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ABSTRACT
Bacterial small (sRNAs) are involved in the control of several cellular processes.
Hundreds of putative sRNAs have been identified in many bacterial species through
RNA sequencing. The existence of putative sRNAs is usually validated by Northern
blot analysis. However, the large amount of novel putative sRNAs reported in the
literature makes it impractical to validate each of them in the wet lab. In this
work, we applied five machine learning approaches to construct twenty models to
discriminate bona fide sRNAs from random genomic sequences in five bacterial species.
Sequences were represented using seven features including free energy of their predicted
secondary structure, their distances to the closest predicted promoter site and Rho-
independent terminator, and their distance to the closest open reading frames (ORFs).
To automatically calculate these features, we developed an sRNA Characterization
Pipeline (sRNACharP). All seven features used in the classification task contributed
positively to the performance of the predictive models. The best performing model
obtained a median precision of 100% at 10% recall and of 64% at 40% recall across
all five bacterial species, and it outperformed previous published approaches on two
benchmark datasets in terms of precision and recall. Our results indicate that even
though there is limited sRNA sequence conservation across different bacterial species,
there are intrinsic features in the genomic context of sRNAs that are conserved across
taxa. We show that these features are utilized by machine learning approaches to learn
a species-independent model to prioritize bona fide bacterial sRNAs.

Subjects Bioinformatics, Microbiology, Data Mining and Machine Learning
Keywords sRNA prioritization, Machine learning, sRNA characterization, Random forest,
sRNACharP, sRNARanking, sRNA prediction, Bacterial small RNAs, Multispecies evaluation

INTRODUCTION
Bacterial small RNAs (sRNAs) are ubiquitous regulators of gene expression, mostly acting
by antisensemechanisms onmultiple targetmRNAs and, as a result of this, they are involved
in the control of many processes such as adaptive responses, stress responses, virulence,
and pathogenicity (Storz, Vogel & Wassarman, 2011; Michaux et al., 2014). Numerous
(hundreds) putative sRNAs have been identified in many bacterial species through RNA
sequencing (RNA-seq) (e.g., Grüll et al. (2017); Thomason et al. (2015); Zeng & Sundin
(2014); McClure, Tjaden & Genco (2014)). The existence of putative sRNAs is usually
validated by Northern blot analysis. However, the large amount of novel putative sRNAs
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reported in the literature makes it impractical to validate in the wet lab each of them. To
optimize resources, one would like to first investigate those putative sRNAs which are
more likely to be bona fide sRNAs. To do that, we need to computationally prioritize
sRNAs based on their likelihood of being bona fide sRNAs. Despite the fact that tools to
tackle this problem have been around since early 2000s (Lu, Goodrich-Blair & Tjaden, 2011;
Backofen & Hess, 2010), computational prediction of sRNAs in genomic sequences remains
a challenging unsolved problem. Available tools typically use comparative genomics,
primary sequence and secondary structure features to predict whether a genomic sequence
corresponds to an sRNA, with the comparative genomics-based prediction of sRNAs
being the standard method (Lu, Goodrich-Blair & Tjaden, 2011; Backofen & Hess, 2010). As
there are many species-specific sRNAs, and functionally equivalent sRNAs show very low
sequence conservation (Wagner & Romby, 2015), a comparative genomics-based model
for sRNA prediction (as used by most tools) is not suitable for the majority of sRNAs and
many sRNAs are excluded from these predictions. Additionally, as very limited overlap
between sRNAs detected by RNA-seq and sRNAs predicted by bioinformatic tools has been
observed in several studies (Soutourina et al., 2013; Wilms et al., 2012; Vockenhuber et al.,
2011), available tools are not suitable for quantifying the probability of a putative sRNA
detected from RNA-seq data being indeed a genuine sRNA. A machine learning-based
approach using genomic context features for sRNA prioritization may be able to overcome
the issues caused by the limited sequence conservation of most sRNAs, and to detect
intrinsic features of sRNA sequences common to a number of bacterial species.

The main goal of this study was to develop a bioinformatic tool (applicable to a
wide range of bacterial species) to allow microbiologists to prioritize sRNAs detected
from RNA-seq data based on their probability of being bona fide sRNAs. To do this,
we comparatively assessed the performance of five machine learning approaches for
quantifying the probability of a genomic sequence encoding a bona fide sRNA. Themachine
learning approaches applied were: logistic regression (LR), multilayer perceptron (MP),
random forest (RF), adaptive boosting (AB) and gradient boosting (GB).We used data from
five bacterial species including representatives from the phyla Firmicutes (Streptococcus
pyogenes), Actinobacteria (Mycobacterium tuberculosis), and Proteobacteria (Escherichia
coli, Salmonella enterica, and Rhodobacter capsulatus). To assess the applicability of the
methods to a wide range of bacteria, we evaluated the methods in bacterial species not
included in the training data. As input to the machine learning approaches, we provided a
vector of seven features per sequence. These features are: the free energy of the predicted
secondary structure, distance to their closest predicted promoter site, distance to their
closest predicted Rho-independent terminator, distances to their two closest open reading
frames (ORFs), and whether or not the sRNA is transcribed on the same strand as their two
closest ORFs. These features were selected under the hypothesis that genomic context and
secondary structure of sRNAs are better preserved across diverse bacteria than sequence
characteristics such as frequencies ofmono-nucleotides, di-nucleotides, and tri-nucleotides.
This hypothesis is based on the fact that there is low sequence conservation of sRNAs among
bacteria (Wagner & Romby, 2015), and our observation that genomic context of putative
sRNAs is distinct from that of random genomic sequences (Grüll et al., 2017).We tested our
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best performing model in a multi-species dataset (Lu, Goodrich-Blair & Tjaden, 2011) and
the performance achieved by our method (sRNARanking) demonstrated that it is possible
to create a highly accurate and general (i.e., species-independent) model for prioritizing
bona fide bacterial sRNAs using genomic context features.

Obtaining the selected sRNA features requires the use of numerous different
bioinformatic tools which may be challenging for the average user. To facilitate
sRNA characterization, we have developed sRNACharP (sRNA Characterization
Pipeline), a pipeline to automatically compute the seven features used by sRNARanking
(available at https://github.com/BioinformaticsLabAtMUN/sRNACharP). To enable
other researchers to use sRNARanking, we made an R script available containing the
model (https://github.com/BioinformaticsLabAtMUN/sRNARanking). We expect that
together these two tools (sRNACharP and sRNARanking) will facilitate and accelerate the
characterization and prioritization of putative sRNAs helping researchers in the field of
RNA-based regulation in bacteria to focus in the putative sRNAs most likely to be bona
fide sRNAs.

METHODS
Datasets
Published positive instances of bona fide sRNAs were collected for R. capsulatus (Grüll
et al., 2017), M. tuberculosis (Miotto et al., 2012), S. pyogenes (Le Rhun et al., 2016), and
S. enterica (Kröger et al., 2012).M. tuberculosis, S. pyogenes and S. enterica positive instances
have all been verified by Northern blot analysis; while, R. capsulatus positive instances
included, in addition to four experimentally verified sRNAs, 41 homologous sRNAs
(i.e., sRNAs that have high sequence similarity to known sRNAs in other bacterial species
or were found to be conserved in the genome of at least two other bacterial species).
Additionally, we collected E. coli sRNAs, supported by literature with experimental evidence
from RegulonDB (release 9.3) (Gama-Castro et al., 2016).

To build our models we randomly selected 80% of the bona fide sRNAs of R. capsulatus,
S. pyogenes and S. enterica. To estimate false positive predictions and build our models, for
each bacterial species we created a set of negative instances by generating random genomic
sequences that do not overlap with the positives instances for the particular bacterium.
Basically, negative instances are sets of randomly selected genomic regions where there
is no experimental evidence for the presence of sRNAs. Negative instances match the
length and the strand of the positive instances. To generate the negative instances, we used
BEDTools (Quinlan & Hall, 2010) (code available in Supplemental File). We randomly
selected n negative instances for training, where n is three times the number of positive
instances in the corresponding training set. In previous similar studies, n has been set to be
one (Arnedo et al., 2014) or two (Barman, Mukhopadhyay & Das, 2017) times the number
of positive instances. However, we believed that a more unbalanced dataset for training is
closer to a real scenario, and decided to increase the value of n to three times the number
of positive instances. All remaining negative instances were used for testing the models.

An alternative approach to generate negative instances is to take a genome sequence
and randomly shuffle the order of its bases as done by Arnedo et al. (2014) and Barman,
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Table 1 The number of positive (bona-fide sRNAs) and negative (random genomic sequences) in-
stances in the datasets used for training and testing the classification models. The NCBI accession num-
ber of the genome sequence used is indicated in the first column between brackets. The ‘‘Combined’’ data
are made by putting together the training data of S. enterica, S. pyogenes and R. capsulatus.

Training Test

Positive
instances

Negative
instances

Positive
instances

Negative
instances

R. capsulatus (NC_014034.1) 36 108 9 342
S. pyogenes (NC_002737.2) 37 110 9 349
S. enterica (NC_016810.1) 90 271 23 855
Combined 163 489 N/A N/A
E. coli (NC_000913.3) N/A N/A 125 1245
M. tuberculosis (NC_000962.3) N/A N/A 19 190

Mukhopadhyay & Das (2017).However, asweuse genomic context features for representing
the genomic sequences, shuffling the sequences’ bases would preserve their genomic context
properties and therefore be ineffective. Furthermore, as mentioned by Arnedo et al. (2014)
and Lu, Goodrich-Blair & Tjaden (2011), the use of non-annotated genomic sequences as
negative instances gives a more conservative estimate of the precision of the models.

The number of positive and negative instances per bacterium used for training and
testing the machine learning models is shown in Table 1. Training and test data are
provided in Supplemental File.

sRNA Characterization
Each sRNA is represented as a vector of seven numerical features or attributes, as in Grüll
et al. (2017). These attributes are:
1. free energy of the sRNA predicted secondary structure,
2. distance to the closest -10 promoter site predicted in the genomic region starting 150

nts upstream of the start of the sRNA sequence to the end of the sRNA sequence (if no
promoter site is predicted in that region a value of −1,000 is used),

3. distance to the closest predicted Rho-independent terminator in the range of [0,1,000]
nts (if no terminator is predicted within this distance range a value of 1,000 is used),

4. distance to the closest left ORF, which is in the range of (−∞, 0] nts,
5. a Boolean value (0 or 1) indicating whether the sRNA is transcribed on the same strand

as its left ORF,
6. distance to the closest right ORF, which is in the range of [0, +∞), and
7. a Boolean value indicating whether the sRNA is transcribed on the same strand as its

right ORF.
A ‘‘left’’ ORF is an annotated ORF located at the 5′ end of a genomic sequence on the

forward strand or located at the 3′ end of a genomic sequence on the reverse strand (Fig. 1).
A ‘‘right’’ ORF is an annotated ORF located at the 3′ end of a genomic sequence on the
forward strand or located at the 5′ end of a genomic sequence on the reverse strand.

To automatically calculate these seven features for a set of sRNAs from a given bacterial
species, we developed sRNACharP. As input, sRNACharP requires only a BED file
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Figure 1 Left and right ORFs. Left ORFs are located at the 5′ end of an sRNA on the forward strand or at
the 3′ end of an sRNA on the reverse strand. Right ORFs are located at the 3′ end of an sRNA on the for-
ward strand or at the 5′ end of an sRNA on the reverse strand.

Full-size DOI: 10.7717/peerj.6304/fig-1

(UCSC website, 2018) with the genomic coordinates of the sRNAs, a FASTA file with
the corresponding genome sequence, and a BED file with the genomic coordinates of
the annotated protein coding genes (ORFs). sRNACharP is implemented in Nextflow
(Di Tommaso et al., 2017) and available at https://github.com/BioinformaticsLabAtMUN/
sRNACharP. To ensure reproducible results and reduce installation requirements to the
minimum, sRNACharP is distributed with a Docker container (Di Tommaso et al., 2015).
sRNACharP uses the following bioinformatic tool (the versions listed within brackets are
the ones installed in the Docker container). CentroidFold (Hamada et al., 2009) (version
0.0.15) with parameters -e ‘‘CONTRAfold’’ and -g 4 is used to predict the secondary
structure of the sequences given. BEDtools’ slopBed and fastaFromBed (Quinlan & Hall,
2010) (version 2.26) are used to extract the sRNA sequences, and the sequences including
150 nts upstream of the 5′ end of the sRNAs in FASTA format. Promoter sites on the
sequences including 150 nts upstream of the 5′ end of the sRNAs are predicted using
BPROM (Solovyev & Salamov, 2011) with default values. Rho-independent terminators are
predicted using TransTermHP (Kingsford, Ayanbule & Salzberg, 2007) (version 2.09) with
default values. Alternatively, sRNACharP can take as input, files from the TransTermHP
website (http://transterm.cbcb.umd.edu/cgi-bin/transterm/predictions.pl). For this study,
we downloaded the predicted Rho-independent terminators for S. pyogenes and M.
tuberculosis from the TransTermHP website on March 2017. The distances to the closest
terminator and the closest ORFs are obtained using BEDtools’ closest. Finally, R (version
3.4.4) is used to generate the features table.

Machine learning approaches
We assessed the performance of logistic regression (Cox, 1958; Walker & Duncan, 1967),
multilayer perceptron (Bishop, 1995; Fahlman, 1988), random forest (Breiman, 2001)
and boosting models (Schapire, 1990) for the task of quantifying the probability of a
genomic sequence encoding a bona fide sRNA. Random forests and boosting classifiers are
both examples of ensemble learning algorithms (Dietterich, 2000). The core of the boosting
methods lies in iteratively combining outputs of so-called ‘‘weak learners’’, converging to an
overall strong learner. Logistic regression (LR) was used inGrüll et al. (2017) and showed to
outperform linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA)
for this task. We decided to use LR as a baseline to compare the performance of the other
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classifiers. We chose to compare the other four machine learning approaches (classifiers)
because they have shown to perform well on small datasets and they are generally robust
to noise (Liaw &Wiener, 2002; Kerlirzin & Vallet, 1993; Ridgeway, 1999).

All the machine learning classification approaches were implemented in the Python
programming language version 3.6. Scikit-learn (version 0.19.1) (Pedregosa et al., 2011)
was used for the implementation of all the classifiers. For each classifier, the ‘‘best’’
parameters were obtained by maximizing the average area under the ROC curve (AUC)
when performing leave-one-out cross-validation (LOO CV) on the training data (Fig. 2).
The final ‘‘best’’ parameters per classifier used were those given on average the largest AUC.

Logistic regression
Logistic Regression (LR) learns the parameters β of the logistic function,

p(X)=
eβ0+β1X1+...+βnXn

1+eβ0+β1X1+...+βnXn
,

where p(X) is the probability of an sRNA with feature vector X of being a bona fide sRNA,
e is the base of the natural logarithm, n is the number of features, and Xi is the value of
feature i. To fit the model, usually the maximum likelihood approach is used. We used
the balanced mode that automatically adjust class weights inversely proportional to class
frequencies in the input data. All other parameters were left to their default values.

Multilayer perceptron
Multilayer Perceptrons (MPs) are fully connected feed-forward neural networks, with
one or more layers of hidden nodes between the input and output nodes (Bishop, 1995;
Fahlman, 1988). Except for the input node(s), each node is a neurone with a nonlinear
activation function. Each neurone combines weighted inputs by computing their sum to
determine its output based on a certain threshold value and the activation function. The
output y of the system can be described as

y = f

( N∑
i=0

wixi

)
,

where x1,...,xN represent the input signals, w1,...,wN are the synaptic weights and f is
the activation function. MPs learn through an iterative process of changing connection
weights after processing each part of the data. The most common learning algorithm used
for this process is backpropagation (Fahlman, 1988).

The activation function that lead to the largest AUCs on the training data was the logistic
sigmoid function. We used the standard backpropagation algorithm with an initial random
generation of weights ([−1,1]). As usingmultiple hidden layers decreased the performance,
we decided to use only one hidden layer. The number of hidden nodes explored was in the
range from 1 (in that case the model behaves the same as logistic regression) to 1,000 with
steps of 50. The best number of hidden nodes was found to be 400. Learning rates ranging
from 0.1 to 1.0 were explored in steps of 0.1. The chosen learning rate was a constant
learning rate of 0.9, because an adaptive learning rate was observed to decrease AUCs. The
L2 penalty was set to the default value of 0.0001.
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Figure 2 Flowchart depicting training and testing methodology. Training and test datasets are
labelled with the corresponding bacterial species: Ec, Escherichia coli, Mt,Mycobacterium tuberculosis, Se,
Salmonella enterica, Sp, Streptococcus pyogenes, and Rc, Rhodobacter capsulatus.

Full-size DOI: 10.7717/peerj.6304/fig-2

Random forest
A random forest (RF) is constructed by combining multiple decision trees during training
(Breiman, 2001). All decision trees in the random forest contribute to the determination
of the final output class. The output class is determined by averaging the probabilities
produced by the individual trees. The range of number of estimators (decision trees)
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explored was from 1 to 1,000 in steps of 100. The best setting was found to be 400. The
largest AUC results were obtained when the nodes are expanded until almost all leaves are
pure. We tested our model with the maximum depth of the tree ranging from 15 to 25 and
found that themaximumAUCwas obtained at a depth of 20. All features were used in every
tree. To measure the quality of a split we used the default Gini index (Strobl, Boulesteix &
Augustin, 2007) and the maximum number of features to consider when looking for the
best split in a node was set to 2, as calculated by the function tuneRF available in the R
package randomForest (version 4.6–12).

Adaptive boosting
Adaptive boosting or AdaBoost (AB) was developed for binary classification problems
and tweaks ‘‘weak learners’’ by focusing on the instances that were wrongly classified by
previous classifiers (Freund & Schapire, 1997). Therefore the training error decreases over
the iterations. The additive model of AdaBoost can be formulated as following. The output
of each weak learner is described by:

LK (x)=
K∑
k=1

lk(x).

where K is the total number of iterations and lk(x) is the output function of the weak
learner when taking the instance x as input. To minimize the training error Ek for each
iteration k, AdaBoost uses:

Ek =
N∑
i=1

E(Lk−1(xi)+αkh(xi)),

where h(xi) is the predicted output of a weak learner for every instance xi in the training set,
αk is the assigned coefficient that minimizes the training error, and N is the total number
of instances in the training set.

We used AdaBoost on a random forest (RF) classifier that performed just better than
chance on the training data. The best parameters of this RF were found to be 100 decision
trees (estimators) and a maximum depth of 1. This means all of the trees were decision
stumps. The number of estimators was established at 100 after exploring a range from 1 to
1,000 estimators with steps of 50. A maximum depth of 1 was chosen because AdaBoost is
known to perform better with decision stumps (Ridgeway, 1999).

Gradient boosting
In gradient boosting (GB) an initial poor fit on the data is improved by fitting base-learners
(e.g., decision trees) to the negative gradient of a specified loss function (Friedman, 2001).
Gradient boosting can be described by:

f̂ = argminf Ex,y [ρ(Y ,f (X))],

where X ={x1,...,xn} and Y ={y1,...,yn}, forming the training set {(x1,y1),...,(xn,yn)}.f̂
minimizes expectation E of the loss function ρ over all prediction functions f that take X
as input.
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We used gradient boosting on 50 estimators (decision trees) with a maximum depth of
15. We established the number of estimators by exploring a range of 1 to 1,000 estimators
with steps of 50. We tested our model with the same maximum depth of the tree as for the
decision tree classifiers. We then gradually decreased the maximum depth taking steps of
1, arriving at 15 as the best setting. The minimum number of samples at a leaf node was
set to 5, as this was the number found to maximize AUC. Stochastic gradient boosting was
performed with a subsampling of 0.9.

Model building
As shown in Fig. 2 we randomly selected 80% of the positive instances for training, while
setting aside the other 20% for testing the models. The test sets were held-out sets used
to obtain an unbiased estimate of the models performance and were not used to build or
fine-tune the models. As the classifiers used construct models stochastically, five training
runswere carried out for each of the 20models (fivemachine learning approaches times four
training sets) to estimate the stability of the models (script available in Supplemental File).

Performance assessment
Model performance was assessed in terms of the Area Under the Precision-Recall Curve
(AUPRC). There are many classification metrics and none of them can reflect all the
strengths and weakness of a classifier (Lever, Krzywinski & Altman, 2016). We have chosen
AUPRC as the PRC shows precision values for corresponding sensitivity (recall) values
and is considered more informative than the ROC when evaluating performance on
unbalanced datasets (Saito & Rehmsmeier, 2015). Additionally, precision is a more relevant
measure to many end users, since it represents the proportion of validation experiments
for predictions that would prove successful. We used in-house Python and R scripts to
calculate the performance metrics and generate plots (code is provided in Supplemental
File). In Python we used the functions available in Scikit-learn. In R, we used the packages
ROCR (Sing et al., 2005) and PRROC (Grau, Grosse & Keilwagen, 2015).

Models were evaluated on five test sets. Each test set corresponds to data from one
bacterial species. Data of R. capsulatus, S. pyogenes and S. enterica were also used for
training, while E. coli and M. tuberculosis data were used exclusively for testing the models
(Table 1). The species not included in the training data were chosen to be one species of
the same taxa as and one of a different taxa from the species used for training. Median,
mean and standard deviation of the performance measurements across the five training
runs were calculated.

Additionally, to highlight the difference in performance between the models, we used
a ‘‘winner-gets-all’’ comparison by ranking the methods based on their mean AUPRC for
each test set. The model(s) with the highest mean AUPRC for a specific test set were ranked
1 for that test set. Ties were all given the same rank. At the end of the ranking process, each
model has five ranks corresponding to one rank per test set.

Analysis of variance (ANOVA) was performed to explore the effects of classifier and
training data on the AUPRC values, and the Tukey’s Honest Significant Difference (HSD)
(Tukey, 1949) method was used to assess the significance on the differences between the
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mean AUPRC of classifiers, training data, and models. Additionally, statistical significance
of the difference in performance between models was estimated using the Friedman
test which is a non-parametric test recommended for comparison of more than two
classifiers over multiple datasets (Demšar, 2006). To find out which models differ in terms
of performance, we used the Nemenyi post-hoc test (Demšar, 2006), the Quade post-hoc
test (García et al., 2010) and the Conover post-hoc test (Conover, 1999). We used several
post-hoc tests as it is recommended to use several comparison tests (García et al., 2010).
Multiple testing correction was performed using the Benjamini and Hochberg’s FDR
method (Benjamini & Hochberg, 1995) implemented in the R function p.adjust. All
statistical analyses were carried out in R using the packages PMCMR (Pohlert, 2014) and
scmamp (Calvo & Santafe, 2016).

Attribute importance
To gain insight on how important each attribute is in inferring whether or not a sequence
encodes a bona fide sRNA, we used the function varImp available in the R package
randomForest (version 4.6-12). To use this function, we first created a RF classifier using
the randomForest function with ntree set to 400 and mtry set to 2. These were the
best parameters found when tuning the RF classifier (see above). We generated the RF
model using the combined training data (Table 1). Attribute importance was measured
in terms of the mean decrease in accuracy caused by an attribute during the out of bag
error calculation phase of the RF algorithm (Breiman, 2001). The more the accuracy of the
RF model decreases due to the exclusion (or permutation) of a single attribute, the more
important that attribute is deemed for classifying the data.

Assessing the performance of the best model on benchmark datasets
We compared the performance of our best performing model with that of other four
existing approaches as estimated previously by Lu, Goodrich-Blair & Tjaden (2011) in a
multi-species dataset. Additionally, we assessed the performance of Barman et al.’s SVM
method (Barman, Mukhopadhyay & Das, 2017) on this dataset. We also compared the
performance of our best model in a Salmonella enterica serovar Typhimurium LT2 (SLT2)
datasetwith the performance estimated byArnedo et al. (2014) andBarman, Mukhopadhyay
& Das (2017). Since Arnedo et al. and Barman et al. used shuffled genome sequences to
generate the negative examples, while we are using sequences from random genomic
locations, we generated predictions with Barman et al.’s SVM method on exactly our same
SLT2 test set. To generate predictions with Barman et al.’s SVM method, we used the R
code and proposed best model provided by Barman et al. to calculate the input features
and obtain the predictions.

We obtained a table with start position, end position, strand and genome of sRNAs in
the multi-species dataset from Lu, Goodrich-Blair & Tjaden (2011)’s Table S1. We found
that 34 sRNAs in Lu et al.’s dataset were duplicated entries. After removing the duplicated
entries we used 754 sRNAs of fourteen different bacterial species (Table 2). We obtained
a table with start position, end position, and name of 182 sRNAs in the SLT2 dataset
from Barman, Mukhopadhyay & Das (2017)’s Table S6. We noticed that 106 out of the
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Table 2 Number of positive instances per bacterial species in Lu et al.’s dataset used in this study. The
NCBI accession number of the genome sequence used is indicated in the first column between brackets.

Bacterium Positive
instances

Burkholderia cenocepacia AU 1054 (NC_008060,
NC_008061.1, NC_008062.1)

18

Bacillus subtilis subsp. subtilis str. 168 (NC_000964.3) 12
Caulobacter crescentus CB15 (NC_002696.2) 7
Chlamydia trachomatis L2b/UCH-1/proctitis
(NC_010280.2)

23

Escherichia coli K12 MG1655 (NC_000913.3) 79
Helicobacter pylori 26695 (NC_000915.1) 50
Listeria monocytogenes EGD-e (NC_003210.1) 56
Pseudomonas aeruginosa PA01 (NC_002516.2) 17
Staphylococcus aureus subsp. aureus N315 (NC_002745.2) 9
Streptomyces coelicolor A3(2) (NC_003888.3) 3
Salmonella enterica subsp. enterica serovar Typhimurium str.
LT2 (NC_003197.2)

115

Shewanella oneidensisMR-1 (NC_004347.2) 9
Vibrio cholerae O1 biovar El Tor str. N16961
(NC_002505.1, NC_002506.1)

137

Xenorhabdus nematophila ATCC 19061 (NC_014228.1) 219

182 sRNAs in the SLT2 dataset were also contained in Lu et al.’s dataset, and thus the
benchmark datasets are not completely independent. We retrieved the complete genome
sequence and genome annotation of the corresponding bacterium from NCBI. We then
extracted the corresponding sRNAs sequences using BEDtools, and obtained the feature
vectors using our sRNACharP pipeline. We generated the negative instances for each
dataset as described above. For Lu et al.’s (2011) dataset, we generated three negative
instances for each positive instance; however, the ratio of positive to negative instances
used by Lu et al. is not reported in their article and thus the ratio they used may differ from
this. For the SLT2 dataset we generated ten negative instances for each positive instance to
match the ratio of positive to negative instances used by Barman, Mukhopadhyay & Das
(2017). The shuffled negative instances used by Barman et al. were obtained from Barman,
Mukhopadhyay & Das (2017)’s Tables S7 to S16.

RESULTS
Performance assessment
In this section models are identified by the classifier and the training data used. Training
and test datasets are labelled with the corresponding bacterial species: Ec, Escherichia coli;
Mt, Mycobacterium tuberculosis; Se, Salmonella enterica; Sp, Streptococcus pyogenes; and
Rc, Rhodobacter capsulatus. For each classifier, four models were generated (one for each
training set). Each of these four models was evaluated on each of the five test sets. The
distribution of AUPRC of all models obtained using each classifier is shown in Fig. 3. As LR
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was clearly outperformed by the other four classifiers, we excluded LR results from further
analysis.

The mean AUPRC for each of the 16 models is depicted in Fig. 4. For the four classifiers,
models trained on the Rc training data have lower AUPRC values than models trained on
the other three training sets. The classifier producing the most variable models was MP
with average standard deviations above the overall mean standard deviation; while AB was
the classifier with the lowest standard deviation. AB is the classifier least susceptible to
variations in AUPRC due to the training data; while, MP is the classifier withmore variation
in AUPRC due to the training data (Fig. 4). ANOVA results indicated that the classifier
and the training data are both significant factors to explain variance in AUPRC values
(F-statistic = 8.29, p-value 2.34e−5 and F-statistic = 8.26, p-value 2.46e−5, respectively).
There was not significant interaction between these two factors found by ANOVA.

To emphasize differences in performance among the models, we ranked each model
based on mean AUPRC obtained on each test set (see ‘Methods’). The model with the
highest AUPRC is ranked one, and ties are assigned the same rank. Figure 5 depicts the
mean rank of each classifier. The Friedman test (p-value = 0.008) indicated that the
average rank obtained by some of the classifiers is significantly different from the mean
rank expected under the null hypothesis. We then used three post-hoc tests for pairwise
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comparisons. The Nemenyi test identified two groups of classifiers with similar ranks:
RF, AB and GB in one group, and AB, GB and MP in the other group. According to the
Nemenyi test, the ranks of RF are statistically significantly lower (p-value= 0.008) than the
ranks of MP (Fig. 6). The Quade post-hoc test deemed the differences in ranks between RF
and MP (FDR corrected p-value= 0.002) and between RF and GB (FDR corrected p-value
= 0.006) as statistically significant. Finally, the Conover post-hoc test found statistically
significant differences between the ranks of RF vs MP (FDR corrected p-value = 0.0005),
RF vs GB (FDR corrected p-value = 0.002), RF vs AB (FDR corrected p-value = 0.018),
and AB vs MP (FDR corrected p-value = 0.031). Based on these results, we concluded
that RF is the only classifier with significant differences in ranks with respect to the other
classifiers. We selected the RF—Combined model as our best performing model, as it has
one of the highest mean AUPRC, lowest mean rank and low standard deviation. However,
these three models: RF-Combined, RF-Sp and RF-Se are likely comparable in terms of
mean rank and AUPRC (Fig. 4 and Fig. S1).

To facilitate other researchers to rank their own sRNAs, we have created sRNARanking,
an R script that produces the probabilistic predictions generated by the RF-Combined
model. We used R to distribute the model because R is more commonly used by
natural science researchers than Python. sRNARanking takes as input the feature
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table produced by sRNACharP and calculates the probability of being a bona fide
sRNA for each sRNA included in the feature table. sRNARanking is available at
https://github.com/BioinformaticsLabAtMUN/sRNARanking.

Attribute importance
Based on the mean decrease in accuracy estimated by the random forest algorithm, all
attributes contribute positively to obtain a more accurate model (Fig. 7). The seven
attributes clustered in three levels of importance: those with a mean decrease in accuracy
greater than 20; those with a mean decrease in accuracy between 10 and 15, and those with
a mean decrease in accuracy lower than 10. The most important attributes are the distance
to the closest ORFs and the distance to the closest predicted Rho-independent terminator.
The two attributes that seem to contribute the least to the accuracy of a model are the
Boolean features indicating whether or not a genomic sequence is transcribed on the same
strand as its closest ORFs.

Assessing the performance of our best model on benchmark datasets
Lu, Goodrich-Blair & Tjaden (2011) evaluated the performance of four comparative
genomics-based leading tools for sRNA prediction on a dataset composed of sRNAs
from 14 different bacteria (Table 2), and found recall rates of 20%–49% with precisions of
6%–12%; while our RF-combined model (sRNARanking) achieved precision rates of 85%
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to 96% at those same recall rates (Fig. 8). Our approach also outperformed Barman et al.’s
SVM method on this dataset (Fig. 8).

Arnedo et al. (2014) and Barman, Mukhopadhyay & Das (2017) evaluated the
performance of their methods in terms of sensitivity (recall) and specificity. Figure 9A
shows the Sensitivity-Specificity curve of sRNARanking and Barman et al.’s SVM method
on the SLT2 dataset. When both methods are compared with random genomic sequences
as negative instances our best model sRNARanking outperformed Barman et al.’s SVM
method in terms of sensitivity, specificity and AUPRC (Fig. 9B). Barman et al.’s SVM
methodobtained better performancewith shuffled genomic sequences as negative instances.

The main goal of this study was to precisely rank sRNAs detected from RNA-seq
data to guide further experiments to functionally characterize sRNAs. If we assume that
microbiologists would only select a few of the top-scoring predictions for Northern blot
validation, then at a sensitivity (recall) level of 10%, sRNARanking has a precision of 90%
on the SLT2 dataset (Fig. 9B). In other words, if we assume that the top 10% predictions
would be selected for Northern blot validation, only two out of 18 candidate sRNAs would
fail to be detected.
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Varying ratio of positive to negative instances
We expected that constructing the models with a slightly more unbalanced training data
set (with a ratio of 1:3 positive to negative instances) than those datasets previously used
would have an impact on the prediction performance of the models. To explore whether or
not this hypothesis was correct, we constructed two additional RF-Combined models one
with a ratio of 1:1 positive to negative training instances and another one with a ratio of 1:2
positive to negative training instances. The positive instances of all three models were the
same, and the negative instances of the more balanced datasets were proper subsets of the
less balanced data sets. That is, all negative instances in the 1:1 training set were contained
in the 1:2 training set and in the 1:3 training set. Contrary to our hypothesis, our results
suggest that varying the ratio of positive to negative instances from 1:1 to 1:3 does not have
a major impact in the prediction performance of the RF-Combined model (Figs. S2–S8).

DISCUSSION
We anticipated that the distance to the closest promoter, the distance to the closest
terminator and the energy of the secondary structure would be the most important
attributes to predict whether or not a genomic sequence is a bona fide sRNA. As promoters
determine when and how transcription of a nearby gene is initiated (Alberts et al., 2002),
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we expected genuine sRNAs to be close to a promoter. However, as current best programs
to predict promoters have a recall rate between 49% and 59% (Shahmuradov et al., 2017),
many sRNAs might incorrectly be represented as not having a promoter nearby when in
fact they do. Gene expression in bacteria is also regulated by termination of transcription,
often in response to specific signals (Santangelo & Artsimovitch, 2011). Being in proximity
to a Rho-independent terminator is used as evidence for genome annotation (Nikolaichik
& Damienikan, 2016). However, bacteria commonly regulate gene expression by using
cis-acting RNA elements for conditional transcription termination (Dar et al., 2016). These
cis-acting terminators are not predicted by TransTermHP (Kingsford, Ayanbule & Salzberg,
2007), and thusmany sRNAsmight incorrectly be represented as not being in the proximity
to a terminator. We expect that improving bacterial promoter and terminator prediction
will increase the importance of these features and improve sRNA prediction using genomic
context features by reducing the number of false negatives made by sRNARanking.
Many sRNAs have a stable secondary structure; however, sRNAs are also known to show
heterogenous structures (Wagner & Romby, 2015). This might reduce the importance of
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the energy of the secondary structure as a feature to predict sRNAs. We believe that the
distances to the closest ORFs are the most important attributes partially due to a bias in the
training data. 93% of the negative instances (random genomic sequences) in the combined
training data overlap the two neighbouring ORFs (i.e., their distances to their closest ORFs
are zero), while 70% of the positive instances (bona fide sRNAs) are intergenic (i.e., their
absolute distances to their closest ORFs are greater than zero). This bias in the data may
be corrected as more antisense sRNAs (asRNAs) and partially overlapping sRNAs are
experimentally verified as bona fide sRNAs.

We hypothesized that R. capsulatus training data produced worse performing models
because it includes as positive instances a higher number of non-intergenic sRNAs (18 or
50%). In fact, the best performing model obtained lower AUPRC for R. capsulatus and
E. coli test datasets (Figs. S2–S6). These two bacterial species have the higher proportion of
non-intergenic bona fide sRNAs: 51% and 40% of the bona fide sRNAs of R. capsulatus and
E. coli, respectively, overlap neighbouring ORFs; while 17.4%, 26.5% and 36.8% of the bona
fide sRNAs of S. pyogenes, S. enterica andM. tuberculosis, respectively, overlap neighbouring
ORFs. Additionally, 17 R. capsulatus putative sRNAs included as positive instances were
found to be conserved in the genome of at least two other bacterial species but have not
been verified in the wet lab. Some of these 17 putative R. capsulatus sRNAs chosen as
positive instances based on sequence conservation may actually be false positives. Barman,
Mukhopadhyay & Das (2017) also observed that the performance of their approach for
predicting E. coli sRNAs was inferior than the performance obtained for other bacteria.
They suggested that a reason for this might be the higher number of experimentally verified
sRNAs of E. coli overlapping with ORFs (Barman, Mukhopadhyay & Das, 2017).

With respect to the different machine learning approaches assessed, RF seems to be
better suited for the task of prioritizing bona fide sRNAs than the other four classifiers
(AB, GB, MP and LR). Statistical tests results supported this by deeming the difference
in performance between the models obtained by RF and models obtained by the other
classifiers as statistically significant. To be able to use deep learning for sRNA prioritization,
datasets at least one order ofmagnitude larger than the ones currently available are required.

To demonstrate the ability of the models to generalize to other bacterial species, we
validated the models on data from bacterial species that were not part of the training
set. In fact, using data from the same bacterial species on the training and test sets was
not a factor to explain variance in model performance. This indicates that models are
able to learn sRNAs features that are species independent, and even taxa independent as
the AUPRC values obtained in the M. tuberculosis and Lu et al.’s (2011) test sets suggest.
Using data from different bacterial species and experimental conditions is expected to lead
to improved predictive models. In fact, training the classifiers with the combined data
generated models that either outperform, or were comparable to, the models obtained
from training the classifiers with data from a single bacterium. To allow other researchers
to rank their own sRNAs, we have implemented sRNARanking, an R script containing the
RF-Combined model.

To compare our best performing model with current approaches, we evaluated
sRNARanking on a multi-species dataset (Lu, Goodrich-Blair & Tjaden, 2011) and
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demonstrated that sRNARanking clearly outperformed an SVM-based approach using tri-
nucleotide composition features and four comparative genomics-based approaches (Fig. 8).
Additionally, we compared sRNARanking performance on a SLT2 dataset with two recently
published approaches: a meta-approach (Arnedo et al., 2014) and a SVM-based approach
(Barman, Mukhopadhyay & Das, 2017). sRNARanking achieved better performance than
both approaches (Fig. 9). Our results also suggest that using real genomic sequences as
negative instances gives a more conservative predictive performance estimate than using
artificial (shuffled) genomic sequences as negative instances. Although sRNARanking
outperformed the other published methods in the benchmark datasets, there is still room
for improvement of computational identification of sRNAs from genomic sequences.

A multitude of sRNAs have been detected in many bacterial species. The sheer number
of novel putative sRNAs reported in the literature makes it infeasible to validate each of
them in the wet lab. Thus, there is the need for computational approaches to characterize
putative sRNAs and to rank these sRNAs on the basis of their likelihood of being bona
fide sRNAs. Our results demonstrate that a RF-based approach using genomic context and
structure-based features is able to detect intrinsic features of sRNAs common to a number
of bacterial species, overcoming the challenge of the low sequence conservation of sRNAs.
As the number of detected sRNAs continues to raise, computational predictive models as
the one here presented will become increasingly valuable to guide further investigations.

Abbreviations

LR logistic regression
MP multilayer perceptron
AB adaptive boosting
GB gradient boosting
RF random forest
FDR false discovery rate
AUC area under receiver operating characteristic curve
AUPRC area under the precision–recall curve
LOOCV leave-one-out cross-validation
ORF open reading frame
nts nucleotides
sRNA small non-coding RNA
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