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ABSTRACT

Recent years have seen a growing awareness of the role the immune system plays
in successful cancer treatment, especially in novel therapies like immunotherapy.
The characterization of the immunological composition of tumors and their micro-
environment is thus becoming a necessity. In this paper we introduce a deep learning-
based immune cell detection and quantification method, which is based on supervised
learning, i.e., the input data for training comprises labeled images. Our approach ob-
jectively deals with staining variation and staining artifacts in immunohistochemically
stained lung cancer tissue and is as precise as humans. This is evidenced by the low cell
count difference to humans of 0.033 cells on average. This method, which is based on
convolutional neural networks, has the potential to provide a new quantitative basis
for research on immunotherapy.

Subjects Oncology, Pathology, Translational Medicine, Computational Science, Data Mining and
Machine Learning

Keywords Lung cancer, Immune cells, Deep learning, Cancer micro-environment, Biomarker
quantification

INTRODUCTION

Tumors contain not only malignant cells but also diverse non-malignant cells, such as those
from the immune, vascular and lymphatic system, in addition to fibroblasts, pericytes,
extracellular matrix and adipocites. These cells can even comprise more than 50% of the
mass of the primary tumors and their metastases (Balkwill, Capasso ¢» Hagemann, 2012).
To date it is not well-studied how the non-malignant cells in the tumor micro-environment
regulate tumor progression and its response to treatment (Pietras ¢ Ostman, 2010; Herbst
et al., 2014; Hoefflin et al., 2016; Michel et al., 2008).
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Especially since the introduction of new, highly effective, immunotherapy strategies,
which try to get immune cells to attack the tumor, the interest in accurate quantification of
immune cells in the tumor and its micro-environment has substantially increased (Vesely
et al., 2011; Fridman et al., 2012; Chen & Chefd Hotel, 2014; Carstens et al., 2017). Accurate
quantification could potentially allow for new biomarkers which can help predict therapy
success and monitor therapy progression (Guo et al., 2015; Varn et al., 2017). But the
benefit of such automated quantification tools is not limited to just immunotherapy,
the immune cell density and their localization in the proximity of cancer might help to
predict the presence and development of the metastases and overall survival of cancer
patients (Halama et al., 2011; Mlecnik et al., 2016; Van Den Eynde et al., 2017). Moreover,
previous work has shown that T-cell density (detected by staining of the CD3 and CDS8 cell
markers) is an essential parameter for predicting a success of a chemotherapy (Halama et
al,, 2011).

Manual immune cell counting on a microscopic tissue section is tedious, time-
consuming and subjective, and thus unsuitable for analysis of large number of images within
the scope of clinical studies. The utilization of computer-assisted scoring of immune cell
infiltrates, especially in multi-institutional studies and clinical trials, has clear advantages
due to its reproducibility and automation potential (Zu et al., 2005; Sander et al., 2014).

Since every stained cell could look different due to biological variability, it is often
very challenging to judge, which immune cells are sufficiently stained to count them as a
“positive stained cell”. This occurs even if the stain is sufficiently specific and automated
staining systems are used. Therefore, a robust computational solution is necessary for the
analysis of variably stained images to obtain robust decision boundary, which holds for
every image and is not reconsidered in others, for example, images obtained from other
laboratories.

Nowadays, multiple companies provide software tools for histological image analysis.
However, usually tedious and time consuming software parameter tuning on different
images and staining conditions are necessary. Several computational nuclei and cell
segmentation algorithms exist, however they are usually bound to the imaging technique,
tissue and staining type (Veta et al., 2013). Multiple processing steps are necessary to achieve
a good segmentation and these approaches usually avoid regions with severe infiltration of
lymphocytes, necrosis and focusing artifacts (Friedrich et al., 2016). Often the anthracotic
pigment on lung histological slides provides an additional layer of complexity, since
deciphering between round spots of an anthracotic pigment and a cell is not a trivial task.
Due to these issues, manual cell counting methods are often still more precise than these
conventional image analysis methods (Vera er al., 2013).

In this work we utilize a deep learning method, multilayer convolutional neural
networks. The recent advancement in learning algorithms and the availability of the
graphics processing units (GPUs) has lead to the dominance of the deep learning method
in the image analysis and computer vision fields (Krizhevsky, Sutskever & Hinton, 2012;
LeCun, Bengio ¢» Hinton, 2015; Wang et al., 2016; Fakhry, Peng ¢ Ji, 2016). These networks
learn features directly from pixels values in an image. The neural networks mathematically
models a consecutive chain of neurons (nodes) and their synapses (weights) (McCulloch ¢
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Pitts, 1943; Rosenblatt, 1962). Convolutional neural networks are a type of neural networks,
where the weights are shared between the neurons, so that the overall operation of neurons
is similar to convolution.

Recently deep learning approaches were introduced to different subjects in digital
pathology: mitotic cell detection (Cirecan et al., 2013), nuclei detection (Sirinukunwattana
etal., 2016), growth pattern classification (Anthimopoulos et al., 2016), patient
stratification (Bychkov et al., 2018) and immune cell detection (Chen ¢ Chefd’Hotel, 2014).
These inspiring initial approaches, to our knowledge, focused mostly on classifying tiles
within whole-slide images. Recently, several others have applied convolutional neural
networks to whole-slides directly, for example for detection and segmentation of breast
cancer metastases in lymph nodes (Litjens et al., 2016; Turkki et al., 2016; Wang et al., 2016).
A recent work of Turkki et al. (2016) detected immune cell-rich tissue regions based solely
on the haematoxylin and eosin stained cell morphology. Moreover, the study of Chen ¢
Chefd’Hotel (2014) performed stained immune cell detection using deep learning. However,
we believe we add to scientific community with our work by showing that our method
is applicable to whole slide setting, that we are able to use tissue image data without
extensive preprocessing and by applying fast radial symmetry for the positive stained cell
counting to achieve a human-like performance in positive cell counting. To our knowledge
deep learning technique has not yet been applied specifically to immune cell counting in
histological whole slide images.

In this article we present a robust and quantitative immune cell detection system, which
could be used for describing immune system involvement in the cancer micro-environment.
Automatic stained T-cell analysis, which is presented in this paper, is based on the deep
learning on the manually labeled input images. The network was trained and applied on
several immune cell biomarkers without training the network on each biomarker (CD3,
CD8 and CD20) separately.

METHODS

Dataset

To gain an insight into the state of the tumor and its environment a fragment of a tumor
tissue is collected from the patient by a resection. Afterwards the tumor tissue fragments
were immunohistochemically stained, digitalized and analyzed with computerized image
analysis techniques and manually.

We used lung adenocarcinoma tissue stained for markers CD3, CD8 and CD20, which
stain all T-cells, cytotoxic T cells and B-cells respectively. Acquired data in total comprised
39 tissue slides. The tissue slides were provided by the Tissue Bank of the National Center
for Tumor Diseases (Heidelberg, Germany). Staining of the tissue samples was performed
according to standard staining protocol on a Bond Autostainer (Leica) with anti-CD3
(SP7, monoclonal rabbit; Abcam), anti-CD8 (SP16, monoclonal rabbit, Zytomed Systems)
and anti-CD20 (L26, monoclonal mouse; Leica). The tissue samples were counterstained
with hematoxylin. Detection was performed with Bond Polymer Refine Detection kit with
DAB. The tissue glass slides were digitalized with a Nanozoomer 2.0 (Hamamatsu) slide
scanning system at a resolution 0.228 pm/px at 40x magnification.
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Figure 1 Example of the positive (A) and negative (B) patches of a training image set. It is evident that
the positive cells have varying morphology and also show varying staining intensity, from dark to light
brown, whereas the negative class is highly variable, involving erythrocytes, anthracotic pigment, hema-
toxylin, diffuse stain traces and others.

Full-size Gl DOI: 10.7717/peer;j.6335/fig-1

The tissue areas, which contained stained immune cells, were manually annotated
by a biologist (L.A.) using the NDP.view2 software (Hamamatsu). From the positive
annotations we extracted 1,500 x 1,500 px regions, which contained stained immune
cells. In these regions we manually annotated all the centers of the positive stained cells,
from which RGB patches of (46 x 46 px) were extracted centered at the annotated point.
These patches are used as a training data for the positive class (Fig. 1). We also manually
annotated tissue regions without positively stained cells. From these regions we directly
randomly sampled 46 x 46 pixel RGB patches. These patches were used as examples for
the negative class (Fig. 1).

Our training data was collected considering various factors, such as, stain color intensity
among positive cells and cell morphology (see Fig. 1). In our training set’s negative class
we included not only anthracotic pigment, but also various unspecifically stained cells,
morphological tissue irregularities and stain “leaks" (Fig. 1). These patches served as a basis
for two class-based supervised training of the neuronal network.

We split the dataset in two: 27 slides for training and 12 slides for testing. We used 9
slides of each stain (CD3, CD8 and CD20) for training and 4 slides for testing the training
progression. Negative areas were obtained from these slides where no positively stained cells
were present. The patches were augmented by mirroring them horizontally and vertically
and rotating by 40 degrees. In total each class contained about 800 thousand patches.
For training we took 1,224,000 patches from the 27 training slides (as an input for the
convolutional network model) and from these 12 testing slides we took 408,000 patches as
a static validation set to monitor training progression.

Network training

We trained multiple deep convolutional neural network models using open-source libraries
Theano 0.8 and Lasagne 0.2 (Bergstra et al., 2010; Bastien et al., 2012; Dieleman et al.,
2015). Best performing neural network was comprised of six convolutional, two pooling
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Figure 2 The structure of the deep convolutional neural network, which was applied to image classi-
fication. The patches are propagated through the network, in which the consecutive convolutional and
pooling operations are applied, thus the number of nodes is reduced downstream. Two final layers per-
form input classification. Heatmaps depict activations of the filters of respective layer of the network.
Full-size G4l DOI: 10.7717/peerj.6335/fig-2
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layers and two fully connected layers (Fig. 2). The network was trained using stochastic
gradient descent (gradient descent optimization using a few stochastically chosen training
examples) with a learning rate of 0.01. For accelerating gradient descent we used Nesterov
momentum of 0.9. The network training was stopped after one pass over all training
patches as subsequent passes did not improve validation set results.

The performance of the network was tested with respect to classification accuracy of the
network on the patch level and the network performance in cell counting tasks compared
to humans.

Confusion matrix, false positive and false negative rates, sensitivity and specificity were
calculated using 13,817 randomly selected validation patches.

RESULTS

We trained the deep convolutional network on the training set, which was built of patches
belonging to two classes: positive class (T-cells) and negative class (other cells and artifacts)
(Fig. 1). The training was performed with the network structure (Fig. 2) and parameters
mentioned in the Methods section.

To visually access network classification accuracy on whole slide level, we generated
likelihood maps on several whole slide images. The neural network model was applied on a
pixel-by-pixel basis on a whole digital slide, yielding a posterior likelihood of a every pixel
of being a positive cell (Fig. 3), thus generating an immune cell localization likelihood map.

The first trained network recognized false positive objects on the whole slide images,
therefore we expanded our training set with exceptionally challenging cases of negative
class. For this we extracted additional negative patches from the false positive detected
areas. We used both former negative patches and the newly extracted false positive cases
to augment our training set of the deep neuronal network. After subsequent training, the
model obtained a validation set accuracy of 98.6% on the augmented patch level. The
sensitivity in the discrimination of T-cells on the patch level was 98.8%, whereas specificity
98.7%. False negative detection rate is 1.19% and 1.30% for false positive detection (Fig. 4).
For examples of false positive and false negative cases, see Fig. S1.

We also quantitatively accessed our model’s output with respect to human performance.
For this we created an independent set of validation images. We randomly selected 64
large square images from the 12 testing/validation whole slide images. The area of single
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Figure 3 Schematic representation of the immune cell detection map (green dots) on a whole slide
image, which is generated by overlaying original digital slide image with a posterior likelihood map
(heatmap with blue background).

Full-size & DOI: 10.7717/peer;j.6335/fig-3
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Figure 4 The confusion matrix summarizes true positive (upper left), true negative (lower right), false
positive (upper right) and false negative (lower left) cases of detection on a patch level. Numbers in
squares represent number of cases in percent normalized to total number of patches in a labeled (actual)
class. In total, 13817 validation patches contributed for calculation of the detection statistics.

Full-size Gl DOL: 10.7717/peerj.6335/fig-4

randomly selected image is 0.2 mm?, corresponding to 2,000 x 2,000 px. In total, testing
images summed up to the tissue area of 13.6 mm?.

We created the likelihood map for every validation image by applying the trained neural
network on the validation image on a pixel-by-pixel basis. On the likelihood map we
detected positive nuclei centers using a fast radial symmetry transform (FRST) (Loy &
Zelinsky, 2003; Veta et al., 2013). FRST is a fast gradient-based feature detection method,
which identifies points of high radial symmetry. We set parameters for FRST as follows: a
(radial strictness) to 0.5, f (a gradient threshold) to 0.25, minimum and maximum radius
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Figure 5 Presentation of the deep learning method’s performance on the validation slides. In
(A) a testing image randomly selected from a whole-slide image stained for CD3* cells (dimensions:
2,000 x 2,000 px; Size 0.2 mm?). Validation was performed on 64 such images. A frame is maginified in
(B) on the right; (C) represents the likelihood map created with the trained network, which is overlayed
with the image in (B). Cells, which are recognized by the model, are marked red. Anthracotic pigment
(black), a common artifact, is not detected; (D) shows detected cells (magenta dots) after application of
the fast radial symmetry transform algorithm on the likelihood map.

Full-size Gl DOI: 10.7717/peerj.6335/fig-5

of nuclei was set to 0 and 4 wm respectively, the threshold for the likelihood map was set to
0.3. Subsequent thresholding of the FRST resulted in a set of connected components that
were regarded as individual positive nuclei. FRST helped to remove false positive detected
objects from the final result and obtain the coordinates of the detected immune cells.

As shown in the Fig. 5, the randomly selected testing set also includes images where
anthracotic pigment and staining artifacts are present, and also stained immune cells are of
varying staining intensity, size and shape. Fig. 52 contains images regions from validation
set, where different staining artifacts and how our method deals with them are shown.

However, Fig. 5C clearly shows, through the likelihood maps, that the network manages
to ignore this anthracotic pigment and to precisely detect immunohistologically stained
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immune cells in the lung adenocarcinoma tissue samples. Figure 5D presents the resulting
overlay of the histological image and detected objects after the fast radial symmetry method.

The count of the immune cells obtained by the deep neural network was compared to
the number of manually counted cells by human observers. The human “gold standard”
was obtained by four independent human observers. Four observers marked each CD3,
CD8, and CD20 positive stained immune cell in these 64 images. The manual counting
results in comparison to the model performance are summarized in Fig. 6.

The relative count differences are obtained by subtracting the counted value from the
mean over all observations and the model and normalizing it to the number of mean
counted cells per image. The distances of the relative difference to the mean measurement
line show how far the measurement is from the consensus measurement.

We show that the variation of manually counted cells among observers is considerable
(Figs. 6B and 6C). The overall agreement of the cell counts varies among the observers,
some being close to the overall mean, but some (e.g., Observers B and D) are not; e.g., the
interquartile range (IQR) of the Observer B lies within [—0.120, 0.006] and of Observer D
within [—0.001, 0.164] (Fig. 6C).

In the Fig. 6C and 6D it is also evident, that the model is performing within the variation
of the manual observer. The box-and-whisker plot in the Fig. 6D shows the relative
difference to the mean across all 64 testing images for each observer and the model. The
IQROpservers = [—0.097, 0.106] is strongly overlapping with the automatically detected cell
counts IQRpodel = [—0.066, 0.139] (Fig. 6D). The mean of the automatic method is close
to the mean over all observers and model’s cell counts (Averagepodel = 0.033) (Fig. 6C).

We can observe that the relative differences of the model to the mean is higher, if the
number of cells in an image is small (Fig. 6B). We also observe higher variability in observer
cell counts in cases where stained immune cell clusters are present.

Our method is not limited to small images only. We are able to obtain similar results on
the whole-slide level (Fig. 7), providing reliable comparison between patient tissue samples.
Here we examined CD3 biomarker stained immune cells of a lung resection of a patient,
which was not included either in the training set or testing set. Our method recognizes
vaguely stained cells and identifies anthracotic pigment as an artifact (Fig. 7F).

DISCUSSION

Here we presented a deep learning-based method for automated and robust detection
of immune cell biomarkers in immunohistochemically stained tissue of human lung
adenocarcinoma. The presented method enables comparison of multiple tissue sections
with respect to absolute or relative counts of infiltrated leukocytes in a whole-slide setting.

The power of the method lies within its robustness, applicability to different tissue
samples and cell types from different biomarker stains. This reduces the need to optimize the
system for each different type of stain. Moreover, our method performed well with respect
to tissue artifacts, such as, anthracotic pigment, cell staining variations, morphological
irregularities of the tissue and unspecific staining.

We are aware of inspiring previous studies which use deep learning for tissue profiling in
digital pathology. However, our study differs from the other studies, which are mentioned

Aprupe et al. (2019), PeerJ, DOI 10.7717/peerj.6335 8/16


https://peerj.com
http://dx.doi.org/10.7717/peerj.6335

Peer

A Positive cell count over 64 images B 08 Relative difference to the mean of 64 images
500 F— - - - : . T T - - B - :
e o observer A S 06 ooo manual counts
" o o observer B g ' o« ° eee model
3“0 o o observerC o 04} ° o
© b :C_, oce © © °
4] o o observer D o ° o o,
= S 0.2p °cP 8 o 8% % © Cb
= 300f| ® o model v Og °"9 d’%;- o °o -o%wgaa
o c ok _._ qgo o
h g o0 +§ °§ . oﬁSgo aayﬁ%%
—
2 200 & 02| .°% . ®o oo ° o e
g o °°°° 'o o oog °°° o
L L L] o ©
g 2 0.4 ° .
= 100 o °
o —06F ° °
o
—0.8L— . . . . . .
0 10 20 30 40 50 60 70
Image ID Image ID
C 0.6 Relative counting differences D 06 Relative counting differences
. - - - T . - T
] * s *
9} — o —
£ 0.4 - | £ 0.4} st |
—_ ! — [ [} Ed !
_qc, 1 | ! | S : [
o o2f ! + ! ! [ o 02} & |
8 ! - | B~ S
3 ! g Fi M
2 oo} - - - - - - - - 2 oo0fF----- N e |
o i g
o ! 1 g b 1
£ o2 L ! o [ E _o2f L2 )
hel 1 | | | hel : |
g - B ! : . 2 X 3
E -0.4 N , . E -0.4 s .
+ (]
< : * 4 +
—0.6 - . i —~0.6 i + N
o e
el e e e 0% e o
0‘092 o g Obge‘ e W Ov"e‘ W

Figure 6 Comparison of the model performance to four independent human observers. (A) shows

number of positive cells detected by model (red) or counted by observers in the validation images. (B)

shows the relative differences of the model to the mean of the observers’ manual counts. The data in (B)

is summarized in boxplots in (C) and (D). In (A) and (B) the x-axis represents images, which are sorted

in order from smallest to largest number of mean counted cells. The dashed line in (B), (C) and (D) rep-

resents the mean counted cells over all images and all observers; the red squares in (C) and (D) show the

mean. White circles in (B) represent counts of a person on a respective image, whereas the filled red circles

represent the measurements of a model. In (D) red dots represent counts of cells in validation images.
Full-size Gl DOL: 10.7717/peerj.6335/fig-6

in the introduction, since we used one classifier for different cell types (T-cells and
B-cells) and we focused on the detection and counting of single cells. We also performed
immunostaining, which was not considered by some of the previous works. Also, the
subject of our study, the lung adenocarcinoma tissue, exhibits challenges for classification
algorithm, especially because of the presence of the anthracotic pigment. Further strengths
of our work is the method’s applicability to the whole slide scale and the fact that no
additional training for different stain and image preprocessing is required.

We were able to train a single network for CD3, CD8 and CD20 without re-optimizing
for each stain. Furthermore, our network was able to deal with very challenging tissue
areas, such as an anthracotic pigment. Namely, the trained deep learning network did not
recognize anthracotic pigment particles as a T-cells. Therefore, a single neural network
model can be applied to a number of images, which may include anthracotic pigment,
scanning and staining artifacts, large stained cell clusters and tissue heterogeneity, without
extensive adaption of the parameters for specific images.
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Figure 7 Our cell detection method applied to a whole slide image of a tissue stained with an anti-
CD3 antibody. (A) A whole-slide image (WSI) of a lung adenocarcinoma sample. Tissue area is about 301
mm?. (B) detected T-cells in (A) are marked with magenta squares. (C) A fragment of a tissue from (A)
with stained T-cells (CD3 marker, brown). (D) Overlay of (C) with likelihood map (green) and final de-
tected cells (magenta squares). (E) A fragment of a tissue from (A) with an anthracotic pigment (black).
(F) Overlay of (E) with likelihood map (green) and final detected cells (magenta squares).

Full-size ] DOI: 10.7717/peerj.6335/fig-7
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Our approach was validated on a randomly selected and independent testing set, which
was manually evaluated by four independent observers. The cell counts estimated by our
method showed concordance with the cell counts obtained manually, as evidenced by the
low difference with the relative mean of 0.033 units distance from the overall mean on
average. Thus our method is able to reproduce human-like performance in cell counting.

However, the limitations of this work include the fact that all the data is obtained from
one type of scanner also staining was performed in a single laboratory, thus our setting
does not represent a multi-center study. Another limitation is the inaccurate network’s
performance on the clustered cell populations. Leukocyte detection in highly infiltrated
regions is a commonly reported issue in digital pathology (Turkki et al., 2016). We observed
a trade-off between specificity in detecting spread cells and sensitivity on clustered cell
populations. If we modify FRST in favor of clustered cells, algorithm is sensitive on clustered
cells but not specific enough in other sites of the tissue, where cells are not clustered as
densely. To overcome this problem, our approach could be combined with methods which
specifically deal with clustered cell populations (Halama et al., 2009).

Our automatic method enables quantification of immune cells in different tissue regions,
such as, the tumor and invasive margin, which might provide a precious information for
oncological treatment decisions. In the future the registration of multiple whole slide
images could open a new staining and analyzing paradigm, which could make use of
consecutively stained tissue samples, e.g., colocalizing different stains on a cell level, thus
finding cells, which are positive for multiple markers in a cancer tissue.

Our method is applicable to other tumor micro-environmental entities, e.g.,
macrophages, fibroblasts, which can be specifically stained by means of immunological
stains. This approach allows to combine multiple models in a “tumor micro-environment
map”’, where one could overlay a “cancer detection map” with ”a detection map” of cell
population expressing various markers.

CONCLUSIONS

The immune cell counting technique presented in this work can be applied for developing
a robust and multifaceted description of the cancer micro-environment in research
applications as well as in the clinical practice. This approach could help pathologists to
quantify immune cells on a whole slide level more precisely and time-effectively and step
towards novel stratified immune therapies in personalized oncology.
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