coefficients (R^2)

1 2

Group	All		Fastball		Off-Speed	
Sample Size	20		10		10	
Metric	P-Value	R^2	P-Value	R^2	P-Value	R^2
Arm Slot	<0.001*	0.975	<0.001*	0.978	<0.001*	0.974
Shoulder						
rotation	<0.001*	0.749	0.022*	0.710	0.007*	0.784
Arm speed	0.207	0.295	0.341	0.337	0.413	0.292
Arm speed	0.001*	0.668	0.010*	0.762	0.045*	0.643
Arm speed	0.002*	0.659	0.017*	0.727	0.041*	0.651
Stress	0.001*	0.667	0.077	0.583	0.011*	0.759
Stress	0.002*	0.653	0.094	0.557	0.010*	0.763

^{*} indicates that the metric was found to be statistically significant

Table 4(on next page)

Power Analysis of the Correlations Between Motus Biomechanics Measurements and Marker-Based Biomechanics Measurements

Statistical power of the correlations found between the motusBASEBALL unit and the goldstandard Motion Capture Analysis system.

TABLE 4: Power Analysis of the Correlations Between Motus Biomechanics Measurements and Marker-Based Biomechanics Measurements

2

1

Group	Fastball	Off-Speed
Sample Size	10	10
Metric	1-Beta	1-Beta
Arm Slot	0.9999	0.9999
Shoulder rotation	0.6848	0.8260
Arm speed	0.1619	0.1315
Arm speed	0.7853	0.5574
Arm speed	0.7173	0.5728
Stress	0.4518	0.7799
Stress	0.4109	0.7863