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ABSTRACT
Wiskott-Aldrich syndrome (WAS) is a recessive X-linked inmmunodeficiency caused
by loss-of-function mutations in the gene encoding the WAS protein (WASp). WASp
plays an important role in the polymerization of the actin cytoskeleton in hematopoietic
cells through activation of the Arp2/3 complex. In a previous study, we found that
actin cytoskeleton proteins, includingWASp, were silenced in murine erythroleukemia
cells defective in differentiation. Here, we designed a CRISPR/Cas9 strategy to delete
a 9.5-kb genomic region encompassing the Was gene in the X chromosome of
murine erythroleukemia (MEL) cells. We show that Was-deficient MEL cells have a
poor organization of the actin cytoskeleton that can be recovered by restoring Was
expression. We found that whereas the total amount of actin protein was similar
between wild-type andWas knockout MEL cells, the latter exhibited an altered ratio of
monomericG-actin to polymeric F-actin.We also demonstrate thatWasoverexpression
can mediate the activation of Bruton’s tyrosine kinase. Overall, these findings support
the role of WASp as a key regulator of F-actin in erythroid cells.

Subjects Molecular Biology, Hematology
Keywords Wiskott-Aldrich, Erythroleukemia cells, Actin cytoskeleton, CRISPR/Cas9, Bruton
tyrosine kinase

INTRODUCTION
Wiskott-Aldrich syndrome (WAS) is an X-linked hematological disorder clinically
characterized by microthrombocytopenia, eczema, recurrent infections and predisposition
to develop lymphomas and autoimmunity diseases (Massaad, Ramesh & Geha, 2013;
Matalon, Reicher & Barda-Saad, 2013; Thrasher & Burns, 2010). The disease arises from
mutations in the gene encoding the WAS protein (WASp), resulting in cytoskeletal
abnormalities that are responsible for the wide spectrum of clinical phenotypes. The levels
of WASp expression correlate negatively with the severity of the disease; accordingly, low
levels produce milder forms such as X-linked thrombocytopenia, whereas the absence of
the protein results in the most serious manifestations of Wiskott-Aldrich syndrome (Albert
et al., 2010; Jin et al., 2004; Zhu et al., 1997).
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WASp is the founder member of a family of actin nucleation-promoting factors that
includes at least five subfamilies, WASP (WASP and neuronal N-WASP), SCAR/WAVE
(verprolin homolog isoforms), WASH (WASP and SCAR homolog isoforms), WHAMM
(WASP homolog associated with actin, membranes andmicrotubules), and JMY (junction-
mediating regulatory protein) (Alekhina, Burstein & Billadeau, 2017), and all are important
regulators of actin cytoskeletal dynamics. WASp family proteins function as multidomain
proteins that adopt a closed autoinhibited conformation, where the carboxy-terminal
verprolin-cofilin-acidic domain interacts with the GTPase-binding domain. Binding of the
Rho GTPase Cdc42 protein unlocks the verprolin-cofilin-acidic region, allowing binding
and activation of theArp2/3 (actin-related protein) complex, which subsequently stimulates
actin polymerization (Kim et al., 2000). As opposed to the ubiquitous expression of other
WASp family members, WASp is exclusively expressed in the hematopoietic lineage (Derry,
Ochs & Francke, 1994; Parolini et al., 1997), including erythroid cells (Fernandez-Calleja
et al., 2017; Parolini et al., 1997),

The eukaryotic actin cytoskeleton is a key element in various cellular processes and
is classically associated with cell migration, adhesion, endo/exocytosis, and cytokinesis.
Actin microfilaments are composed of monomeric globular (G-actin) and polymeric,
filamentous actin (F-actin), and the dynamic transition between the two forms are
dependent on the cellular requirements (Rotty & Bear, 2014). Increasing data show that
actin dynamics is also involved in signaling regulation and plays important roles in cell
differentiation (Misu, Takebayashi & Miyamoto, 2017) and tumor progression (Ebata,
Hirata & Kawauchi, 2016; Nurnberg, Kitzing & Grosse, 2011). We recently demonstrated
that the actin cytoskeleton is poorly organized in a murine erythroleukemia (MEL) cell
line resistant to cell differentiation (Fernandez-Calleja et al., 2017). Unlike the progenitor
MEL-DS19 cell line, resistant cells (MEL-R) are refractive to most inducers capable of
triggering cell differentiation (Fernandez-Nestosa et al., 2008; Fernandez-Nestosa et al.,
2013). Transcriptome profiling by next-generation sequencing of MEL-DS19 and MEL-R
cell lines revealed that several genes involved in actin polymerization were poorly expressed
in MEL-R cells. WASp emerged as one of the actin-related proteins whose expression
was blunted in resistant cells (Fernandez-Calleja et al., 2017). Accordingly, MEL-R cells
showed a marked decrease in actin content as measured by immunocytochemistry and
confocal microscopy, even though the total amount of actin protein remained unchanged.
Based on these observations, we suggested that actin-related proteins might shape the
cytoskeleton organization. Furthermore, we hypothesized that the loss of any of the actin-
network components may interfere with the dynamic assembly that takes place during actin
polymerization. In the present study, we used CRISPR/Cas9 to delete theWas locus inMEL
DS19 cells. We found that loss of WASp altered the dynamics of filamentous actin (F-actin)
and free globular actin (G-actin) turnover, which led to an aberrant actin cytoskeleton
organization. The phenotype displayed by the CRISPR/Cas9-edited Was transfectants
resembled that of MEL-R cells, and could be recovered by WASp overexpression. We also
show that ectopic expression of WASp enhances the expression of Bruton’s tyrosine kinase,
an important component of the actin cytoskeleton network.
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MATERIALS AND METHODS
Cell cultures
The murine erythroleukemia cell line MEL-DS19 (hereafter called MEL) was obtained
from Dr Arthur Skoultchi (Albert Einstein College of Medicine, Bronx, New York, USA).
MEL-R cells, derived from MEL cells, were previously established in our laboratory by
growing MEL cells continuously in the presence of 5 mM hexamethylene bisacetamide
(HMBA) (Fernandez-Nestosa et al., 2008; Fernandez-Nestosa et al., 2013). Murine 3T3-
Swiss albino fibroblasts (CCL-92) were obtained from the ATTC. Cell lines were propagated
in Dulbecco’s Modified Eagle’s Medium containing 10% fetal bovine serum (BSA), 100
units/ml penicillin and 100 µg/ml streptomycin (all from Gibco). MEL-R cells were
routinely cultured in the presence of 5 mMHMBA (Sigma). MEL DS19 cell differentiation
was induced by exposing exponentially growing cultures to 5mMHMBA. Hemoglobinized
cells were quantified by determining the proportion of benzidine-staining positive cells
(B+) in cell cultures. Cell growth was assessed daily by counting samples of the cultures
with a Neubauer hemocytometer chamber.

Generation of MEL/Was−/− cells by CRISPR/Cas9 technology
Genomic deletion of Was in MEL cells was performed by CRISPR/Cas9 technology as
described (Bauer, Canver & Orkin, 2015). Two single guide RNAs (sgRNA1 and sgRNA2)
were designed to separately target the entire gene (mouse X:7658591–7667617) using the
online tool CRISPR (http://crispr.mit.edu/). Coupled complementary oligonucleotides
(CACC was added to the 5′ end of the sense strand and AAAC was added to the 5′ end of
the antisense strand) were annealed and inserted into the BbsI sites of linearized pX330
vector (Addgene plasmid ID 42230). The sequences of the sgRNA oligonucleotides are
listed in Table S1. MEL cells were co-transfected with the two sgRNAs vectors and a third
vector, pEFBOS-GFP, encoding green fluorescent protein (GFP) (Fig. S1), by cationic
liposome-based transfection with Lipofectamine 2000 (Life Technologies). After 72 h, the
top∼3% of GFP-positive cells were individually sorted into 96-well plates. Genomic DNA
was isolated from all clones and screened for biallelic deletion via PCR using non-deletion
(ND) primers, whose assembly takes place internal to the sequence to be deleted, and
deletion (D) primers, whose assembly is upstream and downstream of the sgRNA cleavage
sites. The primers used for identifying biallelic deletion clones are listed in Table S2 and
were designed with Primer3 software (http://bioinfo.ut.ee/primer3-0.4.0/) (Untergasser et
al., 2012). The conditions for the PCR were as follows: pre-denaturing step of 94 ◦C for
7 min, followed by 35 cycles of 94 ◦C for 40 s, 60 ◦C for 1 min and 72 ◦C for 1 min, with
a final extension at 72 ◦C for 7 min. PCR products were resolved on 1% agarose gels and
visualized by ethidium bromide staining.

MEL-R DNA transfection
Exponentially growingMEL-R cells were transfected as described above with the pcDNA3.1
±DYKWas expression vector (GeneScript) containing the coding region ofWas (hereafter
called pcDNA3.1-Was) (Fig. S1). After 6 h, cells were distributed into 96-well plates.
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The transfectants were selected by limited dilution and maintained in growth medium
containing 1 µg/ml G418 (Sigma).

Antibodies and immunoblotting
Control 3T3 fibroblast cells, MEL, MEL-R and transfected cells (2.5×106) were harvested,
washedwith phosphate buffered saline (PBS) and lysedwithNP-40 buffer (20mMTris-HCl
pH 7.5, 10% glycerol, 137 mM NaCl, 1% NP-40, 1 mM sodium orthovanadate, 10 mM
sodium fluoride, and 2 mM EDTA) containing protease inhibitors (all from Sigma).
Protein lysates (10–30 µg) were separated by 12% SDS-polyacrylamide gel electrophoresis
and transferred to PVDF membranes (Bio-Rad). The membranes were incubated with a
mouse monoclonal anti-β-actin (1:10,000; Sigma), mouse monoclonal anti-WASp (1:500,
Santa Cruz), mouse monoclonal anti-Btk (1:500; Santa Cruz), and rabbit polyclonal anti-
α-tubulin (1:1000; ABclonal) antibodies, then washed five times with T-TBS (20 mM Tris–
HCl, 150 mM NaCl, 0.1% Tween 20). Primary antibodies were detected with horseradish
peroxidase-conjugated anti-mouse (1:3,000; Santa Cruz) or anti-rabbit IgG (1:1,000,
DAKO) antibodies, followed by five cycles of T-TBS washes. The analysis of filamentous
(F-actin) and globular (G-actin) actin content was performed from 107 cells. Samples were
harvested, washed in PBS and lysed in a lysis buffer (50 mM PIPES pH 6.9 (Sigma), 5 mM
MgCl2, 5 mM EGTA (Sigma), 5% glycerol (Roche), 0.1% β-mercaptoethanol (Merck),
1 mM PMSF (Roche), 10 mM benzamidine (Sigma) and 1 mM ATP (Roche)). Protein
supernatants and pellets were collected after ultracentrifugation (100,000 g, 1 h at 37 ◦C)
and analyzed by immunoblotting as described above.

Immunofluorescence staining and confocal microscopy
MEL,MEL-R and transfected cells were plated on poly-L-lysine-coated slides and incubated
at 37 ◦C for 30 min. Cells were fixed with 4% paraformaldehyde for 30 min, permeabilized
with 0.1% Triton-X 100 in PBS for 30 min and blocked with 1% BSA in PBS/0.1%
Triton-X 100 for 1 h, all at room temperature (RT, ∼22 ◦C). Cells were stained with
anti-β-actin (1:3,000; Sigma) or anti-Btk (1:200; Santa Cruz) antibodies for 1 h at RT
followed by washing twice with PBS. Primary antibodies were detected with an Alexa
Fluor 568 secondary antibody (Molecular Probes) and 1 µg/ml DAPI (4,6-diamidino-2-
phenylindole; Sigma) was added to stain nuclei, for 1 h at RT, followed by two washes with
PBS. Finally, cells were mounted on cover slips with Prolong Diamond Antifade Mountant
reagent (Invitrogen). Fluorescence images were acquired on a Leica TCS SP2 confocal
microscope using a 100× objective with zoom.

Statistical analysis
Data are presented asmeans± standard deviation of the densitometric analysis. Differences
were tested by the Student t -test. The values P < 0.05 were considered statistically
significant. Statistical analysis of western blot data and immunofluorescence images
are presented in Figs. S2 and S3, respectively.
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RESULTS
Effects of ectopic WASp expression on the actin cytoskeleton in
MEL-R cells
It is generally recognized that WASp plays an important role in the maintenance of
cytoskeletal organization in hematopoietic cells (Alekhina, Burstein & Billadeau, 2017). In
our previous study, we found thatWas is expressed in erythroleukemia MEL cells, whereas
it was barely detectable in MEL-R cell lines (Fernandez-Calleja et al., 2017). To further
evaluate the status of Was at the protein level, we compared proteins extracts from MEL
cells, both undifferentiated and differentiated in the presence of the inducer-mediated
differentiation HMBA, with those from a representative MEL-R resistant line. We also
included the 3T3 fibroblast cell line as a negative control as WASp is not expressed in
non-hematopoietic lineages. Immunoblotting showed robust WASp expression in MEL
cells, which decreased during cell differentiation (Fig. 1A). By contrast, the levels of WASp
in MEL-R cells were much lower than in undifferentiated MEL cells and were comparable
with that observed in 3T3 fibroblasts. Because our recent study (Fernandez-Calleja et al.,
2017) suggested that low levels of several actin-cytoskeletal proteins, including WASp,
result in anomalous cytoskeleton organization, we sought to determine whether forced
expression of WASp might reverse this effect. To do this, we established MEL-R cell lines
constitutively expressing WASp and screened for clones with robust WASp expression,
which identified clones 9, 10 and 11 for further analysis (Fig. 1B).

Confocal immunofluorescence analysis of MEL cells stained with an anti-actin antibody
revealed a clear rim of actin fluorescence surrounding the nuclear periphery (Fig. 2, column
1). A similar pattern was observed in the WASp-overexpressing MEL-R clones 9, 10 and 11
(Fig. 2, columns 2–4), whereas no detectable signal was evident in non-Wasp-expressing
MEL-R cells (Fig. 2, column 5). These results confirm that WASp expression has a positive
impact on the organization of the actin cytoskeleton in erythroleukemia cells.

We next used immunoblotting to evaluate total actin protein levels inMEL-R andWASp-
overexpressing MEL-R transfectants, finding no differences between the two (Fig. 3A).
Given this result, we next asked whether the changes observed by confocal microscopy
might be due to an altered ratio of monomeric G-actin and polymeric F-actin. To address
this, we used high-speed centrifugation to separate G- and F-actin pools from cell lysates,
followed by immunoblotting with an anti-β actin antibody. Results showed that the F-actin
pool in WASp-overexpressing MEL-R clones 9, 10 and 11 was considerably greater than
in MEL-R cells, whereas the free G-actin pool remained low (Fig. 3B). By contrast, the
G- and F-actin pools in control MEL-R cells were similar. These results demonstrate that
the proportion of F-actin increases after WASp overexpression and suggest that it might
contribute to nuclear actin polymerization.

CRISPR/Cas9-mediated Was deletion in MEL cells
Proteins associated with the actin polymerization machinery, such as WASp, are silenced
or minimally expressed in MEL-R cells (Fernandez-Calleja et al., 2017). We have shown
that ectopic expression of WASp in MEL-R cells can restore the wild-type phenotype
observed for the actin cytoskeleton (Fig. 2). Assuming that WASp is essential for actin
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Figure 1 WASp is poorly expressed inMEL-R cells. (A) Immunoblot analysis of whole-cell extracts from
erythroleukemia-resistant cells (MEL-R), MEL cells undifferentiated (0 h) and differentiated with hexam-
ethylene bisacetamide (HMBA) (120 h), and 3T3 fibroblasts. Equal amounts of protein (30 µg) were frac-
tionated by SDS-polyacrylamide gel electrophoresis and analyzed by immunoblotting with an anti-Was
antibody. α-tubulin was used as a loading control. (B) Immunoblot analysis of whole-cell lysates from sta-
ble transfectants overexpressingWas (MEL-R/Was (+) processed as in A). Numbers above the panel cor-
respond to clones 8, 9, 10, 11, 13 and 15. MEL cells and MEL-R cells transfected with an empty vector (C)
were treated and analyzed under similar conditions. α-tubulin was used as a loading control.

Full-size DOI: 10.7717/peerj.6284/fig-1

polymerization in erythroleukemia cells, we hypothesized that the knockout of the gene
would alter actin cytoskeleton organization in MEL cells. Thus, we used the CRISPR/Cas9
gene-editing platform to delete the genomic region encompassing the Was gene in the
X chromosome of MEL cells. A schematic representation of the genomic target sites is
shown in Fig. 4A. Cells were transfected with three plasmids: pX330Was 1 and pX330Was
2, expressing the sgRNAs, and pEFBOS-GFP (Fig. S1). Cells were then double selected for
GFP-positivity and G418 resistance. PCR analysis of bi-allelic GFP-positive cells (Fig. 4B)
and immunoblotting (Fig. 4C) confirmed three knockout clones: 1, 4 and 73. Cell clone-1
was used in most of the following experiments.
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Figure 2 Overexpression ofWas. induces organization and polymerization of actin cytoskeleton in
MEL-R cells. Immunofluorescence staining of MEL cells, MEL-R/Was (+) transfectants 9, 10 and 11,
and MEL-R cells with a mouse monoclonal anti-b-actin antibody (red). Nuclei were visualized with DAPI
(blue). Magnified views indicated by white boxed areas are shown below second-row panels. The scale bar
represents 10 mm.

Full-size DOI: 10.7717/peerj.6284/fig-2

We first assessed whether Was knockout (MEL/Was−/−) cells had any noticeable
phenotypic differences compared with wild-type MEL cells. Cell proliferation analysis
showed no significant alterations in growth rate between MEL and MEL/Was−/− cells
(Fig. S4A ). Cell differentiation was also evaluated after treatment with 5 mM HMBA, a
potent inducer of cell differentiation in erythroleukemia cells (Fig. S4B ). Results showed
no changes in the percentage of cell differentiation between the two cultures, indicating
that CRISPR/Cas9-mediated deletion had no deleterious effects on cell transfectants.

We then questioned whether MEL/Was−/− cells presented a defect in the actin
cytoskeleton organization. By confocal analysis, loss ofWas function in MEL/Was−/− cells
led to a considerably reduced actin fluorescence signal, which was similar in intensity to that
observed inMEL-R cells (Fig. 5 compare columns 2 and 4). Since the ectopic overexpression
ofWas inMEL-R cells could rescue the wild-type phenotype (Fig. 2), we performed a similar
analysis in MEL/Was−/− cells. We transiently transfected the pcDNA3.1-Was vector into
MEL/Was−/− cells and collected cells 48 h later for immunofluorescence analysis. As
expected, a rim of actin staining was clearly visible around the nuclei of MEL/Was−/− cells
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Figure 3 Overexpression ofWas enhances the formation of F-actin inMEL-R transfectants. (A) Total
actin expression was evaluated in MEL-R/Was (+) clones 9, 10 and 11, and MEL-R cells by immunoblot-
ting with an antibody against b-actin. α-tubulin was used as a loading control. (B) G-actin and F-actin
from MEL-R and MEL-R/Was (+) transfectants 9, 10 and 11, separated after ultracentrifugation (G-actin
remains in the supernatant, F-actin found in the pellet) were immunoblotted and probed as in (A).

Full-size DOI: 10.7717/peerj.6284/fig-3

overexpressingWas, and was comparable with that observed in MEL cells (Fig. 5, compare
columns 3 and 1). Overall, the knockout and rescue experiments confirm the important
effect of WASp for the actin cytoskeleton organization in erythroleukemia cells.

To examine whether changes in actin expression or an altered ratio of monomeric
G-actin and polymeric F-actin was the origin of the actin phenotype in MEL-Was−/−

cells, we first measured the expression of actin in MEL-Was−/− cells by immunoblotting
We found that the total amount of actin was similar to that in MEL and MEL-R cell
lines (Fig. 6A). We then used ultracentrifugation to fractionate monomeric G-actin to the
supernatant and polymeric F-actin to the pellet from MEL-Was−/− whole extracts and
immunoblotted these fractions against actin. Results showed that the balance between G-
and F-actin shifted towards G-actin, with markedly less F-actin detected in the pellet of the
Was mutant (Fig. 6B).

Ectopic expression of WASp promotes Btk activation in MEL-R and
MEL/Was−/− cells
There is increasing evidence that actin is also present in the cell nucleus, which is referred
to as ‘‘nuclear actin’’, where it participates in transcriptional activation and chromatin
remodeling (for a recent review see Misu, Takebayashi & Miyamoto, 2017). Sadhukan and
co-workers previously demonstrated a nuclear role for WASp in transcriptional activation
of several master genes during Th1 cell differentiation, a role that is independent of actin
polymerization (Sadhukhan et al., 2014). In a different study, WASp was reported to be
present both in the cytoplasm and the nucleus, and regulated gene transcription in K562
myeloid cells (Looi et al., 2014). Because WASp can physically associate with Bruton’s
tyrosine kinase (Btk) (Baba et al., 1999; Sakuma et al., 2012), and since Btk was included
among the silenced actin-associated proteins in MEL-R cells (Fernandez-Calleja et al.,
2017), we finally asked whether the ectopic expression of Was affects Btk expression.
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Figure 4 Deletion ofWas in MEL cells using CRISPR/Cas9. (A) Genomic map ofWas in mouse chro-
mosome X:7658591–7667617, including exons (blue rectangles) and 5′ and 3′ untranslated regions (red
rectangles). sgRNA positions in the genome are shown as vertical discontinued red lines. The sgRNA se-
quences are highlighted in purple and illustrate the Cas9 cleavage region. (B) PCR analysis for screening
biallelic deletion clones using primers listed in Fig. S3. PCR products (for clone 1) of the non-deletion am-
plicon (ND) and the deletion amplicon (D) were electrophoresed on a 1% agarose gel and stained with
ethidium bromide. (C) Immunoblotting of total lysates from MEL, MEL/Was−/− clones 1, 4 and 73, and
MEL-R cells. α-tubulin was used as a protein loading control.

Full-size DOI: 10.7717/peerj.6284/fig-4

Figure 7 shows the results of immunoblotting of whole-cell lysates from the stable WASp-
overexpressing MEL-R transfectants 9, 10 and 11 against an anti-Btk antibody. We
observed that Btk was expressed at higher levels in all three transfectants than in MEL-R
cells, although it was more evident in clones 10 and 11. We also analyzed MEL-Was−/−

cells (clones 1 and 73), before and after enforced expression of WASp. In all cases, Btk was
expressed at a level similar to that of the MEL progenitor line irrespective of whether Wasp
was overexpressed or not (Fig. 7). These results reveal thatWas overexpression can mediate
Btk activation in MEL-R cells, suggesting that Btk is downstream of Was in the signaling
cascade. By contrast, an alternative signaling pathway might be operative in MEL cells with
targeted deletion of Was. Indeed, Btk expression can be modulated by different upstream
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Figure 5 Deletion ofWas provokes defects in the organization and polymerization of actin. Confo-
cal images showing actin stained with a mouse monoclonal anti-b-actin antibody (red). Nuclei were vi-
sualized with DAPI (blue). Forced expression ofWas in MEL/Was−/− clone1 was performed by transient
transfection with pcDNA3.1-Was (column 3). Magnified views indicated by white boxed areas are shown
below second-row panels. Scale bar represents 10 mm.

Full-size DOI: 10.7717/peerj.6284/fig-5

activators, such as PU.1 (Christie et al., 2015; Himmelmann et al., 1996). We confirmed
these results by confocal microscopy, observing a marked increase in the levels of Btk
antibody staining in all three MEL-R clones overexpressingWas, and also Btk positivity in
wild-type MEL and MEL/Was−/− cells (Fig. 8).

DISCUSSION
Our previous work aimed to profile differentially-expressed genes between progenitorMEL
cells and the derived cell lineMEL-R, with induced resistance to differentiation (Fernandez-
Calleja et al., 2017). We identified a group of genes comprising three main features: down-
regulated in the resistant cell line, preferentially expressed in the hematopoietic lineage,
and implicated in the actin cytoskeleton organization. Interestingly, several of these
genes, for example, Was, Btk and Rac2, give rise to severe phenotypes when mutated in
humans (Ambruso et al., 2000; Bosticardo et al., 2009; Conley et al., 2009). In the present
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Figure 6 G-/F-actin ratio is altered inMEL/Was−/− cells. (A) Whole-cell lysates from MEL,
MEL/Was−/− and MEL-R cells were analyzed by immunoblotting with an antibody against b-actin.
α-tubulin was used as a loading control. (B) G-actin and F-actin from MEL and MEL-/Was−/−, separated
after ultracentrifugation, were immunoblotted and probed as in (A).

Full-size DOI: 10.7717/peerj.6284/fig-6

Figure 7 Induction ofWas expression inMEL-R cells stimulates Btk expression. Immunoblotting of
whole-cell lysates from MEL, MEL/Was−/− (clones 1 and 73), MEL-R/Was (+) and MEL-R cells with
a mouse monoclonal anti-Btk-antibody. Ectopic expression ofWas by transient transfection with the
pcDNA3.1-Was vector marked (+) for clones MELWas−/− 1 and 73 and MEL-RWas (+) 9, 10 and 11. α-
tubulin was used as a protein loading control

Full-size DOI: 10.7717/peerj.6284/fig-7

study, we investigated the influence of Was expression on the organization of the actin
cytoskeleton in murine erythroleukemia cells. A previous study by Symons and co-workers
using transient transfection of WASp-expressing vectors demonstrated that WASp has a
profound effect on actin polymerization in rat kidney epithelial, monkey COS7 kidney
and Jurkat T cells (Symons et al., 1996). Furthermore, retrovirus-mediated expression of
WASp was shown to reconstitute the actin cytoskeleton in human hematopoietic stem
cells and myeloid derivative cells as well as in T and B cells and macrophages (Dewey et
al., 2006) and references therein). Our results show that forced expression of WASp in
the erythroid lineage MEL-R cell line helped to rebuild actin cytoskeleton organization.
At the molecular level, we found that WASp overexpression induced the conversion of G-

Fernández-Calleja et al. (2019), PeerJ, DOI 10.7717/peerj.6284 11/18

https://peerj.com
https://doi.org/10.7717/peerj.6284/fig-6
https://doi.org/10.7717/peerj.6284/fig-7
http://dx.doi.org/10.7717/peerj.6284


Figure 8 Induction ofWas expression inMEL-R cells stimulates Btk expression. Confocal immunoflu-
orescence images of MEL, MEL/Was−/− (clone1), MEL-R/Was (+) (clones 9, 10 and 11) and MEL-R cells
stained with an anti-Btk monoclonal antibody (green). Nuclear DNA was stained with DAPI (blue). Se-
lected cells of each samples in white boxes areas are amplified below. Scale bar represents 10 mm.

Full-size DOI: 10.7717/peerj.6284/fig-8

to F-actin, which resulted in and increased concentration of F-actin. WASp expression is
crucial for actin filament nucleation, a task that is carried out through the regulation of the
Arp2/3 complex (Machesky & Insall, 1998). A classical view of actin homeostasis involves
the ratio of G-/F-actin that is coordinated through signaling cascades (Blanchoin et al.,
2014; Burke et al., 2014). The constant competition for a limited pool of actin monomers is
tightly controlled by regulatory factors such as profilin-1, which in turn antagonizes WASp
(Rotty et al., 2015; Suarez et al., 2015). By using CRISPR/Cas9 genome editing in MEL
cells, we corroborated that the suppression of WASp has a deleterious effect on the actin
cytoskeleton. Furthermore, the G-/F-actin ratio reflects a critical imbalance at the expense
of the filamentous component. Taken together, our results suggest that WASp deficiency
impedes correct cytoskeleton organization likely by blocking F-actin polymerization.

Phosphorylation ofWASp is crucial formultiple cellular responses (Blundell et al., 2009).
Btk is a non-receptor kinase that can phosphorylate WASp and relieve the autoinhibitory
conformation that ultimately blocks actin polymerization. Btk specifically phosphorylates
tyrosine 293 (Y293 in mice, Y291 in humans) within the GTPase binding domain, which
triggers the destabilization of the autoinhibited conformation and facilitates binding of
the Arp2/3 complex (Blundell et al., 2009). Sakuma and co-workers demonstrated that
the interaction between the WASp N-terminal domain and the SH3 domain of Btk plays
important roles in the lipopolysaccharide-TLR4 signaling cascade inmacrophages (Sakuma
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et al., 2015). Most of the studies concerning the interaction betweenWASp and Btk indicate
that WASp is located downstream of Btk, as first suggested for B cell development (Baba et
al., 1999). Our findings indicate that, directly or indirectly,WASpmodulates the expression
of Btk. BeyondWASp, other factors can act on Btk, as is the case of the transcription factor
PU.1 (Christie et al., 2015; Himmelmann et al., 1996). PU.1 is expressed in MEL cells,
whereas it is silenced in MEL-R cells. A possible reason why the expression of Btk was not
altered in MEL/Was−/−cells might be that PU.1 has redundant activity. In MEL-R cells,
however, the absence of both WASp and PU.1 would prevent the activation of Btk. Indeed,
as we show here, restoration ofWASp activates Btk. These seemingly contradictory findings
suggest that the interactions governing WASp and Btk, and probably other members of the
actin network, are complex.

Finally, what would be the importance of actin cytoskeleton-related proteins during
erythropoiesis? MEL cells, and their MEL-R variants are derived from proerythroblasts
infected with the Friend virus complex. When treated with inducers of differentiation,
MEL cells can complete the differentiation program and reach the reticulocyte stage.
Under specific conditions, when grown in the presence of a fibronectin matrix, a large
proportion of MEL cells will complete enucleation (Patel & Lodish, 1987). MEL-R cells,
however, are unable to grow on fibronectin-coated plates and cannot complete enucleation
loss (Fernandez-Nestosa, 2007). Enucleation is a complex process that mirrors cytokinesis
and, accordingly, the actin cytoskeleton and the multiple proteins that make it up have
a fundamental role (Konstantinidis et al., 2012). The deregulation of these proteins could
negatively influence and prevent enucleation.

CONCLUSIONS
In the present work, we used CRISPR/Cas9 to delete theWas gene in erythroleukemia cells.
We show that Was-deficient cells have a poor organization of the actin cytoskeleton that is
accompanied by an imbalance in the ratio of monomeric G- and polymeric F-actin; a defect
that is reversed by restoringWas expression. We also demonstrate that Was overexpression
mediates the activation of another member of the actin cytoskeleton network, Bruton’s
tyrosine kinase. Overall, our results support the role of WASp as a key mediator of F-actin
regulation and illustrate its importance in the erythroid lineage.
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