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Bacterial small (sRNAs) are involved in the control of several cellular processes. Hundreds

of putative sRNAs have been identified in many bacterial species through RNA sequencing.

The existence of putative sRNAs is usually validated by Northern blot analysis. However,

the large amount of novel putative sRNAs reported in the literature makes it impractical to

validate each of them in the wet lab. In this work, we applied five machine learning

approaches to construct twenty models to discriminate bona fide sRNAs from random

genomic sequences in five bacterial species. Sequences were represented using seven

features including free energy of their predicted secondary structure, their distances to the

closest predicted promoter site and Rho-independent terminator, and their distance to the

closest open reading frames (ORFs). To automatically calculate these features, we

developed an sRNA Characterization Pipeline (sRNACharP). All seven features used in the

classification task contributed positively to the performance of the predictive models. The

best performing model obtained a median precision of 100% at 10% recall and of 64% at

40% recall across all five bacterial species, and it outperformed or was comparable to

previous approaches on two benchmark datasets. Our results suggest that even though

there is limited sRNA sequence conservation across different bacterial species, there are

intrinsic features in the genomic context of sRNAs that are conserved across taxa. We

show that these features are utilized by machine learning approaches to learn a species-

independent model to prioritize bona fide bacterial sRNAs.
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ABSTRACT11

Bacterial small (sRNAs) are involved in the control of several cellular processes. Hundreds of putative

sRNAs have been identified in many bacterial species through RNA sequencing. The existence of putative

sRNAs is usually validated by Northern blot analysis. However, the large amount of novel putative sRNAs

reported in the literature makes it impractical to validate each of them in the wet lab. In this work, we

applied five machine learning approaches to construct twenty models to discriminate bona fide sRNAs

from random genomic sequences in five bacterial species. Sequences were represented using seven

features including free energy of their predicted secondary structure, their distances to the closest

predicted promoter site and Rho-independent terminator, and their distance to the closest open reading

frames (ORFs). To automatically calculate these features, we developed an sRNA Characterization

Pipeline (sRNACharP). All seven features used in the classification task contributed positively to the

performance of the predictive models. The best performing model obtained a median precision of 100%

at 10% recall and of 64% at 40% recall across all five bacterial species, and it outperformed or was

comparable to previous approaches on two benchmark datasets. Our results suggest that even though

there is limited sRNA sequence conservation across different bacterial species, there are intrinsic features

in the genomic context of sRNAs that are conserved across taxa. We show that these features are utilized

by machine learning approaches to learn a species-independent model to prioritize bona fide bacterial

sRNAs.
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INTRODUCTION29

Bacterial small RNAs (sRNAs) are ubiquitous regulators of gene expression, mostly acting by antisense30

mechanisms on multiple target mRNAs and, as a result of this, they are involved in the control of many31

processes such as adaptive responses, stress responses, virulence, and pathogenicity (Storz et al., 2011;32

Michaux et al., 2014). Numerous (hundreds) putative sRNAs have been identified in many bacterial33

species through RNA sequencing (RNA-seq) (e.g., Grüll et al. (2017); Thomason et al. (2015); Zeng34

and Sundin (2014); McClure et al. (2014)). The existence of putative sRNAs is usually validated by35

Northern blot analysis. However, the large amount of novel putative sRNAs reported in the literature36

makes it impractical to validate in the wet lab each of them. To optimize resources, one would like to first37

investigate those putative sRNAs which are more likely to be bona fide sRNAs. To do that, we need to38

computationally prioritize sRNAs based on their likelihood of being bona fide sRNAs. Computational39

prediction of sRNAs in genomic sequences remains a challenging problem, even though tools to tackle this40

problem have been around since early 2000s (Lu et al., 2011; Backofen and Hess, 2010). Available tools41

typically use comparative genomics, primary sequence and secondary structure features to predict whether42

a genomic sequence corresponds to an sRNA, with the comparative genomics-based prediction of sRNAs43

being the standard method (Lu et al., 2011; Backofen and Hess, 2010). As there are many species-specific44

sRNAs, and functionally equivalent sRNAs show very low sequence conservation (Wagner and Romby,45

2015), a comparative genomics-based model for sRNA prediction (as used by most tools) is not suitable46

for the majority of sRNAs and many sRNAs are excluded from these predictions. Additionally, as very47
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limited overlap between sRNAs detected by RNA-seq and sRNAs predicted by bioinformatics tools has48

been observed in several studies (Soutourina et al., 2013; Wilms et al., 2012; Vockenhuber et al., 2011),49

available tools are not suitable for quantifying the probability of a putative sRNA detected from RNA-seq50

data being indeed a genuine sRNA. A machine learning-based approach using genomic context features51

for sRNA prioritization may be able to overcome the issues caused by the limited sequence conservation52

of most sRNAs, and to detect intrinsic features of sRNA sequences common to a number of bacterial53

species.54

The main goal of this study was to develop a bioinformatics tool (applicable to a wide range of55

bacterial species) to allow microbiologists to prioritize sRNAs detected from RNA-seq data based on56

their probability of being bona fide sRNAs. To do this, we comparatively assessed the performance57

of five machine learning approaches for quantifying the probability of a genomic sequence encoding a58

bona fide sRNA. The machine learning approaches applied were: logistic regression (LR), multilayer59

perceptron (MP), random forest (RF), adaptive boosting (AB) and gradient boosting (GB). We used data60

from five bacterial species including representatives from the phyla Firmicutes (Streptococcus pyogenes),61

Actinobacteria (Mycobacterium tuberculosis), and Proteobacteria (Escherichia coli, Salmonella enterica,62

and Rhodobacter capsulatus). To assess the applicability of the methods to a wide range of bacteria, we63

evaluated the methods in bacterial species not included in the training data. As input to the machine64

learning approaches, we provided a vector of seven features per sequence. These features are: the free65

energy of the predicted secondary structure, distance to their closest predicted promoter site, distance to66

their closest predicted Rho-independent terminator, distances to their two closest open reading frames67

(ORFs), and whether or not the sRNA is transcribed on the same strand as their two closest ORFs. These68

features were selected under the assumption that genomic context and secondary structure of sRNAs69

are better preserved across diverse bacteria than sequence characteristics such as frequencies of mono-70

nucleotides, di-nucleotides, and tri-nucleotides. We tested our best performing model in a multi-species71

dataset (Lu et al., 2011) and the performance achieved by our method (sRNARanking) demonstrated that72

it is possible to create a highly accurate and general (i.e., species-independent) model for prioritizing bona73

fide bacterial sRNAs using genomic context features.74

Obtaining the selected sRNA features requires the use of numerous different bioinformatics tools75

which may be challenging for the average user. To facilitate sRNA characterization, we have developed76

sRNACharP (sRNA Characterization Pipeline), a pipeline to automatically compute the seven fea-77

tures used by sRNARanking (available at https://github.com/BioinformaticsLabAtMUN/78

sRNACharP). To enable other researchers to use sRNARanking, we made an R script available con-79

taining the model (https://github.com/BioinformaticsLabAtMUN/sRNARanking). We80

expect that together these two tools (sRNACharP and sRNARanking) will facilitate and accelerate the81

characterization and prioritization of putative sRNAs helping researchers in the field of RNA-based82

regulation in bacteria to focus in the putative sRNAs most likely to be bona fide sRNAs.83

METHODS84

Datasets85

Published positive instances of bona fide sRNAs were collected for R. capsulatus (Grüll et al., 2017),86

M. tuberculosis (Miotto et al., 2012), S. pyogenes (Le Rhun et al., 2016), and S. enterica (Kröger et al.,87

2012). M. tuberculosis, S. pyogenes and S. enterica positive instances have all been verified by Northern88

blot analysis; while, R. capsulatus positive instances included, in addition to four experimentally verified89

sRNAs, 41 homologous sRNAs (i.e., sRNAs that have high sequence similarity to known sRNAs in other90

bacterial species or were found to be conserved in the genome of at least two other bacterial species).91

Additionally, we collected E. coli sRNAs, supported by literature with experimental evidence from92

RegulonDB (release 9.3) (Gama-Castro et al., 2016).93

To build our models we randomly selected 80% of the bona fide sRNAs of R. capsulatus, S. pyogenes94

and S. enterica. To estimate false positive predictions and build our models, for each bacterial species95

we created a set of negative instances by generating random genomic sequences that do not overlap with96

the positives instances for the particular bacterium. Basically, negative instances are sets of randomly97

selected genomic regions where there is no experimental evidence for the presence of sRNAs. Negative98

instances match the length and the strand of the positive instances. To generate the negative instances, we99

used BEDTools (Quinlan and Hall, 2010) (code available in Additional File 1). We randomly selected n100

negative instances for training, where n is three times the number of positive instances in the corresponding101
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training set. In previous similar studies, n has been set to be one (Arnedo et al., 2014) or two (Barman102

et al., 2017). However, we believe that a more unbalanced dataset for training is closer to a real scenario,103

and decided to increase the value of n to three. All remaining negative instances were used for validating104

the models.105

An alternative approach to generate negative instances is to take an input sequence and randomly106

shuffle the order of its bases as done by Arnedo et al. (2014) and Barman et al. (2017). However, as we use107

genomic context features for representing the genomic sequences, shuffling the sequences would preserve108

their genomic context properties and therefore be ineffective. Furthermore, as mentioned by Arnedo et al.109

(2014) and Lu et al. (2011), the use of non-annotated genomic sequences as negative instances gives a110

more conservative estimate of the precision of the models.111

The number of positive and negative instances per bacterium used for training and validating the112

machine learning models is shown in Table 1. Training and validation data are provided in Additional113

File 1.114

Table 1. The number of positive (bona-fide sRNAs) and negative (random genomic sequences) instances

in the datasets used for training and validating the classification models. The NCBI accession number of

the genome sequence used is indicated in the first column between brackets. The “Combined” data are

made by putting together the training data of S. enterica, S. pyogenes and R. capsulatus.

Training Validation

Positive

Instances

Negative

Instances

Positive

Instances

Negative

Instances

R. capsulatus (NC 014034.1) 36 108 9 342

S. pyogenes (NC 002737.2) 37 110 9 349

S. enterica (NC 016810.1) 90 271 23 855

Combined 163 489 N/A N/A

E. coli (NC 000913.3) N/A N/A 125 1245

M. tuberculosis (NC 000962.3) N/A N/A 19 190

sRNA Characterization115

Each sRNA is represented as a vector of seven numerical features or attributes, as in Grüll et al. (2017).116

These attributes are:117

1. free energy of the sRNA predicted secondary structure,118

2. distance to the closest -10 promoter site predicted in the genomic region starting 150 nts upstream119

of the start of the sRNA sequence to the end of the sRNA sequence (if no promoter site is predicted120

in that region a value of -1000 is used),121

3. distance to the closest predicted Rho-independent terminator in the range of [0,1000] nts (if no122

terminator is predicted within this distance range a value of 1000 is used),123

4. distance to the closest left ORF, which is in the range of (-∞, 0] nts,124

5. a Boolean value (0 or 1) indicating whether the sRNA is transcribed on the same strand as its left125

ORF,126

6. distance to the closest right ORF, which is in the range of [0, +∞), and127

7. a Boolean value indicating whether the sRNA is transcribed on the same strand as its right ORF.128

A “left” ORF is an annotated ORF located at the 5’ end of a genomic sequence on the forward strand or129

located at the 3’ end of a genomic sequence on the reverse strand (Fig.1). A “right” ORF is an annotated130

ORF located at the 3’ end of a genomic sequence on the forward strand or located at the 5’ end of a131

genomic sequence on the reverse strand.132

To automatically calculate these seven features for a set of sRNAs from a given bacterial species, we133

developed sRNACharP. As input, sRNACharP requires only a BED file (UCSC website, 2018) with the134
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Figure 1. Left and right ORFs. Left ORFs are located at the 5’ end of an sRNA on the forward strand or

at the 3’ end of an sRNA on the reverse strand. Right ORFs are located at the 3’ end of an sRNA on the

forward strand or at the 5’ end of an sRNA on the reverse strand.

genomic coordinates of the sRNAs, a FASTA file with the corresponding genome sequence, and a BED file135

with the genomic coordinates of the annotated protein coding genes (ORFs). sRNACharP is implemented136

in Nextflow (Di Tommaso et al., 2017) and available at github.com/BioinformaticsLabAtMUN/137

sRNACharP. To ensure reproducible results and reduce installation requirements to the minimum,138

sRNACharP is distributed with a Docker container (Di Tommaso et al., 2015). sRNACharP uses the139

following bioinformatics tools (the versions listed within brackets are the ones installed in the Docker140

container). CentroidFold (Hamada et al., 2009) (version 0.0.15) with parameters -e ‘‘CONTRAfold’’141

and -g 4 is used to predict the secondary structure of the sequences given. BEDtools’ slopBed and142

fastaFromBed (Quinlan and Hall, 2010) (version 2.26) are used to extract the sRNA sequences, and the143

sequences including 150 nts upstream of the 5’ end of the sRNAs in FASTA format. Promoter sites144

on the sequences including 150 nts upstream of the 5’ end of the sRNAs are predicted using BPROM145

(Solovyev and Salamov, 2011) with default values. Rho-independent terminators are predicted using146

TransTermHP (Kingsford et al., 2007) (version 2.09) with default values. Alternatively, sRNACharP147

can take as input, files from the TransTermHP website (http://transterm.cbcb.umd.edu/148

cgi-bin/transterm/predictions.pl). For this study, we downloaded the predicted Rho-149

independent terminators for S. pyogenes and M. tuberculosis from the TransTermHP website on March150

2017. The distances to the closest terminator and the closest ORFs are obtained using BEDtools’ closest.151

Finally, R (version 3.4.4) is used to generate the features table.152

Machine Learning Approaches153

We assessed the performance of logistic regression (Cox, 1958; Walker and Duncan, 1967), multilayer154

perceptron (Bishop, 1995; Fahlman, 1988), random forest (Breiman, 2001) and boosting models (Schapire,155

1990) for the task of quantifying the probability of a genomic sequence encoding a bona fide sRNA.156

Random forests and boosting classifiers are both examples of ensemble learning algorithms (Dietterich,157

2000). The core of the boosting methods lies in iteratively combining outputs of so-called “weak learners”,158

converging to an overall strong learner. Logistic regression (LR) was used in Grüll et al. (2017) and159

showed to outperform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) for160

this task. We decided to use LR as a baseline to compare the performance of the other classifiers. We161

chose to compare the other four machine learning approaches (classifiers) because they have shown to162

perform well on small datasets and they are generally robust to noise (Liaw and Wiener, 2002; Kerlirzin163

and Vallet, 1993; Ridgeway, 1999).164

All the machine learning classification approaches were implemented in the Python programming165

language version 3.6. Scikit-learn (version 0.19.1) (Pedregosa et al., 2011) was used for the implemen-166

tation of all the classifiers. For each classifier, the “best” parameters were obtained by optimizing the167

average area under the ROC curve (AUC) when performing leave-one-out cross-validation (LOO CV) on168

the training data (Fig.2).169

Logistic Regression170

Logistic Regression (LR) learns the parameters β of the logistic function,171

p(X) = eβ0+β1X1+...+βnXn

1+eβ0+β1X1+...+βnXn
,172

where p(X) is the probability of an sRNA with feature vector X of being a bona fide sRNA, e is the base173

of the natural logarithm, n is the number of features, and Xi is the value of feature i. To fit the model,174

usually the maximum likelihood approach is used. We used the “balanced” mode that automatically adjust175
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Figure 2. Flowchart depicting training and validation methodology. Training and validation datasets are

labelled with the corresponding bacterial species: Ec = Escherichia coli, Mt = Mycobacterium

tuberculosis, Se = Salmonella enterica, Sp = Streptococcus pyogenes, and Rc = Rhodobacter capsulatus.

class weights inversely proportional to class frequencies in the input data. All other parameters were left176

to their default values.177

Multilayer Perceptron178

Multilayer Perceptrons (MPs) are fully connected feed-forward neural networks, with one or more layers179

of hidden nodes between the input and output nodes (Bishop, 1995; Fahlman, 1988). Except for the input180

node(s), each node is a neurone with a nonlinear activation function. Each neurone combines weighted181

inputs by computing their sum to determine its output based on a certain threshold value and the activation182

function. The output y of the system can be described as183

y = f (∑N
i=0 wixi),184

where x1, ...,xN represent the input signals, w1, ...,wN are the synaptic weights and f is the activation185

function. MPs learn through an iterative process of changing connection weights after processing each186

part of the data. The most common learning algorithm used for this process is backpropagation (Fahlman,187

1988).188

The activation function that lead to the largest AUCs on the training data was the logistic sigmoid189

function. We used the standard backpropagation algorithm with an initial random generation of weights190

([-1,1]). As using multiple hidden layers decreased the performance, we decided to use only one hidden191

layer. The number of hidden nodes explored was in the range from 1 (in that case the model behaves the192

same as logistic regression) to 1000 with steps of 50. The optimal number of hidden nodes was found to193

be 400. Learning rates ranging from 0.1 to 1.0 were explored in steps of 0.1. The chosen learning rate194

was a constant learning rate of 0.9, because an adaptive learning rate was observed to decrease AUCs.195

The L2 penalty was set to the default value of 0.0001.196
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Random Forest197

A random forest (RF) is constructed by combining multiple decision trees during training (Breiman, 2001).198

All decision trees in the random forest contribute to the determination of the final output class. The output199

class is determined by averaging the probabilities produced by the individual trees. The range of number200

of estimators (decision trees) explored was from 1 to 1000 in steps of 100. The optimal setting was found201

to be 400. The largest AUC results were obtained when the nodes are expanded until almost all leaves202

are pure. We tested our model with the maximum depth of the tree ranging from 15 to 25 and found that203

the maximum AUC was obtained at a depth of 20. All features were used in every tree. To measure the204

quality of a split we used the default Gini index (Strobl et al., 2007) and the maximum number of features205

to consider when looking for the best split in a node was set to 2, as calculated by the function tuneRF206

available in the R package randomForest (version 4.6-12).207

Adaptive Boosting208

Adaptive Boosting or AdaBoost (AB) was developed for binary classification problems and tweaks209

“weak learners” by focusing on the instances that were wrongly classified by previous classifiers (Freund210

and Schapire, 1997). Therefore the training error decreases over the iterations. The additive model of211

AdaBoost can be formulated as following. The output of each weak learner is described by:212

LK(x) = ∑
K
k=1 lk(x).213

where K is the total number of iterations and lk(x) is the output function of the weak learner when taking214

the instance x as input. To minimize the training error Ek for each iteration k, AdaBoost uses:215

Ek = ∑
N
i=1 E(Lk−1(xi)+αkh(xi)),216

where h(xi) is the predicted output of a weak learner for every instance xi in the training set, αk is the217

assigned coefficient that minimizes the training error, and N is the total number of instances in the training218

set.219

We used AdaBoost on a random forest (RF) classifier that performed just better than chance on the220

training data. The optimal parameters of this RF were found to be 100 decision trees (estimators) and a221

maximum depth of 1. This means all of the trees were decision stumps. The number of estimators was222

established at 100 after exploring a range from 1 to 1000 estimators with steps of 50. A maximum depth223

of 1 was chosen because AdaBoost is known to perform better with decision stumps (Ridgeway, 1999).224

Gradient Boosting225

In gradient boosting (GB) an initial poor fit on the data is improved by fitting base-learners (e.g. decision226

trees) to the negative gradient of a specified loss function (Friedman, 2001). Gradient boosting can be227

described by:228

f̂ = argmin f Ex,y[ρ(Y, f (X)],229

where X = {x1, ...,xn} and Y = {y1, ...,yn}, forming the training set {(x1,y1), ...,(xn,yn)}. f̂ minimizes230

expectation E of the loss function ρ over all prediction functions f that take X as input.231

We used gradient boosting on 50 estimators (decision trees) with a maximum depth of 15. We232

established the number of estimators by exploring a range of 1 to 1000 estimators with steps of 50. We233

tested our model with the same maximum depth of the tree as for the decision tree classifiers. We then234

gradually decreased the maximum depth taking steps of 1, arriving at 15 as the best setting. The minimum235

number of samples at a leaf node was set to 5, as this was the number found to maximize AUC. Stochastic236

gradient boosting was performed with a subsampling of 0.9.237

Model Building238

As shown in Fig.2 we randomly selected 80% of the positive instances for training, while setting aside the239

other 20% for validating the models. The validation sets were held-out sets used to obtain an unbiased240

estimate of the models performance and were not used to build or fine-tune the models. As the classifiers241

used construct models stochastically, five training runs were carried out for each of the 20 models (five242

machine learning approaches times four training sets) to estimate the stability of the models (script243

available in Additional File 1).244
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Performance Assessment245

Model performance was assessed in terms of the Area Under the Precision-Recall Curve (AUPRC). There246

are many classification metrics and none of them can reflect all the strengths and weakness of a classi-247

fier (Lever et al., 2016). We have chosen AUPRC as the PRC shows precision values for corresponding248

sensitivity (recall) values and is considered more informative than the ROC when evaluating performance249

on unbalanced datasets (Saito and Rehmsmeier, 2015). Additionally, precision is a more relevant measure250

to many end users, since it represents the proportion of validation experiments for predictions that would251

prove successful. We used in-house Python and R scripts to calculate the performance metrics and252

generate plots (code is provided in Additional File 1). In Python we used the functions available in253

Scikit-learn. In R, we used the packages ROCR (Sing et al., 2005) and PRROC (Grau et al., 2015).254

Models were evaluated on five validation sets. Each validation set corresponds to data from one255

bacterial species. Data of R. capsulatus, S. pyogenes and S. enterica were also used for training, while E.256

coli and M. tuberculosis data were used exclusively for validating the models (Table 1). The species for257

validation were chosen to be one species of the same taxa as and one of a different taxa from the species258

used for training. Median, mean and standard deviation of the performance measurements across the five259

training runs were calculated.260

Additionally, to highlight the difference in performance between the models, we used a “winner-261

gets-all” comparison by ranking the methods based on their mean AUPRC for each validation set. The262

model(s) with the highest mean AUPRC for a specific validation set were ranked 1 for that validation263

set. Ties were all given the same rank. At the end of the ranking process, each model has five ranks264

corresponding to one rank per validation set.265

Analysis of variance (ANOVA) was performed to explore the effects of classifier and training data266

on the AUPRC values, and the Tukey’s Honest Significant Difference (HSD) (Tukey, 1949) method was267

used to asses the significance on the differences between the mean AUPRC of classifiers, training data,268

and models. Additionally, statistical significance of the difference in performance between models was269

estimated using the Friedman test which is a non-parametric test recommended for comparison of more270

than two classifiers over multiple data sets (Demšar, 2006). To find out which models differ in terms of271

performance, we used the Nemenyi post-hoc test (Demšar, 2006), the Quade post-hoc test (Garcı́a et al.,272

2010) and the Conover post-hoc test (Conover, 1999). We used several post-hoc tests as it is recommended273

to use several comparison tests (Garcı́a et al., 2010). All statistical analyses were carried out in R using274

the packages PMCMR (Pohlert, 2014) and scmamp (Calvo and Santafe, 2016).275

Attribute Importance276

To gain insight on how important each attribute is in inferring whether or not a sequence encodes a bona277

fide sRNA, we used the function varImp available in the R package randomForest (version 4.6-12). To278

use this function, we first created a RF classifier using the randomForest function with ntree set279

to 400 and mtry set to 2. These were the optimal parameters found when tuning the RF classifier (see280

above). We generated the RF model using the combined training data (Table 1). Attribute importance was281

measured in terms of the mean decrease in accuracy caused by an attribute during the out of bag error282

calculation phase of the RF algorithm (Breiman, 2001). The more the accuracy of the RF model decreases283

due to the exclusion (or permutation) of a single attribute, the more important that attribute is deemed for284

classifying the data.285

Assessing the performance of the best model on benchmark datasets286

We compared the performance of our best performing model with that of other four existing approaches287

as estimated previously by Lu et al. (2011) in a multi-species dataset, and as estimated by Arnedo et al.288

(2014) and Barman et al. (2017) in a Salmonella enterica serovar Typhimurium LT2 (SLT2) dataset.289

We obtained a table with start position, end position, strand and genome of sRNAs in the multi-species290

dataset from Lu et al. (2011)’s Supplementary Table S1. We found that 34 sRNAs in Lu et al’s dataset291

were duplicated entries. After removing the duplicated entries we used 754 sRNAs of fourteen different292

bacterial species (Table 2). We obtained a table with start position, end position, and name of 182 sRNAs293

in the SLT2 dataset from Barman et al. (2017)’s Supplementary Table S6. We noticed that 106 out of the294

182 sRNAs in the SLT2 dataset were also contained in Lu et al’s dataset, and thus the benchmark datasets295

are not completely independent. We retrieved the complete genome sequence and genome annotation296

of the corresponding bacterium from NCBI. We then extracted the corresponding sRNAs sequences297

using BEDtools, and obtained the feature vectors using our sRNACharP pipeline. We generated the298
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negative instances for each dataset as described above. For Lu et al’s dataset, we generated three negative299

instances for each positive instance; however, the ratio of positive to negative instances used by Lu et300

al is not reported in their article and thus the ratio they used may differ from this. For the SLT2 dataset301

we generated ten negative instances for each positive instance to match the ratio of positive to negative302

instances used by Barman et al. (2017).303

Table 2. Number of positive instances per bacterial species in Lu et al’s dataset used in this study. The

NCBI accession number of the genome sequence used is indicated in the first column between brackets.

Bacterium Positive Instances

Burkholderia cenocepacia AU 1054 (NC 008060, NC 008061.1, NC 008062.1) 18

Bacillus subtilis subsp. subtilis str. 168 (NC 000964.3) 12

Caulobacter crescentus CB15 (NC 002696.2) 7

Chlamydia trachomatis L2b/UCH-1/proctitis (NC 010280.2) 23

Escherichia coli K12 MG1655 (NC 000913.3) 79

Helicobacter pylori 26695 (NC 000915.1) 50

Listeria monocytogenes EGD-e (NC 003210.1) 56

Pseudomonas aeruginosa PA01 (NC 002516.2) 17

Staphylococcus aureus subsp. aureus N315 (NC 002745.2) 9

Streptomyces coelicolor A3(2) (NC 003888.3) 3

Salmonella enterica subsp. enterica serovar Typhimurium str. LT2 (NC 003197.2) 115

Shewanella oneidensis MR-1 (NC 004347.2) 9

Vibrio cholerae O1 biovar El Tor str. N16961 (NC 002505.1, NC 002506.1) 137

Xenorhabdus nematophila ATCC 19061 (NC 014228.1) 219

RESULTS304

Performance Assessment305

In this section models are identified by the classifier and the training data used. Training and validation306

datasets are labelled with the corresponding bacterial species: Ec = Escherichia coli, Mt = Mycobacterium307

tuberculosis, Se = Salmonella enterica, Sp = Streptococcus pyogenes, and Rc = Rhodobacter capsulatus.308

The distribution of AUPRC for each classifier is shown in Fig. 3. As LR was clearly outperformed by the309

other four classifiers, we excluded LR results from further analysis.310

The mean AUPRC for each of the 16 models is depicted in Fig. 4. For the four classifiers, models311

trained on the Rc training data have lower AUPRC values than models trained on the other three training312

sets. The classifier producing the most variable models was MP with average standard deviations above313

the overall mean standard deviation; while AB was the classifier with the lowest standard deviation.314

AB is the classifier least susceptible to variations in AUPRC due to the training data; while, MP is the315

classifier with more variation in AUPRC due to the training data (Fig. 4). ANOVA results indicated316

that the classifier and the training data are both significant factors to explain variance in AUPRC values317

(F-statistic = 8.29, p-value 2.34e−5 and F-statistic = 8.26, p-value 2.46e−5, respectively). There was not318

significant interaction between these two factors found by ANOVA.319

To emphasize differences in performance among the models, we ranked each model based on mean320

AUPRC obtained on each validation set (see Methods). The model with the highest AUPRC is ranked321

one, and ties are assigned the same rank. Fig. 5 depicts the mean rank of each classifier. The Friedman322

test (pvalue = 0.008) indicated that the average rank obtained by some of the classifiers is significantly323

different from the mean rank expected under the null hypothesis. We then used three post-hoc tests for324

pairwise comparisons. The Nemenyi test identified two groups of classifiers with similar ranks: RF, AB325

and GB in one group, and AB, GB and MP in the other group. According to the Nemenyi test, the ranks326

of RF are statistically significantly lower (pvalue = 0.008) than the ranks of MP (Fig. 6). The Quade327

post-hoc test deemed the differences in ranks between RF and MP (FDR corrected pvalue = 0.002) and328

between RF and GB (FDR corrected pvalue = 0.006) as statistically significant. Finally, the Conover329

post-hoc test found statistically significant differences between the ranks of RF vs MP (FDR corrected330

pvalue = 0.0005), RF vs GB (FDR corrected pvalue = 0.002), RF vs AB (FDR corrected pvalue = 0.018),331
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Figure 3. Distribution of AUPRC values per classifier. Violin plots illustrate the distribution of AUPRC

values for all models obtained with each classifier. Inside the distribution shape a box indicates the range

from the 25 percentile to 75 percentile of the precision values. AB = Adaptive Boosting, GB = Gradient

Boosting, LR = Logistic Regression, MP = Multilayer Perceptron, RF = Random Forest.

and AB vs MP (FDR corrected pvalue = 0.031). Based on these results, we concluded that RF is the only332

classifier with significant differences in ranks with respect to the other classifiers. We selected the RF -333

Combined model as our best performing model, as it has one of the highest mean AUPRC, lowest mean334

rank and low standard deviation. However, these three models: RF-Combined, RF-Sp and RF-Se are335

likely comparable in terms of mean rank and AUPRC (Fig. 4 and Additional Fig. 1).336

To facilitate other researchers to rank their own sRNAs, we have created sRNARanking, an R337

script that produces the probabilistic predictions generated by the RF-Combined model. We used R338

to distribute the model because R is more commonly used by natural science researchers than Python.339

sRNARanking takes as input the feature table produced by sRNACharP and calculates the probability340

of being a bona fide sRNA for each sRNA included in the feature table. sRNARanking is available at341

https://github.com/BioinformaticsLabAtMUN/sRNARanking.342

Attribute Importance343

Based on the mean decrease in accuracy estimated by the random forest algorithm, all attributes contribute344

positively to obtain a more accurate model (Fig. 7). The seven attributes clustered in three levels of345

importance: those with a mean decrease in accuracy greater than 20; those with a mean decrease in346

accuracy between 10 and 15, and those with a mean decrease in accuracy lower than 10. The most347

important attributes are the distance to the closest ORFs and the distance to the closest predicted Rho-348

independent terminator. The two attributes that seem to contribute the least to the accuracy of a model are349

the Boolean features indicating whether or not a genomic sequence is transcribed on the same strand as350

its closest ORFs.351
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Figure 4. Mean AUPRC per model. The dot represents the mean AUPRC and bars represent standard

error. Colour indicates the training data used: Red = Combined data, Green = R. capsulatus data, Blue =

S. enterica data, Purple = S. pyogenes data. Classifiers are indicated by AB = Adaptive Boosting, GB =

Gradient Boosting, MP = Multilayer Perceptron, RF = Random Forest.

Assessing the performance of our best model on benchmark datasets352

Lu et al. (2011) evaluated the performance of four comparative genomics-based leading tools for sRNA353

prediction on a dataset composed of sRNAs from 14 different bacteria (Table 2), and found recall rates354

of 20% - 49% with precisions of 6%-12%; while our RF-combined model (sRNARanking) achieved355

precision rates of 85% to 96% at those same recall rates (Fig. 8).356

Arnedo et al. (2014) and Barman et al. (2017) evaluated the performance of their methods in terms of357

sensitivity (recall) and specificity. Fig. 9 top shows the Sensitivity-Specificity curve of sRNARanking on358

the SLT2 dataset. At a sensitivity of 67%, Arnedo et al’s approach has a specificity of 78% (Barman et al.,359

2017), while sRNARanking at the same sensitivity level has a specificity of 94% and a precision of 54%360

(Fig. 9 bottom). sRNARanking’s specificity of 88% is comparable to the 91% specificity of Barman et361

al’s approach at a sensitivity of 85%.362

The main goal of this study was to precisely rank sRNAs detected from RNA-seq data to guide further363

experiments to functionally characterize sRNAs. If we assume that microbiologists would only select a364

few of the top-scoring predictions for Northern blot validation, then at a sensitivity (recall) level of 10%,365

sRNARanking has a precision of 90% on the SLT2 dataset (Fig. 9 bottom). In other words, if we assume366

that the top 10% predictions would be selected for Northern blot validation, only two out of 18 candidate367

sRNAs would fail to be detected.368

DISCUSSION369

We anticipated that the distance to the closest promoter, the distance to the closest terminator and the370

energy of the secondary structure would be the most important attributes to predict whether or not a371
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Figure 5. Mean rank per classifier. The dot represents the mean rank and bars represent standard error.

Lower ranks indicate better performance in terms of AUPRC. Classifiers are indicated by AB = Adaptive

Boosting, GB = Gradient Boosting, MP = Multilayer Perceptron, RF = Random Forest.
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Figure 6. Critical difference plot. Classifiers that are not deemed significantly different by the Nemenyi

test at a significance level of 0.05 are connected.

genomic sequence is a bona fide sRNA. As promoters determine when and how transcription of a nearby372

gene is initiated, we expected genuine sRNAs to be close to a promoter. However, as current best373
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Figure 7. Attribute importance. Mean decrease in accuracy per attribute as estimated by the random

forest algorithm. Attribute importance is plotted on the x-axis. Attributes are ordered top-to-bottom as

most- to least-important. Three levels of importance are observed: high importance attributes (distances

to closest ORFs and distance to terminator); medium importance attributes (free energy of secondary

structure and distance to promoter), and low importance attributes (same strandness as closest ORFs).

Figure 8. PRC of sRNARanking performance on Lu et al’s multi-species dataset. The four approaches

assessed by Lu et al achieved recall of 0.20 to 0.49 with precision of 0.06 to 0.12. The corresponding

area in the PRC is indicated by forward slashes. The colour scale on the left indicates probability

thresholds yielding the points on the curve.

programs to predict promoters have a recall rate between 49% and 59% (Shahmuradov et al., 2017), many374

sRNAs might incorrectly be represented as not having a promoter nearby when in fact they do. Gene375

expression in bacteria is also regulated by termination of transcription, often in response to specific signals.376
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Figure 9. sRNARanking performance on the SLT2 dataset. Top: Sensitivity-Specificity curve of

sRNARanking performance. Arnedo et al’s approach and Barman et al’s approach reported sensitivity

and specificity are indicated with a red and a blue dot, respectively. Bottom: Precision-Recall curve of

sRNARanking performance on the SLT2 dataset. The colour scale on the left indicates probability

thresholds yielding the points on the curve.
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Being in proximity to a Rho-independent terminator is often used as evidence for genome annotation.377

However, bacteria commonly regulate gene expression by using cis-acting RNA elements for conditional378

transcription termination. These cis-acting terminators are not predicted by TransTermHP, and thus many379

sRNAs might incorrectly be represented as not being in the proximity to a terminator. We expect that380

improving bacterial promoter and terminator prediction will increase the importance of these features381

and improve sRNA prediction using genomic context features. Many sRNAs have a stable secondary382

structure; however, sRNAs are also known to show heterogenous structures (Wagner and Romby, 2015).383

This might reduce the importance of the energy of the secondary structure as a feature to predict sRNAs.384

We believe that the distances to the closest ORFs are the most important attributes partially due to a bias385

in the training data. 93% of the negative instances (random genomic sequences) in the combined training386

data overlap the two neighbouring ORFs (i.e., their distances to their closest ORFs are zero), while 70%387

of the positive instances (bona fide sRNAs) are intergenic (i.e., their absolute distances to their closest388

ORFs are greater than zero). This bias in the data may be corrected as more antisense sRNAs (asRNAs)389

and partially overlapping sRNAs are experimentally verified as bona fide sRNAs.390

We hypothesized that R. capsulatus training data produced worse performing models because it391

includes as positive instances a higher number of non-intergenic sRNAs (18 or 50%). In fact, the best392

performing model obtained lower AUPRC for R. capsulatus and E. coli validation datasets (Additional393

Figs. 2-6). These two bacterial species have the higher proportion of non-intergenic bona fide sRNAs:394

51% and 40% of the bona fide sRNAs of R. capsulatus and E. coli, respectively, overlap neighbouring395

ORFs; while 17.4%, 26.5% and 36.8% of the bona fide sRNAs of S. pyogenes, S. enterica and M.396

tuberculosis, respectively, overlap neighbouring ORFs. Additionally, 17 R. capsulatus putative sRNAs397

included as positive instances were found to be conserved in the genome of at least two other bacterial398

species but have not been verified in the wet lab. Some of these 17 putative R. capsulatus sRNAs chosen399

as positive instances based on sequence conservation may actually be false positives. Barman et al. (2017)400

also observed that the performance of their approach for predicting E. coli sRNAs was inferior than the401

performance obtained for other bacteria. They suggested that a reason for this might be the higher number402

of experimentally verified sRNAs of E. coli overlapping with ORFs (Barman et al., 2017).403

With respect to the different machine learning approaches assessed, RF seems to be better suited for404

the task of prioritizing bona fide sRNAs than the other four classifiers (AB, GB, MP and LR). Statistical405

tests results supported this by deeming the difference in performance between the models obtained by RF406

and models obtained by the other classifiers as statistically significant. To be able to use deep learning for407

sRNA prioritization, datasets at least one order of magnitude larger than the ones currently available are408

required.409

To demonstrate the ability of the models to generalize to other bacterial species, we validated the410

models on data from bacterial species that were not part of the training set. In fact, using data from the411

same bacterial species on the training and validation sets was not a factor to explain variance in model412

performance. This indicates that models are able to learn sRNAs features that are species independent, and413

even taxa independent as the AUPRC values obtained in the M. tuberculosis validation set suggest. Using414

data from different bacterial species and experimental conditions is expected to lead to improved predictive415

models. In fact, training the classifiers with the combined data generated models that either outperform, or416

were comparable to, the models obtained from training the classifiers with data from a single bacterium.417

To allow other researchers to rank their own sRNAs, we have implemented sRNARanking, an R script418

containing the RF-Combined model.419

To compare our best performing model with current approaches, we evaluated sRNARanking on a420

multi-species dataset (Lu et al., 2011) and demonstrated that sRNARanking clearly outperformed four421

comparative genomics-based approaches in terms of precision rates (85% to 96% vs 6% to 12%) at the422

same recall rates (Fig. 8). Additionally, we compared sRNARanking performance on a SLT2 dataset423

with two more recently published approaches: a meta-approach (Arnedo et al., 2014) and a SVM-based424

approach (Barman et al., 2017). sRNARanking achieved better performance than the meta-approach and425

comparable performance to the SVM-based approach in terms of sensitivity and specificity (Fig. 9).426

A multitude of sRNAs have been detected in many bacterial species. The sheer number of novel427

putative sRNAs reported in the literature makes it infeasible to validate in the web lab each of them.428

Thus, there is the need for computational approaches to characterize putative sRNAs and to rank these429

sRNAs on the basis of their likelihood of being bona fide sRNAs. Our results demonstrate that a RF-based430

approach using genomic context and structure-based features is able to detect intrinsic features of sRNAs431
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common to a number of bacterial species, overcoming the challenge of the low sequence conservation of432

sRNAs. As the number of detected sRNAs continues to raise, computational predictive models as the one433

here generated will become increasingly valuable to guide further investigations.434

ABBREVIATIONS435

LR: logistic regression; MP: multilayer perceptron; AB: adaptive boosting; GB: gradient boosting; RF:436

random forest; FDR: false discovery rate; AUC: area under receiver operating characteristic curve;437

AUPRC: area under the precision-recall curve; LOO CV: leave-one-out cross-validation; ORF: open438

reading frame; nts: nucleotides; sRNA: small non-coding RNA.439
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Sotelo, J. S., Alquicira-Hernández, K., Martı́nez-Flores, I., Pannier, L., Castro-Mondragón, J. A.,471

Medina-Rivera, A., Solano-Lira, H., Bonavides-Martı́nez, C., Pérez-Rueda, E., Alquicira-Hernández,472

S., Porrón-Sotelo, L., López-Fuentes, A., Hernández-Koutoucheva, A., Del Moral-Chávez, V., Rinaldi,473
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