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ABSTRACT
In general, type 2 diabetes (T2D) usually occurs in middle-aged and elderly people.
However, the incidence of childhood-onset T2D has increased all across the globe.
Therefore, it is very important to determine the molecular and genetic mechanisms
of childhood-onset T2D. In this study, the dataset GSE9006 was downloaded from the
GEO (Gene Expression Omnibus database); it includes 24 healthy children, 43 children
with newly diagnosed Type 1 diabetes (T1D), and 12 children with newly diagnosed
T2D. These data were used for differentially expressed genes (DGEs) analysis and
weighted co-expression network analysis (WGCNA). We identified 192 up-regulated
genes and 329 down-regulated genes by performing DEGs analysis. By performing
WGGNA, we found that blue module (539 genes) was highly correlated to cyanmodule
(97 genes). Gene ontology (GO) and pathway enrichment analyses were performed to
figure out the functions and related pathways of genes, which were identified in the
results of DEGs andWGCNA.Genes with conspicuous logFC and in the high correlated
modules were input into GeneMANIA, which is a plugin of Cytoscape application.
Thus, we constructed the protein-protein interaction (PPI) network (92 nodes and 254
pairs). Eventually, we analyzed the transcription factors and references related to genes
with conspicuous logFC or high-degree genes, which were present in both the modules
of WGCNA and PPI network. Current research shows that EGR1 and NAMPT can
be used as marker genes for childhood-onset T2D. Gestational diabetes and chronic
inflammation are risk factors that lead to the development of childhood-onset T2D.

Subjects Bioinformatics, Diabetes and Endocrinology
Keywords Type 2 diabetes, Chronic disease, Toll-like receptor, Immunoreaction, NAMPT, EGR1

INTRODUCTION
Diabetes mellitus is a chronically progressive, metabolic disease that affects multiple organs
over a period of time. In a diabetic patient, blood glucose levels are high as the body either
fails to produce insulin or cells are not sensitive enough to insulin. To ensure normal blood
sugar levels, most diabetic patients have to take lifelong medications that affect the quality
of life. Ingelfinger & Jarcho, (2017) reported that the incidence of diabetes has increased
phenomenally all over the world. It is frightening to contemplate that the prevalence of
diabetes had increased by 30.6% from 2005 to 2015 (Charlson et al., 2016). The onset of
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diabetes is associated with many factors, including other chronic diseases (Wang et al.,
2017), social conditions (Whitworth, Mclean & Smith, 2017), and even global warming
(Blauw et al., 2017). In summary, diabetes is a chronic disease of complex etiology and
poses a threat to global health.

Based on pathogenesis, diabetes can be mainly classified into three types: gestational
diabetes, type 1 diabetes (T1D), and type 2 diabetes (T2D). In general, T1D is known as
insulin-dependent diabetes and often occurs in children and adolescents. In patients with
T1D, beta cells of islets undergo cell-mediated autoimmune destruction. As a result, the
pancreas of T1D patients cannot synthesize and secrete insulin on its own. Furthermore,
T2D is known as non-insulin-dependent diabetes mellitus, which is the most common type
of diabetes. Approximately 90% of diabetic patients are diagnosed with T2D. It often occurs
in patients above the age of 35. In these patients, insulin secretion decreases either due to
the lack of insulin receptors or impaired insulin receptors. Gestational diabetes is defined
as a condition in which a normal woman develops diabetes during pregnancy. Gestational
diabetes usually occurs in the middle or late stages of pregnancy. Some studies monitored
women with gestational diabetes for six months after delivery. They found that 38 to 100%
of these lactating mothers developed T2DM within six months of delivery (Kim, Newton
& Knopp, 2002). This suggests that there is an intrinsic link between gestational diabetes
and T2D. In addition to these three types, there are some rare types of diabetes, including
maturity onset diabetes of the young (MODY), maternally inherited diabetes and steroid
diabetes.MODY andmaternally inherited diabetes are primary and hereditary diseases. The
genetic patterns of them are autosomal dominant and maternal inheritance, respectively.
Steroid diabetes is a secondary metabolic disorder caused by excessive glucocorticoids in
the body.

With the development of precision medicine, researchers can now pay more attention to
patients with childhood-onset T2D. Wu et al. (2017) noted that although T2D is common
in people above the age of 35, the incidence of T2D has continued to rise in children.
Both children and adolescents have physiological conditions that are different from those
of adults; therefore, researchers must focus on the prevention, clinical diagnosis, and
drug treatment of childhood-onset T2D. Researchers in Mexico have conducted several
cross-sectional studies on children and adolescents in the area. The results indicate that
T2D and metabolic syndrome-related traits were highly inherited in Mexican children
and adolescents (Mirandalora et al., 2017). Joyce et al. (2017) found that statins increased
the risk of childhood-onset T2D without causing dyslipidemia. Lee et al. (2018) found
that the risk of developing T2D increased significantly in children and adolescents with
mental disorders when they were exposed to atypical antipsychotics. Akhlaghi et al. (2016)
analyzed whether the published anti-hyperglycemic drugs were safe and effective for
children and adolescents. These studies have partially revealed some links of T2D in children
and adolescents. Nevertheless, scientists still do not know the molecular mechanism of
childhood-onset T2D. Therefore, it is necessary to identify the genes and pathways related
to the pathogenesis of childhood-onset T2D. Then, we can develop special measures for
the prevention and treatment of childhood-onset T2D.
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Table 1 The characteristics of included cases and controls.

Children with T2D (n= 12) Healthy control (n= 24)

Age (year, mean± SD) 14.0± 2.3 11.3± 4.6
Sex (%female) 58 58
Race 2 Caucasian 11 Caucasian

2 Hispanic 7 Hispanic
7 African–American 6 Mixed or unknown ethnicities
1 Asian

BMI (mean Z score± SD) 2.33± 0.32 Unknown
Initial pH less than 7.3 17% Unknown
Initial HbA1c (mean± SD ) 12.2± 1.5 Unknown

Notes.
BMI, Body mass index

The microarray data (GSE9006) was used to compare the intrinsic characteristics of
following three groups: healthy vs. T1D groups and the T1D vs. T2D groups. Unfortunately,
childhood-onset T2D did not attract the attention of researchers. Hence, we still do not
know the differences and similarities between healthy individuals and T2D patients. In
this study, we identified the differentially expressed genes (DEGs) in the microarray data
(GSE9006) of healthy group and T2D group. Then, we searched for genes closely related
to T2D by performing weighted co-expression network analysis (WGCNA), which was
further used to calculate the co-expression of genes. We performed functional enrichment
analysis on DEGs and T2D genes. In addition, we constructed a protein-protein interaction
(PPI) network for these genes to identify the ones that showed critical expression. Our
research study focused on finding genes or pathways that are closely related to T2D and
revealing the underlying molecular mechanisms.

MATERIAL AND METHODS
Affymetrix microarray data
Kaizer et al. (2007) measured and uploaded the dataset GSE9006 to gene expression
omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/). This dataset contained the gene
expression of peripheral blood mononuclear cells (PBMCs), which were obtained from
24 healthy children, 43 children with newly diagnosed T1D, and 12 children with newly
diagnosed T2D. The demographic information of volunteers was mentioned in Table 1.
We selected data of healthy children and children with newly diagnosed T2D for further
analysis. The dataset was based on the following platform: GPL97 [HG-U133B] Affymetrix
Human Genome Array.

DEG analysis
In this study, we analyzed DEGs in healthy and T2D patients by using the limma package
(Ritchie et al., 2015), which is the core component of Bioconductor and is widely used to
process the microarray data. |logFC| ≥0.5 and P < 0.01 was set as the cut-off criteria.
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WGCNA analysis
To determine the co-expression module and the link between the module and the
phenotype, we performed WGCNA of the normalized gene expression matrix by using
WGCNA package (Langfelder & Horvath, 2008). It is important to note that WGCNA
package is an effective data mining tool used to identify all kinds of modules that are highly
related to a phenotype, including genes, miRNA, and LncRNA. In this study, the genes
were divided into 21 modules, including 20 effective modules and one ineffective module
(identified as gray module). We calculated the link between each module and co-expressed
genes in healthy and T2D groups.

GO and pathway enrichment analyses
Gene ontology (GO) (Ashburner et al., 2000) includes three types of data, namely, cellular
components (CC), molecular functions (MF), and biological processes (BP). GO is
often used to annotate genes according to a defined set of structured words. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) is used tomatch the
information of gene pathways. Reactome is a great tool to obtain gene-related pathways and
interactions (Beloqui et al., 2009). GO and pathway enrichment analyses are used to help
us figure out the information of genes. In this study, GO and pathway enrichment analysis
was performed on DEGs and the genes highly related to T2D. P < 0.05 was the criterion
used for distinguishing non-meaningful pathways. At least two genes were required to
enrich each pathway.

PPI network analysis
GeneMANIA software (Montojo et al., 2010) was used to establish gene interactions and
to predict gene function. The PPI network was used to analyze DEGs and genes in both
the high-associated modules. We set kappa >0.4 and P < 0.05 as the criteria. Network
analysis was performed by running GeneMANIA software run in Cytoscape application.
The critical hubs were the nodes that were highly connected to other nodes.

Analysis of diseases and transcription factors related to critical genes
The Comparative toxicogenomics database (CTD) (Davis et al., 2015) is often used to
analyze the link between genes and diseases. In this study, we determined whether the
target gene was linked to diabetes. In the CTD database, we searched all the genes that were
reportedly associated with T2D and T1D. Then, we matched these genes with our target
genes. iRegulon (Janky et al., 2014) is a plugin for the Cystoscape application, which uses a
set of pre-defined transcription factors (TFs) and direct transcriptional targets to extract
information related to TFs in a group of co-expressing genes. Ultimately, the output is
a set of transcription tracks and a list of genes associated with the tracks. A network was
constructed with the output results. To reflect the reliability of results, the values of relevant
parameters were set as follows: the maximum false discovery rate on motif similarity =
0.001; the minimum identity between orthologous genes = 0.05, and the normalized
enrichment score (NES)= 5. Further analysis was performed on pairs for which NES≥ 5.
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Figure 1 Heatmaps of differentially expressed genes. In the right rectangle, red represents a higher ex-
pression level, while blue represents a lower expression level. The middle strip indicates the grouping in-
formation. The red section is healthy group, while the black section represents the patient group. The right
and bottom labels indicate grouping information and gene symbols, respectively. The color key is a his-
togram. The X axis is a numerical value representing the level of gene expression, and the Y axis is the
number of corresponding squares. This histogram corresponds to the squares.

Full-size DOI: 10.7717/peerj.6343/fig-1

RESULTS
DEG analysis
We compared the gene expression levels of healthy children and children with newly
diagnosed T2D. Figure 1 showed that 521 genes had differential expression, including 192
up-regulated genes and 329 down-regulated genes. The average logFC value of up-regulated
genes was 0.787, while the average logFC value of down-regulated genes was −0.938.
The terms with logFC >1.5 or logFC <–1.5 are EGR1 (logFC = 2.005), HIST1H4PS1
(logFC = 1.793), CELF4 (logFC = 1.665), CXorf56 (logFC = 1.573), PROK2 (logFC =
1.564), ORMDL3 (logFC = −2.496), BF514098 (logFC = −1.846), MRPL39 (logFC =
−1.788), LINC00644 (logFC = −1.772), LOC90246 (logFC = -1.770), POLB (logFC =
−1.729), AA683356 (logFC = −1.692), MIR497HG (logFC = −1.653), AK026199 (logFC
= −1.616), AA885523 (logFC = −1.592), VN1R3 (logFC = −1.588), TOX2 (logFC =
−1.579), BF433815 (logFC = −1.576), AW629036 (logFC = −1.555), LRRC45 (logFC
= −1.546), LRCH3 (logFC = −1.533), TUG1 (logFC = −1.528), BF110980 (logFC =
−1.517), PLD5 (logFC = −1.513) and CCDC102B (logFC = −1.504).

WGCNA analysis
Under the condition of soft threshold = 6, each gene was divided into 21 modules (20
valid modules and one invalid module) by cluster analysis; the correlation of these genes
with T2D phenotype was calculated. Figure 2 shows the correlation results. It can be seen
that the blue and cyan modules have a significant correlation with T2D, which are 0.74
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Figure 2 The results of weighted co-expression gene network analysis. An overview of the co-expressed
genes in the current study, demonstrating the relevance of gene modules and phenotypes. (A) Scale inde-
pendence used in WGCNA. (B) Mean network connectivity of soft-thresholding powers used in WGCNA.
A soft threshold of 6 is the most suitable value. (C) Cluster dendrogram of the identified co-expression
modules. In this figure, each gene is represented as a leaf and corresponds to a color module. Each color
indicates that each gene in its corresponding cluster dendrogram belongs to the same module. If some
genes have similar changes in expression, then these genes may be functionally related. Moreover, all these
genes can further be included into a single module. The grey block represents that the genes that do not
co-express with genes of any other color module. (D) Module-trait weighted correlations and correspond-
ing P-values for the identified gene module and their clinical status (healthy and children-onset T2D). The
label of color on the left represents the strength of correlation, from 1 (red) to –1 (blue).

Full-size DOI: 10.7717/peerj.6343/fig-2

(p< 0.01) and 0.69 (p< 0.01), respectively. The two modules contain a total of 636 genes;
the blue module contains 539 genes, while the cyan module contains only 97 genes.

GO and pathway enrichment analyses
GO, Reactome, and KEGG pathway analyses were used to determine the up-regulated
genes, the down-regulated genes, and the genes significantly correlated to T2D (blue and
cyan). Table 2 displays the GO results, which indicated that the up-regulated genes were
highly enriched in cytokine metabolic process, cytokine biosynthetic process, interleukin-
1 beta production, positive regulation of cytokine biosynthetic process, and MyD88-
dependent toll-like receptor(TLR) signaling pathway. The down-regulated expression of
differential genes was mainly associated with the development of lymph vessel and fat pad.
In T2D-related modules, the genes either conjugated or removed small proteins to perform
functions, such as RNA binding, RNA processing, and protein modification. Some genes
were further enriched in organelles’ lumen, nuclear region, and other items.

Table 3 presents the results of KEGG and Reactome pathway analysis, indicating the
involvement of up-regulated genes in TLR signaling pathway and in diseases of the immune
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Table 2 GO analysis of DEGs and genes in highly correlative module.

ID Description No. of
genes

P-value

Upregulated genes
GO-BP terms
GO:0042107 cytokine metabolic process 6 3.02E–04
GO:0042089 cytokine biosynthetic process 6 2.76E–04
GO:0032611 interleukin-1 beta production 5 2.53E–04
GO:0042108 positive regulation of cytokine

biosynthetic process
5 1.47E–04

GO:0002755 MyD88-dependent toll-like recep-
tor signaling pathway

5 8.59E–06

GO:0032732 positive regulation of interleukin-1
production

4 4.47E–04

GO:0045351 type I interferon biosynthetic pro-
cess

4 2.19E–06

GO:0032728 positive regulation of interferon-
beta production

4 9.85E–05

GO:0032731 positive regulation of interleukin-1
beta production

4 2.39E–04

GO:0050702 interleukin-1 beta secretion 4 4.85E–04
GO:0006491 N-glycan processing 3 3.84E–04
GO:0034755 iron ion transmembrane transport 3 4.49E–04
GO:0042228 interleukin-8 biosynthetic process 3 1.84E–04
GO:0045414 regulation of interleukin-8 biosyn-

thetic process
3 1.48E–04

GO:0045350 interferon-beta biosynthetic pro-
cess

3 3.52E–05

GO:0045357 regulation of interferon-beta
biosynthetic process

3 3.52E–05

GO:0045416 positive regulation of interleukin-8
biosynthetic process

3 5.00E–05

GO:0045359 positive regulation of interferon-
beta biosynthetic process

3 1.48E–05

GO:0045356 positive regulation of interferon-
alpha biosynthetic process

2 3.43E–04

Downregulated genes
GO-BP terms
GO:0001945 lymph vessel development 4 1.81E–04
GO:0060613 fat pad development 3 2.62E–05
Blue-Cyan module
GO-BP terms
GO:0070647 protein modification by small pro-

tein conjugation or removal
59.00 2.74E–05

GO:0032446 protein modification by small pro-
tein conjugation

51.00 2.49E–05

(continued on next page)
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Table 2 (continued)

ID Description No. of
genes

P-value

GO:0006396 RNA processing 51.00 5.13E–05
GO:0006397 mRNA processing 35.00 2.44E–06
GO:0008380 RNA splicing 29.00 7.10E–05
GO:0007034 vacuolar transport 13.00 5.86E–05
GO:0007041 lysosomal transport 11.00 1.04E–04
GO:0007029 endoplasmic reticulum organiza-

tion
8.00 3.32E–05

GO:0071786 endoplasmic reticulum tubular
network organization

5.00 9.27E–05

GO-CC terms
GO:0043233 organelle lumen 216.00 1.49E–09
GO:0070013 intracellular organelle lumen 216.00 1.49E–09
GO:0044428 nuclear part 203.00 4.75E–13
GO:0031981 nuclear lumen 189.00 1.36E–12
GO:0005654 nucleoplasm 164.00 1.55E–11
GO:0044451 nucleoplasm part 60.00 5.83E–06
GO-MF terms
GO:0003723 RNA binding 79.00 1.65E–05
GO:0019787 ubiquitin-like protein transferase

activity
31.00 2.04E–05

GO:0004842 ubiquitin-protein transferase activ-
ity

30.00 2.01E–05

Notes.
GO, gene ontology; DEGs, differentially expressed genes; BP, biological process; CC, cellular component; MF, molecular
function; cGMP, cyclic guanosine monophosphate.

system. In T2D-related modules, the genes were mainly involved in vasopressin-regulated
water reabsorption pathways. The down-regulated expression of differential genes was
mainly enriched through chromatin-modifying enzymes, chromatin organization, and
mRNA splicing.

PPI network analysis
We performed PPI network analysis on 112 genes, which were present in both the DEGs
and the highly correlated modules. As shown in Fig. 3, we obtained 92 nodes and 254 pairs
by setting the PPI score >0.4. An intersection was observed in genes of following types: the
genes with logFC >0.6 or logFC <–0.6 in the DEGs, the genes with greater than average
degree in the high correlation module, and the genes with greater than average degree in
the PPI network. A total of 10 genes were obtained, all of which were up-regulated. The
details were presented in Table 4. The 11 genes with the higher degree in the network are
C14orf119 (logFC = 16), NAMPT (logFC = 15), NRBF2 (logFC = 14), MTO1 (logFC =
14), PIK3CG (logFC = 13), RNF146 (logFC = 13), VPS50 (logFC = 13), CHM (logFC =
12), GPD2 (logFC = 12), RAB10 (logFC = 12) and ATAD1 (logFC = 12), which have the
significant influence on the whole network.
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Table 3 KEGG and Reactome pathway enrichment analyses of DEGs and genes in highly correlative
module.

ID Description No. of genes P-value

Upregulated genes
KEGG
KEGG:04620 Toll-like receptor signaling pathway 5 1.16E–03
Reactome Pathways
R-HSA:168898 Toll-Like Receptors Cascades 6 1.31E–03
R-HSA:8876198 RAB GEFs exchange GTP for GDP

on RABs
5 6.00E–04

R-HSA:5260271 Diseases of Immune System 3 1.09E–03
R-HSA:5602358 Diseases associated with the TLR

signaling cascade
3 1.09E–03

Downregulated genes
Reactome Pathways
R-HSA:3247509 Chromatin modifying enzymes 10 3.10E–04
R-HSA:4839726 Chromatin organization 10 3.10E–04
R-HSA:72163 mRNA Splicing—Major Pathway 8 3.76E–04
R-HSA:72172 mRNA Splicing 8 5.00E–04
Blue-Cyan module
KEGG
KEGG:04962 Vasopressin-regulated water Reab-

sorption
3 1.12E–03

Reactome Pathways
R-HSA:909733 Interferon alpha/beta signaling 3 4.08E–03
R-HSA:8852135 Protein ubiquitination 3 5.55E–03
R-HSA:8866652 Synthesis of active ubiquitin: roles

of E1 and E2 enzymes
3 3.60E–04

R-HSA:983152 Transfer of ubiquitin from E1 to E2 3 1.05E–03
R-HSA:193648 NRAGE signals death through JNK 2 3.10E–02
R-HSA:933528 Interaction of MEKK1 with TRAF6 2 5.91E–04
R-HSA:933530 Activation of IKK by MEKK1 2 1.15E–03

Notes.
KEGG, The Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.

Analysis of the transcription factors of maker genes
A total of 12 genes were used for further analysis. Among them, 10 important genes were
obtained from PPI analysis. The remaining two genes were DEGs with large values of
logFC, namely, EGR1 (logFC = 2.00) and NAMPT (logFC = 1.32). In the CTD database,
these 12 genes are reportedly linked with T2D. In addition, we analyzed and compared
their reports in T1D group. The results were shown in Table 5.

As shown in Fig. 4, we analyzed the transcription factor regulatory network of these
genes. We found that NES ≥ 5 was for the following transcription factors: DEAF1 (NES =
7.114, degree= 6), GMEB2 (NES= 6.595, degree= 4), MAF1 (NES= 5.641, degree= 3),
NKX3-2 (NES = 5.287, degree = 3), WDR83 (NES = 5.041, degree = 4).

Jia et al. (2019), PeerJ, DOI 10.7717/peerj.6343 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj.6343


Figure 3 Protein–protein interaction network. The results of PPI analysis of DEGs in the highly corre-
lated module. Gray lines, purple lines, red lines, and blue lines represent co-expression, co-localization,
physical interactions, and shared protein domains, respectively. The link weight is marked with lines of
different thicknesses.

Full-size DOI: 10.7717/peerj.6343/fig-3

Table 4 Information of critical genes.

Gene
symbol

WGCNA
module

logFC WGCNA
degree (n)

PPI
degree (n)

TRAPPC11 blue 1.292140612 193 8
CHM blue 0.801222752 138 12
C14orf119 blue 0.777600335 262 16
ETNK1 blue 0.744750579 161 11
GSKIP blue 0.697264964 317 11
PIK3CG blue 0.688131993 178 13
ZNF420 blue 0.656561519 96 7
QSER1 blue 0.653280142 126 10
RAB10 blue 0.639129192 115 12
MRPL35 blue 0.638260852 240 7

Notes.
WGCNA, weighted co-expression network analysis; logFC, log2 fold change; PPI, protein–protein interaction network;
degree, the number of related genes in a given analysis.
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Table 5 No. of references of genes in T2D or T1D.

Gene T2D(n) T1D(n)

EGR1 104 14
NAMPT 99 26
MRPL35 27 2
QSER1 25 1
ETNK1 11 2
RAB10 9 5
CHM 6 2
PIK3CG 6 6
TRAPPC11 4 2
C14orf119 4 1
GSKIP 1 2
ZNF420 1 1

Notes.
The number of references related of T2D or T1D is given by the comparative toxicogenomics database.
T1D, type 1 diabetes; T2D, type 2 diabetes.

DISCUSSION
In humans, early growth response 1 (EGR1) is a protein-coding gene. Previous studies have
reported that glucagon can transiently activate EGR1 in liver cells. To mediate glucagon-
regulated gluconeogenesis, hepatocytes up-regulate the expression of gluconeogenic
genes. By blocking the function of EGR1 gene, we could increase glycogen content in
hepatic cells, which would improve the tolerance toward pyruvate and lower fasting
blood glucose. The gene EGR1 enhances insulin resistance in T2D patients with chronic
hyperinsulinemia. Insulin resistance is one of the most significant causes of T2D (Shen et
al., 2011). The gene EGR1 promotes the development of gestational diabetes by adversely
impacting the glucagon-controlled gluconeogenesis (Zhao et al., 2016). In addition, EGR1
promotes also diabetic nephropathy, which is one of the most common complications
of diabetes (Wang et al., 2015). Several findings have indicated that EGR1 promotes the
inflammation withinmuscle and adipose (Fan et al., 2013) and also acts as an inflammatory
mediator in reproductive tissues (Thakali et al., 2014). Indeed, the expression of EGR1 gene
was unregulated in the placenta of obese women. A previous study has shown that the
up-regulated expression of IL-8, IL-6, and TNFα was induced by EGR1 gene in BeWo
cells (Saben et al., 2013). These findings indicated that EGR1 contributed to placental
inflammation in obese women. Maternal adiposity must have triggered the expression of
EGR1 in umbilical cord tissue (Thakali et al., 2014). Current research and previous studies
have proved that EGR1 gene has significantly affected many aspects of diabetes and obesity.
In multiple tissues of T2D patients, statistically significant differences were found in the
expression of EGR1 gene.

Nicotinamide phosphoribosyltransferase (NAMPT) is a protein-coding gene in humans.
Previous studies have reported that NAMPT is an adipocytokine that exhibits pro-
inflammatory and immunoregulatory properties (Moschen et al., 2007) and regulates
beta-cell insulin secretion (Revollo et al., 2007). Furthermore, NAMPT is involved in insulin
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Figure 4 The analysis of transcription factor regulatory network. The pink and green nodes represent
the important genes identified by previous analysis and the transcription factors that have regulatory rela-
tionships, respectively. Some important genes were not pictured in the network because they were single
node, which means that no transcription factor linked to them. The different colored arrows indicate the
genes regulated by different transcription factors, making the results easier to observe.

Full-size DOI: 10.7717/peerj.6343/fig-4

resistance and chronic inflammation, which promotes the development of T2D (Ma, An &
Wang, 2017; Jaganathan, Ravindran & Dhanasekaran, 2017; Motawi et al., 2014). Obesity
is an important factor that leads to the development of diabetes. In obese and overweight
patients with metabolic syndrome, the expression of NAMPT increases in the plasma
(Filippatos et al., 2007) and simulates the effect of insulin (Fukuhara et al., 2005). However,
a previous study has reported that NAMPT is related to only T2D and not obesity (Laudes
et al., 2010). Some studies have reported plasma levels of visfatin, the product of NAMPT,
increases in obese people (Jaleel et al., 2013), indicating that further research must be
conducted to determine the relationship between NAMPT and obesity. Interestingly, the
expression of NAMPT was found to be significantly higher in patients with gestational
diabetes. This indicates that NAMPT is involved in the molecular mechanism of gestational
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diabetes (Krzyzanowska et al., 2006). Several studies have reported that Young women with
gestational diabetes usually give birth to an overweight baby. This phenomenon has been
attributed to intrauterine growth, which increases the prevalence of T2D in the offspring
(Schaefergraf et al., 2005). Because NAMPT is also conspicuously up-regulated in children
with T2D, it is necessary to further study the genetic mechanism of NAMPT in gestational
diabetes patients and their offspring. These findings suggest that NAMPT is a marker gene
in patients with childhood-onset T2D.

In this study, we also found that chronic inflammation was somewhat related to
childhood-onset T2D. Thus, childhood-onset T2D might be caused by multiple risk
factors. For the treatment and prevention of childhood-onset T2D, we need to correctly
identify the contribution and sequence of risk factors. Hence, further studies must be
conducted to confirm whether gestational diabetes and chronic inflammation are closely
related to childhood-onset T2D.

According to KEGG, up-regulated genes are mainly enriched in the signaling pathways
of TLR. The enrichment results of Reactome pathways indicated that up-regulated genes
were related to the TLR Cascades, suggesting that TLRs play a pivotal role in childhood-
onset T2D. Reactive oxygen is produced excessively in obese people, which leads to an
imbalance in the endogenous antioxidant capacity and causes oxidative stress in adipocytes
(Houstis, Rosen & Lander, 2006). Obesity also promotes the excessive production of pro-
inflammatory adipokines, which further aggravate the chronic inflammation of adipocytes
(Ouchi et al., 2011). In fact, several studies have explained the association between obesity
and chronic inflammation. These studies have further reported that chronic inflammation
causes insulin resistance in obese people. Insulin resistance is a precursor to T2D in
adults. These studies mainly investigated the adipose tissue of adults. In this study, we
found that TLR signaling pathways mainly enriched up-regulated genes in PBMCs. In
fact, TLR2 and TLR4 are important cell membrane receptors that elicit innate immune
responses to infection (Tack et al., 2012; Chmelar, Chung & Chavakis, 2013; Andreas et al.,
2003). Previous studies have shown that TLR2/4 and JNK signaling pathways play a pivotal
role in activating CD11c (+) myeloid proinflammatory cells, which further promotes
inflammation and subsequent insulin resistance in cells (Nguyen et al., 2007). The TLR4
signaling pathway participates in JNK activation and instigates palmitate-induced apoptosis
of INS-1β cells. With the knockout of TLR4, we blocked palmitate-induced apoptosis
of INS-1 cells; however, no such phenomenon was observed with the knockdown of
TLR2 (Lee et al., 2011). The inflammatory factors produced during immunization play
an important role in obesity-related T2D (Iiu et al., 2013). Some immune-related diseases
are complications of diabetes. For example, some diabetic patients may develop a chronic
airway inflammation, which further causes asthma. The above results indicate that children
may develop chronic inflammation, which further induces insulin resistance and promotes
the development of T2D. In addition, we also found that several other genes, such as
PIK3CG, ZNF420 were also functionally related to inflammation and immune response
(Hawkins & Stephens, 2007; Tian et al., 2009). Therefore, this result further validates our
findings.
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In previous studies, animal models or elderly patients were investigated to elucidate the
mechanism of T2D. Ours is the first study to partially elucidate the molecular mechanism
of childhood-onset T2D with the help of bioinformatics. We found the marker genes
(EGR1, NAMPT) and TLR signaling pathways of childhood-onset T2D. The up-regulated
expression of EGR1 and NAMPT in PBMCs seems to be a gene marker of childhood-onset
T2D. The results were compared with the gene expression of middle-aged and older
patients with T2D. Thus, there is a genetic mechanism of NAMPT in gestational diabetes
patients and their offspring. Such an offspring will have an increased risk of developing
childhood-onset T2D. Children are less affected by environmental factors than adults,
which allows us to speculate that genetic factors have more influence on childhood-onset
T2D. Our findings suggest that NAMPT may be the key to understanding this issue. In
addition, TLRs are important proteins involved in non-specific immunity and are a bridge
linking specific and non-specific immunity. TLR4 recognizes not only foreign pathogens,
but also endogenous substances and degradants. Given the differences in the immune
system between children and adults, as well as the special circumstances in which the fetus
grows in the uterus, we believe that in children with T2D, the factors that activate the TLR
signaling pathway cannot be equated with those of adults. The above results only analyze
the underlying mechanisms of EGR1 and NAMPT in children with T2D. We present
more details as well, including genes with higher logFC and specific logFC values, genes
with higher degrees and associated values, and information on transcription factors, which
provide ideas for subsequent research on childhood-onset T2D. It must be emphasized that
the physical condition of a child is very different from that of an adult. Therefore, future
research studies must focus on elucidating the mechanisms of occurrence, prevention
strategies, and treatment of children and adolescents with T2D.

CONCLUSION
EGR1 and NAMPT can be used as marker genes for childhood-onset T2D, and gestational
diabetes and chronic inflammation are risk factors that lead to the development of
childhood-onset T2D.
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