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ABSTRACT
Background. This study examined the effectiveness of various vaccine policies against
influenza. The transmission rate was calculated by use of the time-series influenza-like
illness case during the year of 2009 and recent epidemics in Taiwan.
Methods. We developed a stochastic compartmental model to analyze the transmission
of influenza, where the population was stratified by location and age group, and the
vaccine distribution was considered using the current policy. The simulation study
compared the previous vaccine policy and a new policy with expanded coverage
and various lengths of the vaccination campaign. The sensitivity analysis investigated
different levels of vaccine efficacy to confirm the robustness of the recommended
policies.
Results. Doubling vaccine coverage can decrease the number of infections effectively
in the regular epidemic scenario. However, a peak of infections occurs if the duration
of implementing vaccination is too long. In the 2009-like pandemic scenario, both
increasing vaccine doses and reducing the program’s duration can mitigate infections,
although the early outbreak restricts the effectiveness of vaccination programs.
Conclusions. The finding indicates that only increasing vaccine coverage can reduce
influenza infections. To avoid the peak of infections, it is also necessary to execute the
vaccination activity immediately. Vaccine efficacy significantly impacts the vaccination
policy’s performance.When vaccine efficacy is low, neither increasing vaccination doses
nor reducing vaccination timeframe prevents infections. Therefore, the variation in
vaccine efficacy should be taken into account when making immunization policies
against influenza.

Subjects Epidemiology, Public Health, Data Science
Keywords Disease model, Influenza, Vaccine policy, Simulation

INTRODUCTION
The influenza vaccination starts at the beginning of October for most countries in the
northern hemisphere to protect people from infections. Irregular epidemics have posed
a challenge for implementing such a fixed vaccination schedule. The objective of this
study is to examine vaccination policies under various epidemic scenarios and provide
suggestions for preparing future epidemics. A relevant example is a pandemic in 2009
when new influenza A H1N1 virus emerged and rapidly caused global infections (Chuang
et al., 2012). The epidemic pattern in 2009 is distinct from other years. There were double
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Figure 1 Reported influenza-like illnesses during the 2009 and 2013–2015 seasons.
Full-size DOI: 10.7717/peerj.6340/fig-1

outbreaks in 2009 in Taiwan. The first infection peak in September caused 0.79 ILI cases
per 100,000 citizens and then followed by another transmission with a larger magnitude in
the late November (Fig. 1).
The shifting viral strain is one of the key factors associated with the pandemic. After

observed a number of infections in spring 2009, a new H1N1 virus had been identified. The
viral strain had been spread globally, but it was not included in the regular seasonal vaccine.
Because the production of the seasonal vaccine already started, vaccine manufacturers were
unable to alter vaccine products to include the new viral strain. The influenza-like illness
(ILI) defines as the acute respiratory infection with the symptom of a cough and a fever of
≥ 38 C◦ (World Health Organization, 2018). There were a large number of clinical visits for
ILI before the monovalent vaccine was available in early November. The H1N1 outbreak
continued the following year, and there were sporadic infections during the post-pandemic
period (Chuang et al., 2012; Centers for Disease Control, 2017b). Although the new H1N1
virus caused a large size outbreak in 2009, the epidemic caused less mortality than an
average season due to many infections occurred in the younger population. Therefore, the
World Health Organization (WHO) defined the pandemic as a moderate severity level
(World Health Organization, 2009).

After the first outbreak in September 2009, the Taiwanese government announced a
quarantine policy (known as the 325 policy) on campuses to protect school-aged children
from infections. This policy ensures that the school must be shut down for five days
if there were two new infected cases within three days. As the pandemic vaccine was
available in November, the quarantine policy was canceled by the government if the school
achieved an 80% vaccination rate. The vaccinated population was about 5.6 million during

Chen et al. (2019), PeerJ, DOI 10.7717/peerj.6340 2/18

https://peerj.com
https://doi.org/10.7717/peerj.6340/fig-1
http://dx.doi.org/10.7717/peerj.6340


the flu season, and approximately 520,000 individuals received vaccines on the national
vaccination day, December 12. Besides using vaccines, the government also ordered 60
million masks for controlling the outbreak (Centers for Disease Control, 2017b). The overall
vaccine rate was at an undesirable level in 2009, although the government has allocated
abundant resources to control the disease. There were millions of leftover vaccines at the
end of the vaccination program, and only one-third of vaccine orders were applied to the
population. The low vaccination rate mainly associated with vaccination side effects, such
as dizziness and vomiting that occasionally occurred in the younger population (Centers for
Disease Control, 2018). Not just in Taiwan but also other countries noted adverse cases after
receiving the pandemic vaccine. Concerns regarding the monovalent vaccine side effect
have been discussed in the literature, where the author suggests the information of disease
background and vaccination benefits should be available to the public in a transparent and
easy-to-understand manner (Poland, 2010).

The economic benefit of vaccination has confirmed by various studies using modeling
approaches (Maciosek et al., 2006). Examples of studies investigated the economic benefits
of from both health service and societal perspectives for individuals aged 50 years and
older (Turner et al., 2006; Aballéa et al., 2007). Another study developed mathematical
models to assess the cost benefit of sharing pediatric and adult flu vaccines (Chen, 2017).
Influenza vaccination can also benefit the younger population. Scholars estimate the
clinical impact of introducing childhood influenza vaccine in England and Wales (Pitman,
White & Sculpher, 2012). They further develop a dynamic transmission model to assess
the cost-effectiveness for the new vaccination policy in the same region (Pitman, Nagy &
Sculpher, 2013). Other scholars analyzed the impact of immunizing school-age children
to economic loses and domestic transmission (Neuzil, Hohlbein & Zhu, 2002; Yoo et al.,
2013).

The epidemic model provides an opportunity to understand how diseases spread in the
population. The initial study by Kermack and McKendrick classified the population as the
susceptible, infected, and recovered (SIR) categories, and usedmathematical expressions for
describing the evolution of each compartment (Kermack & McKendrick, 1927). Extending
from this foundation, Brogger incorporated vaccine recipients with the disease model
for analyzing tuberculosis transmission (Brogger, 1965). Other studies developed disease
models to investigate vaccination impacts on different diseases (Hethcote & Waltman,
1973; Revelle, Lynn & Feldmann, 1967; Waaler, Geser & Anderson, 1962).

Recently, attention has turned towards understanding the effectiveness of a vaccination
strategy by use of disease modeling. Ball, Mollison & Scalia-Tomba (1997) developed an
SIR model with a stratified population in households to obtain the optimal threshold for
controlling an epidemic. Becker and Starczak assessed the post-vaccination reproduction
number in a stochastic SIR framework and suggested minimal vaccination coverage
to prevent disease transmission (Becker & Starczak, 1997). Another study applied
mathematical programming models to determine vaccine allocation decisions for
multiple regions against influenzas (Tanner, Sattenspiel & Ntaimo, 2008). Muller used
a SIRS (susceptible-infected-recovered-susceptible) epidemic model to obtain the optimal
vaccination coverage for different age groups (Müller, 1997). Hill and Longini proposed
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a general framework to obtain optimal vaccination strategies to apply to several types of
epidemic models, including SIR models, SEIR (susceptible-exposed-infected-recovered)
models, and SIS (susceptible-infected-susceptible) models (Hill & Longini, 2003).

Yarmand et al. developed a simulation model to capture the epidemic dynamics in
different regions and formulated the vaccine allocation problem as two-stage stochastic
programming. Using the 2-SLP formulation, they estimated the value of the stochastic
solution and the expected value of perfect information. The results showed that the
proposed two-phase vaccination policy potentially resulted in a lower attack rate and a
considerable saving in vaccine production and administration costs (Yarmand et al., 2014).

The time-series model can be utilized to understand how the disease transmitted
in population over time. Sophisticated approaches focused on periodic outbreaks
by integrating mathematical formulations with actual epidemical data. For example,
Finkenstädt et al. developed models to estimate weekly transmission rates and unreported
cases using surveillance data for measles in England and Wales. Their computational
results were coherent with the actual transmission pattern and capable of explaining
the biennial cycle of measles outbreaks (Finkenstädt & Grenfell, 2000). Another study
applied time-series regression model to investigate the effectiveness of mass vaccination
for controlling influenzas in Taiwan (Wu et al., 2014).

From a retrospective review of the immunization strategy in 2009, simply ordering
vaccines is insufficient for controlling influenza, as well as the effectiveness of timely
implementing vaccination program is rarely discussed by literature. The present study
aims to address these challenges. We compare the previous vaccine coverage and the
expanding program to order double vaccine doses to cover people 13–18 and 50–64 years
old. The analysis includes various vaccine policies of vaccination timing and campaign
size using the epidemic data collected from both 2009 and the recent years. The remaining
sections of this paper are organized as follows.‘Materials and Methods’ describes the
stochastic disease model, parameter setting, and assumptions. ‘Results’ presents the result
of the simulation experiment. The final section is the discussion and conclusions.

MATERIALS AND METHODS
Disease model
The discrete-time compartmental model considers the transition rate from one population
group to another by use of difference equations to determine the epidemic status over time.
In the simulation study, we developed and applied the model to evaluate the effectiveness
of vaccine policies. The stochastic SIR model was implemented on the R language version
3.4.2 to sample new infections and then compute the number of individuals in each
compartment (R Core Team, 2017). The foundation of the compartmental model may
refer to (Brauer & Castillo-Chávez, 2001; Daley & Gani, 1999). Our methodology is closely
related to the pioneer study of applying disease models to understand measles epidemics
in the UK (Finkenstädt & Grenfell, 2000). As opposed to the prior work we considered
more details on vaccination activities, which include multiple vaccine types and their
characteristics, vaccination timing, and recipient arrival frequencies. Additionally, we
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segregated the population by age and county according to the demographic data in Taiwan.
The time horizon was one year and time unit is weekly in our model. We assumed that the
population was closed, and there was no traveling or migration within the study period.
However, this assumption can be relaxed by adding the birth and mortality rates to the
compartmental model accordingly.

Let Na,j,t be the total population of age group a at location j at time period t, γ be the
recovery rate, and e be the vaccine efficacy. The variables of Sa,j,t ,Ia,j,t ,1Ia,j,t ,Ra,j,t and
Va,j,t refer to the numbers of susceptible, infected, new infected, recovered and vaccinated
individuals of age group a at location j at time period t, respectively. The parameter of βt
represents the transmission rate at time period t. The population size of each compartment
will be changed over time according to the following equations. The first equation defines
the number of susceptible individuals, which is the number of susceptible individuals
in the previous time period, subtracted from the new infected (1It−1) and immunized
individuals (eVa,j,t−1).

Sa,j,t = Sa,j,t−1−1Ia,j,t−1−eVa,j,t−1. (1)

The values of 1It−1 and eVa,j,t−1 are sampled from the Poisson distribution in the
simulation experiment. The expected value of1It−1 is defined by Eq. (3), and the expected
value of immunized individuals is equal to the vaccine efficacy multiplying the maximal
value of arrival population and vaccine availability.

Next, we explain the equation for determining the number of infected individuals. Given
the recovered rate γ during a time period, the number of infected individuals at the end of
the time period t is equal to the initial infected cases minus the new recovered cases plus
the new infected cases:

Ia,j,t = Ia,j,t−1−γ Ia,j,t−1+1Ia,j,t−1. (2)

Similarly, both γ Ia,j,t−1 and 1Ia,j,t are sampled randomly from Poisson distributions
using of the expected values of recovered rate multiplied by the last time period infections,
and the new infected defined in Eq. (3), respectively.

Equation (3) defines the expected number of new infected individuals, which is the
multiplication of transmission rate, susceptible individuals, and total infected individuals,
and then divided by the population of age group a.

1Ia,j,t =βt−1Sa,j,t−1
∑
a∈A

Ia,j,t−1/
∑
a∈A

Na,j,t−1. (3)

Finally, the number of recovered individuals is equal to the cumulative recovered
individuals, new recovered individuals in the last time period, and immune individuals as
follows.

Ra,j,t =Ra,j,t−1+γ Ia,j,t−1+eVa,j,t−1. (4)
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Table 1 The weekly transmission rate.

Year Weekly transmission ratesa

Regular epidemic {0.953, 0.979, 0.946, 0.959, 0.972, 1.008, 0.954, 0.984, 1.046,
1.029, 1.004, 0.998, 1.172, 1.022, 1.042, 1.017, 1.067, 1.075,
1.078, 1.061, 1.089, 1.056, 1.042, 1.206, 1.108, 1.176, 1.166,
1.081, 1.307, 1.244, 1.238, 1.265, 1.326, 1.233, 0.985, 1.406,
1.385, 1.186, 1.125, 1.156, 1.158, 1.219, 1.06, 1.135, 1.207,
1.157, 1.109, 1.191, 1.193, 1.208, 1.273, 1.334}

2009-like pandemic {0.912, 0.999, 0.984, 1.042, 1.001, 1.02, 1.061, 1.09, 0.958,
1.148, 1.129, 1.334, 1.213, 1.102, 0.934, 0.977, 0.944, 1.2,
1.151, 1.237, 1.201, 1.11, 1.135, 1.236, 1.317, 0.965, 0.955,
0.897, 1.157, 1.131, 1.206, 1.24, 1.101, 1.148, 1.273, 0.584,
2.462, 1.156, 1.389, 1.307, 1.352, 1.299, 1.121, 1.236, 1.248,
1.33, 1.279, 1.305, 1.173, 1.237, 1.246, 0.963}

Notes.
aThe list of weekly transmission rates represents from week 23 in one year to week 22 in the next year.

The transmission rate
The ILI data were collected from the CDC in Taiwan for determining the weekly
transmission rate (Centers for Disease Control, 2017a). The surveillance data only included
reported cases without symptomatic ones. The epidemic scenarios in 2009 and regular
season scenarios calculated in different ways stated as follows. In the new H1N1 pandemic
scenario, we applied the reported ILIs in 2009 directly to determine the weekly transmission
rate in 2009. In the regular epidemic scenario, the weekly transmission rate was estimated
by use of the multi-year data of 2013–2015. The parameter value was obtained by the least
square method to minimize the sum of the squared deviation between actual new infections
and fitted value. The fitting result was performed well for the estimation during 2013 and
2015, where the correlation coefficient was close to one, and the sum square of errors was
small. Table 1 displays the weekly transmission rates used in this study.

The weekly transmission rate was either determined or estimated to provide the intensity
of infection for the disease model simulation. If the value is greater than one, then the new
infected cases will increase in the next time period. In 2013-2015, the transmission rates
were continuously above one from the 31st week. While in 2009, an earlier epidemic began
from the 26th week.

Model validation
The transmission rates were validated using a stochastic disease model to examine
the forecasting accuracy for each epidemic scenario. Figures 2 and 3 summarize the
comparisons between the predicted and actual infected cases in the regular epidemics and
2009-like pandemics, respectively.

Both results showed that the actual and simulated ILIs were very similar in the ways
of pattern and scale. The sums of absolute error defined as |simulated infections—
actual| actual are 3.0% and 3.6% for the 2013–2015 and 2009 scenarios, respectively. This
confirmed the suitability of using the estimated transmission rates for predicting epidemic
outcomes under different vaccination programs.
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Figure 2 Comparing actual ILIs and simulation results in the scenario of the 2013–2015 seasons.
Full-size DOI: 10.7717/peerj.6340/fig-2
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Figure 3 Comparing actual ILIs and simulation results in the scenario of the 2009 season.
Full-size DOI: 10.7717/peerj.6340/fig-3

RESULTS
Data and parameters
The vaccination rate used the empirical data of 35% for children ≤3 years old, 75% for
4–18 years old population, and 44% for the population 65 years old and above. The
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Table 2 Vaccine doses, target population and vaccination duration of potential policies.

Policy Vaccine doses Target population Vaccination duration

Policy A-1 Pediatric:0.3million, Adult:2.7million 0∼12 and 65+ years old Week40–Week 4 in the next year
Policy A-2 Pediatric:0.3million, Adult:2.7 million 0∼12 and 65+ years old Week40–Week 52
Policy A-3 Pediatric:0.3million, Adult:2.7 million 0∼12 and 65+ years old Week40–Week 48
Policy A-4 Pediatric:0.3million, Adult:2.7 million 0∼12 and 65+ years old Week40–Week 44
Policy B-1 Pediatric:0.3million, Adult:5.7million 0∼18 and 50+ years old Week40–Week 4 in the next year
Policy B-2 Pediatric:0.3million, Adult:5.7million 0∼18 and 50+ years old Week 40–Week 52
Policy B-3 Pediatric:0.3million, Adult:5.7million 0∼18 and 50+ years old Week 40–Week 48
Policy B-4 Pediatric:0.3million, Adult:5.7million 0∼18 and 50+ years old Week 40–Week 44

arrival rate for the population aged 50–64 is assumed as 35%. We assumed that the new
infections and recipient arrivals were Poisson distributed with the parameter setting as
follows. The weekly arrival percentage was determined by the actual vaccine coverage
rates divided by the number of weeks during the vaccination period. Then, the mean of
Poisson distribution used the weekly arrival percentage multiplied by the number of the
target population. When vaccine inventory is in short, the distribution policy considers a
fair fill rate across all locations. Population data were collected from the government, and
stratified by six age groups of 0–3, 4–12, 13–18, 19–49, 50–64, and ≥65, and twenty-two
counties (Department of Household Registration, 2017). There are two vaccine types applied
to different age groups. The pediatric vaccine was for the children less than or equal to
three years old, and the adult vaccine was for the remaining age groups. The time unit was
weekly, and there were fifty-two time periods in a simulation run.

Vaccination policies
The experiments were designed by referring to the current immunization program in
Taiwan. Two levels of vaccination scales and four levels of campaign duration were
considered to explore the effects of vaccination policies. Table 2 summarizes the studied
policies. The first class of policies (from A-1 to A4) considered the vaccination scale
implemented prior to 2016 that ordered 3 million doses of vaccine, and covered the
population aged 0 to 12 and above 65 years old. Another set of policies (from B-1 to B-4)
referred to the current implemented program of 6 million ordered doses with the target
population of age 0 to 18 and above 50 years old. All vaccination policies were launched
on week 40 (October first). Four scenarios on vaccination duration were investigated. The
longest durations (A-1) lasted 4 months followed by the A-2 policy in 3 months, the A-3
policy in 2 months, and the shortest policy of A-4 in 1 month. A similar setting was applied
for the policies of B-1 to B-4.

Epidemic scenarios
The effectiveness of vaccination policies was evaluated under various epidemic scenarios.
The first scenario (regular epidemic) used the estimated the weekly transmission rates of
2013–2015. Furthermore, vaccine efficacy was set as 59% according to the summary of
the literature review (Osterholm et al., 2012). The second scenario (2009-like pandemic)

Chen et al. (2019), PeerJ, DOI 10.7717/peerj.6340 8/18

https://peerj.com
http://dx.doi.org/10.7717/peerj.6340


Table 3 Epidemic scenarios and parameter values for the simulation experiment.

Parameter Values Sources

Population 23,499,404 Department of Household Registration (2017)
Age groups 0–3 yrs, 4–12 yrs, 13–18 yrs, 19–49 yrs, 50–64 yrs, and

65+ yrs
Assumed

Locations 22 counties Department of Household Registration (2017)
Vaccination age groups A- policies: 6m-3 yrs, 4–12 yrs, 13–

18 yrs, 50–64 yrs, and 65+ yrs
B- policies: 6m-3 yrs, 4–12 yrs, 13–18 yrs, and 65+ yrs

Taiwanese CDC

Recipient arrival rates ≤ 3 yrs: 35%
4–18 yrs: 75%
50–64 yrs: 35%
65+ yrs: 44%

Taiwanese CDC

Vaccine ordering quantity A- policies: 2.7 million doses of adult vaccine
and 0.3 million doses of pediatric vaccine
B- policies: 5.7 million doses of adult vaccine and 0.3
million doses of pediatric vaccine

Taiwanese CDC

Vaccine efficacy Regular epidemic scenario:
59% (average) Osterholm et al. (2012)
50% (below average) Osterholm et al. (2012)
20% (low) Assumed (10%–60% Centers for Disease Control and

Prevention (2018))
2009-like pandemic scenario:
69% Osterholm et al. (2012)

Vaccination periods October
October–November
October–December
October–January

Assumed

Time period 52 weeks
Transmission rates Table 1 Estimated or calculated using of the data of reported ILIs

Centers for Disease Control (2017a)

considered the irregular transmission pattern by using the actual transmission rate in
each week in 2009. The transmission rate in each county was in similar due to the high
population density and frequent domestic travels in Taiwan. Thus, our analysis used a unify
transmission rate for all locations and assumed that the infected population could transmit
diseases to the susceptible population within the same county. The vaccine efficacy was also
reviewed according to the laboratory experiment for the monovalent vaccines reported in
the literature. The simulation parameters for different vaccination policies under regular
epidemic and 2009-like pandemic scenarios are summarized in Table 3.

Simulation results
The stochastic disease model obtained vaccination outcomes under different epidemic
scenarios. We reported the simulation result in Tables 4 and 5 for the regular epidemic
and the 2009-like epidemic, respectively. The average ILIs were calculated based on five
replications of simulation. Also, the actual ILIs (in the first row of the tables) provided a
baseline for evaluating vaccination policies. The cases averted in the A-1 to A-4 policies
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Table 4 Annual ILIs and cases averted in the regular epidemic scenario.

Policy Annual ILIs Cases averted

Reported cases during the 2013–2015 seasons 3,098,632 N/A
Simulation results Average Standard deviation

Policy A-1 3,488,246 20,616 −389,614a

Policy A-2 3,188,295 17,898 −89,663a

Policy A-3 2,972,484 19,676 126,148a

Policy A-4 2,745,710 43,607 352,922a

Policy B-1 2,163,610 14,191 1,324,635b

Policy B-2 1,912,309 12,920 1,275,985b

Policy B-3 1,685,328 31,474 1,287,156b

Policy B-4 1,466,097 19,774 1,279,613b

Notes.
aCases averted are the reported cases minus the annual ILIs of the A- policies.
bCases averted are the annual ILIs of the A- policies minus the annual ILIs of the B- policies, respectively.

Table 5 Annual ILIs and cases averted in the 2009-like epidemic scenario.

Annual ILIs Cases averted

Reported cases in the 2009 season 3,234,303 N/A
Simulation results Average Standard deviation

Policy A-1 3,604,619 26,850 −370,316a

Policy A-2 3,368,654 13,862 −134,351a

Policy A-3 3,124,538 23,631 109,765a

Policy A-4 2,873,130 27,691 361,173a

Policy B-1 2,402,780 14,114 1,201,839b

Policy B-2 2,188,831 30,575 1,179,823b

Policy B-3 1,932,464 14,394 1,192,074b

Policy B-4 1,684,808 11,037 1,188,321b

Notes.
aCases averted are the reported cases minus the annual ILIs of the A- policies.
bCases averted are the annual ILIs of the A- policies minus the annual ILIs of the B- policies, respectively.

represented the decrease or increase of new infections by adjusting vaccination durations.
While the cases averted in the B-1 to B-4 policies implied the effects of augmenting the
vaccine coverage from the previous season of three million doses to six million doses.

In Table 4, the numbers of new infections decreased when shortening the vaccination
duration (A-1 > A-2 > A-3 > A-4, and B-1 > B-2 > B-3 > B-4). Vaccination programs
during the 2013–2015 seasons were completed in three months. Thus, the policies shorter
than three months (i.e., A-3 and A-4) obtained more positive cases averted. Policies with
the shortest duration (A-4 and B-4) reduced infections from the longest duration policies
(A-1 and B-1) by 742,536 reduced new infected cases for the three million doses policy
and 697,513 reduced new infected cases for the six million doses policy. When doubling
the vaccination scale, the B policies averted approximately 1.27 million more cases of
infection than the corresponding polices. Policy B-4 obtained the best result among the
eight policies.
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Figure 4 Comparing weekly ILI cases between the actual and vaccination policies in the regular epi-
demic scenario.

Full-size DOI: 10.7717/peerj.6340/fig-4

Figure 4 depicts the curves of weekly infections for the actual and vaccination policies.
The policy A-2 obtained the closest estimation because the settings of coverage population
and vaccinationduration are identical with the actual situation. A considerable decline in the
B policies indicated the effect of adding the threemillion doses to the vaccination campaign.
Additionally, shortening the vaccination period lowered the peaks of transmission in both
cases of coverage population. It is notable that no epidemic peaks occurredwhen vaccinating
six million doses within three months (i.e., B-2, B-3, and B4 policies).

Table 5 displays the vaccination policies’ performances in the 2009-like epidemic
scenario. The overall infections were greater than the regular epidemic scenario due to the
higher transmission rates in 2009. The number of new infections reduced when shortening
the vaccination period (109,765 for policy A-3 and 361,173 for policy A4), while policies
with long vaccination period led to a negative number of cases averted (−370,316 for
policy A-1 and −134,351 for policy A-2). Only augmenting vaccination doses obtained
a lessening effect on the cases averted compared with the ‘‘regular epidemic’’ scenario,
in which cases averted are 1,201,839∼1,188,321 the in the 2009-like epidemic scenario
versus 1,324,635∼1,279,613 in the regular epidemic scenario. The explanation is that
the first outbreak in 2009 occurred before the vaccines were available, and therefore,
the immunization program could only avert the infections during the second wave in
December.

Figure 5 presents new infections each week to understand the new H1N1 outbreak
concerning the immunization outcomes of vaccination policies. The first epidemic in
Taiwan was observed in September followed by another larger outbreak in December.
Vaccines were available for the target population after the first outbreak. Consequently, all
vaccination policies did not affect the transmission prior to October. Both shortening the
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Figure 5 Annual ILIs and cases averted in the 2009-like epidemic scenario.
Full-size DOI: 10.7717/peerj.6340/fig-5

vaccination period and adding vaccine doses mitigated the total infections, but were unable
to aviod major outbreaks in December until the vaccine period was reduced by one month.
A significant reduction in the peak level during the outbreak in December was observed
for the A-4, B-3 and B-4 policies. Also, administering 3 million doses in one month (A-4)
obtained a lower peak level than vaccinating 6 million doses in 3 or 4 months (B-1 and
B-2). These results imply that implementing an immediate vaccination activity during the
epidemic can control the diseases effectively.

Sensitivity analysis on the vaccination efficacy
Vaccine efficacy fluctuation is usually associated with the drifting or recirculating of
influenza viruses. In addition to investigating different epidemic scenarios, an analysis of
both regular epidemic and 2009 pandemic scenarios with average vaccine efficacy (59%),
below-average vaccine efficacy (50%), and the lowest vaccine efficacy (20%) was conducted
to assess the effect that vaccine efficacy had on vaccination policies. Figure 6 displays the
simulation result of average new infected cases for the three vaccine efficacy levels. As
one can expect, all vaccination policies obtained more infections when vaccine efficacy
decreased. For example, infected cases were increased between 250,000 to 350,000 for each
policy if vaccine efficacy decreased from 59 to 50%. A larger scale of increasing on new
infections observed when vaccine efficacy reduced to 20%.

Figure 7 displays cases averted by vaccine policies under various vaccine efficacy levels.
In the regular epidemic scenarios, when vaccine efficacy was below the average value (50%
vaccine efficacy), most A- policies obtained negative numbers of cases averted except for
the policy that completed vaccination in one month (Fig. 7B). Compared to the situation
when vaccine efficacy performed regularly (59% vaccine efficacy), the cases averted became
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Figure 7 Cases averted by vaccination policies under different vaccine efficacy levels. (A) Regular epi-
demic with 59% vaccine efficacy; (B) regular epidemic with 50% vaccine efficacy; (C) regular epidemic
with 20% vaccine efficacy; (D) 2009-like pandemic with 20% vaccine efficacy.

Full-size DOI: 10.7717/peerj.6340/fig-7

positive when the vaccine period was shorter than three months (Fig. 7A). The policies of
providing double vaccine doses (B1-B4 policies) averted more than 656,045 new infections
(about 21% reduction from base case) if the vaccine efficacy is equal to or above 50%.
Figure 7C reports cases averted when vaccine efficacy is 20%. All vaccination polices
obtained a more close performance (−1,719,179∼−587,740 averted cases) compare with
the simulation results using higher vaccine efficacy. In the presence of regular (59%)
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vaccine efficacy, potential infections can be averted by either adding vaccination doses
to the population or reducing vaccination period. When the vaccine efficacy is 50%, the
number of infections can be reduced only by adding vaccination doses. There is no chance
to reduce infections if vaccine efficacy is as low as 20%. We further analyze the low vaccine
efficacy effect in the 2009-like pandemic scenario (Fig. 7D). Either reducing vaccination
duration or increasing vaccination doses cannot reduce the number of cases averted.

DISCUSSION
In the regular epidemic scenario, the policies of covering 3 million people (referring to
the programs implemented in Taiwan prior 2016) cannot prevent influenza outbreaks
effectively (A-1, A-2, A-3, and A-4 policies in Fig. 4). However, the total infections are
reduced if vaccination activities can be completed early. On the other hand, the number
of cases averted can be lost by 110% (decreasing from 352,922 to -389,614) if vaccination
timing is not early enough.When considering a double campaign size of 6million doses (the
current program in Taiwan), there are no epidemics if vaccination activities are completed
within 3months (B-2, B-3, and B-4 policies in Fig. 4). A small-scale outbreak still occurs for
the policy with longest vaccination duration. This emphasizes the importance of quantity
and timing in designing a vaccination program against influenzas.

In the 2009-like pandemic scenario, the early outbreak in September restricts the
effectiveness of using government-funded vaccines. However, both increasing vaccine
doses and reducing the program’s duration can mitigate the second-wave outbreak in
December. The cases averted can be lost by 103% (decreasing from 361,173 to -370,316 for
the 3-million doses polices) if vaccines are given to target population too late. The key to
eradicating the recirculated outbreak in December is to cover a broader population sooner
(see B-4 policy in Fig. 5).

The uncertain vaccine efficacy is an important consideration for planning a vaccination
program. Sensitivity analysis indicates that the policies of doubling vaccination doses
can still mitigate the amplitude of infections although the vaccine efficacy is at a below-
average level. Neither increasing vaccination doses nor reducing vaccination period reduce
infections when vaccine efficacy is as low as 20%.

CONCLUSIONS
This study represents the first attempt to explicitly analyze the ILI time-series data during
the 2009 H1N1 pandemic and the recent epidemics in Taiwan. A stochastic compartmental
model is developed to simulate various epidemical scenarios. The simulation result is
consistent with the actual ILIs reported by the government. Additionally, we apply the
model to assess current and potential vaccination policies. Sensitivity analysis examines
how different vaccine efficacies affected the vaccination performances in terms of infections
and cases averted.

Our findings inform recommendations for public health policies. For example,
vaccination programs may be able to deter epidemics not only by increasing coverage
population but also by reducing the timeframe of vaccination activity. Furthermore, the
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policymaker should consider the uncertainty of vaccine efficacy when making decisions.
According to the sensitivity analysis, the policies of shortening vaccination timeframe
reduced infections for regular vaccine efficacy, but not for the case of below average. Both
increasing vaccine doses and reducing vaccination timeframe fails to avert cases if vaccine
efficacy is at an extremely low level of 20%.

The limitation of the present study state as follows. The transmission rate can be
dissimilar for individuals with different age groups, while our analysis uses a mixed
transmission rate across all age group population. Because of the availability of the ILI data
limits us to obtain transmission rates for each specific population group. Future study may
integrate the population-based prospective survey as an alternative source of the age-specific
mixing data (Mossong et al., 2008). Finally, our analysis did not consider asymptomatic
cases. We believe that including asymptomatic cases into the simulation model would
increase the scale of infections, but not affect the conclusion we made. Without loss of
generality, our model can be adjusted easily to adapt to these considerations when more
fine data are available in the future.
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