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ABSTRACT
Background. The discovery-dominance trade-off is the inverse relationship between
the ability of a species to discover resources and the species’ dominance of those
resources; a paradigmused to explain species coexistence in ant communities dependent
on similar resources. However, factors such as stress (e.g., temperature) or disturbance
(e.g., removal of biomass) associated with the change in land use, canmodify this trade-
off. Here, we aimed to determine the potential effects of land use change on dominance
hierarchy, food preferences and on the discovery-dominance trade-off.
Methods. An experiment with baits was used to investigate the dominance hierarchies
of ant communities in a temperate mountain habitat in central Mexico. We evaluated
the dominance index (DI), foodpreferences anddiscovery-dominance trade-offs of ants
inhabiting two types of vegetation: a native oak forest and agricultural land resulting
from agricultural land use and grazing.
Results. The ant communities in both environments were comprised of three species of
ants (Monomorium minimum, Myrmica mexicana, and Camponotus picipes pilosulus),
four morphospecies (Pheidole sp.1 and Pheidole sp.2, Temnothorax sp. and Lasius
sp.) and one genus (Formica spp.). All Formicidae showed values of intermediate
to low DI, and this factor did not seem to be influenced by the change in land use.
Ants in the modified vegetation (i.e., agricultural land) were found to be numerically
greater. Overall, a higher number of visits were registered to the tuna bait, although
the duration of foraging events to the honey baits was longer. However, foraging times
were dependent on the species considered: the generalized Myrmicinae,M. minimum,
the ant species with highest DI, foraged for longer periods of time in the agricultural
land and on the tuna bait. Meanwhile, the cold-climate specialist Formica spp., with a
lower DI, foraged for longer periods of time in the oak (although not significant) and on
the honey bait. We found little evidence of the discovery-dominance trade-off; instead,
we found considerable diversity in the strategies used by the different species to access
resources. This range of strategies is well represented by the generalized Myrmicinae
M. minimum, the cold-climate specialists Formica spp. and Temnothorax sp., and the
rare species, as the cold climate specialist Lasius sp. (insinuators).
Conclusions. Our evaluation shows that transformation of the original habitat does not
appear to affect the hierarchical dominance of the ant communities, but it does affect
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their food preferences. Specieswith higherDI values such as the generalizedMyrmicinae
are more skilled at resource acquisition in modified habitats. Our results suggest that
change in land use promotes an increase in the diversity of foraging strategies used
by different ant species. This diversity may contribute to resource partitioning which
favors coexistence.

Subjects Animal Behavior, Biodiversity, Conservation Biology, Ecology
Keywords Foraging preferences, Discovery-dominance trade-off, Functional groups,
Ant communities, Numerical dominance, Mexico

INTRODUCTION
It has been proposed that competition is one of the mechanisms which structure animal
communities that share resources, and this is also true for ant communities. However,
there is currently a contentious debate about the exact role of competition on the structure
of ant communities and ant dominance hierarchies (Arnan et al., 2018). Evidence has
shown that ant species exert an influence on other ant species in the vicinity of their nests
and that they compete for high-value food resources, but the effects of this competition
at the community level are unclear (Soares, 2013; Arnan et al., 2018). Also, factors such
as high temperatures, invasive species, parasitoids, and dietary differentiation have been
observed to alter the role of competition on the structuring of ant communities, thereby
facilitating the coexistence of ants with different competitive abilities (Parr & Gibb, 2012;
Cerdá, Arnan & Retana, 2013; Houadria et al., 2015).

Interspecific trade-offs are considered to be one of the most prevalent mechanisms
that enable coexistence at a local scale (Kneital & Chase, 2004). Of these, the discovery-
dominance trade-off (an inverse relationship between a species’ ability to find and control
resources), which was first reported by Fellers (1987), has been typically used to explain
coexistence and competition in ant communities (Parr & Gibb, 2012). This relationship
predicts that when dietary difference is low in an ant community, a trade-off between
discovery and competitive dominance can permit coexistence. The trade-off indicates that
dominant ants are not as efficient at discovering food resources, nor are subordinant ants
able to dominate them (Fellers, 1987). Several studies have addressed the importance of
the discovery-dominance trade-off as a structuring mechanism in ant communities, with
positive (e.g., Fellers, 1987; Davidson, 1998; Delsinne, Roisin & Leponce, 2007; Pearce-Duvet
& Feener Jr, 2010), or neutral effects (Wiesher, Pearce-Duvet & Feener Jr, 2011; Parr &
Gibb, 2012). Other studies have found that its effect can be mediated by factors such
as temperature and habitat structure (Wiesher, Pearce-Duvet & Feener Jr, 2011; Parr &
Gibb, 2012).

As is the case with many other taxa, the most common use of dominance hierarchies is
in the formal testing of trade-offs to explain species coexistence within ant communities.
Dominance hierarchies constructed for ant communities, rank ant species in two or three
levels, based on their numerical or behavioral dominance (Stuble et al., 2017). Although the
number of levels and characteristics used to determine dominance hierarchies is variable
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(Stuble et al., 2017), factors such as the aggressiveness, territoriality, numerical prevalence
and recruitment type of the species are invariably taken into account (Cerdá, Arnan &
Retana, 2013). Because the ant behavioral attributes associated with hierarchical dominance
such as diet or foraging time are part of their niche dimensions, these attributes can also be
used to classify ants into functional groups (see Andersen, 1995). A commonly used scheme
of functional groups is based on global-scale responses of ants to environmental stress
(factors affecting productivity) and disturbance (factors removing biomass), operating at
the genus or species-group level (Hoffman & Andersen, 2003). Andersen (1995) proposed
a classification, based on seven functional groups, which is especially useful for detailed
analyses of particular communities, mostly to characterize the effect of disturbance such as
land use change.

Although ant hierarchy levels were first described in temperate forest species (Vepsäläinen
& Pisarski, 1982), these topics have been studied more extensively in ant communities in
tropical forest or arid habitats. Although data is relatively scarce, it has been found that ant
communities in temperate forest are mainly structured around dominant and subordinate
species (Arnan, Cerdá & Retana, 2012; Trigos Peral et al., 2016). Arnan et al. (2018), found
that species richness was positively correlated with the presence of dominant native ant
species, a pattern that was consistent in temperate and subtropical latitudes, because
ant richness is lower in temperate forest than other habitats, dominance is expected to
be lower in these communities. For example, there are up to 20 ant species in North
American temperate forest (Lynch & Johnson, 1988; Cuautle, Vergara & Badano, 2016),
while Mexican tropical dry forest or Australian semiarid and arid habitats may contain 70
to 100 species (Arnan, Gaucherei & Andersen, 2011;García-Martínez et al., 2015). Themain
factors limiting the abundance of behaviorally dominant species is stress (e.g., temperature)
and disturbance (e.g., land use change). As well as modifying biomass, change of land use
modifies ground temperature, especially in temperate environments (Cuautle, Vergara &
Badano, 2016). These studies suggest that ant communities in temperate environments
may be more sensitive to habitat disturbance and transformation (e.g., change of land use).
We propose that this is either because change of land use alters the balance of competitive
interactions, often in effect resetting the process of competitive exclusion, or because it
clears space for colonization of new species.

Ants are widely used as bioindicators of human disturbance (Andersen & Majer, 2004),
yet there is an ongoing need for research on ant responses to habitat disturbance in different
parts of the world, and to determine how indicative their responses are of ecological change
in general. The conservation of forest habitats is essential for species interactions and
species recruitment at the local and regional scale. Here we examine the effects of change
in land use on ant assemblages by comparing undisturbed oak forest and areas where the
forest has undergone human-modification, i.e., agricultural land. We address three specific
questions: (1) Does land-use change modify the competitive hierarchy in temperate
forest ant communities? We anticipated that cold-climate specialists would dominate
in the oak forest; while generalized Myrmicinae were expected to dominate the more
open modified habitat (agricultural land). (2) Does the change in land use alter food
resource needs/preference in these ant communities? As human-induced disturbance and
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transformation of habitat may alter the availability of resources (e.g., quantity or quality),
we expected that ant food preferences (for specific baits) would be different between
oak forest and agricultural land. (3) Does change in land use alter foraging strategies,
favoring one species over another (discovery-dominance trade-off)? We expected that in
the modified habitat this trade-off would be relaxed due to the absence of dominant species
in disturbed habitats.

METHODS
Study site
Ant assemblages were studied from April through September 2015 in a representative area
of vegetation (∼250 ha) at the La Malinche National Park (MNP), Tlaxcala, Mexico. About
half of this area is comprised of undisturbed forest with ongoing management to prevent
fires. The rest is forest that has suffered numerous fire events, illegal logging, and temporal
agricultural use during the last 20 years and where regrowth has been disturbed by constant
grazing. The MNP forms part of the Trans-Mexican Volcanic Belt. It has an area of 46,093
ha, located between the 19◦14′ N and 98◦14′ W, with an altitude ranging from 2,300 to
4,461 m a.s.l. (López-Domínguez & Acosta, 2005). Mean annual precipitation is 800 mm,
the rainy season is between June and October, and the mean annual temperature is 15 ◦C.
Coniferous forest and Oak forest are the dominant kinds of vegetation.

The vegetation type present at the study site is a transition from preserved oak forest to
rainfed agriculture and agricultural land used for grazing livestock, and has an elevation
range between 2,900 to 2,700 m a.s.l. The forest consisted of dense stands of oak trees
with 80 to 90% coverage where the dominant species are Quercus laurina, Q. crassifolia,
and Q. rugosa. The area with a change in land use from oak forest to agricultural land
includes areas without trees represented by an induced pasture mosaic, and secondary
vegetation originating from the burned forest or abandoned agricultural areas. The most
common species in this area are Festuca tolucensis,Muhlenbergia macroura, and Stipa ichu.
The field research reported here was performed using the required permit (SEMARNAT
No. DGVS/06901/15).

Six transects of 80 m in length were established in pairs. Each pair of transects were
parallel sites of oak and agricultural land, separated by at least 500 m. Two transects were
maintained at 2,900 m a.s.l., two at 2,800 m a.s.l., and two at 2,700 m a.s.l. The separation
between sites was at least 1.5 km. The field experiments and ant samples carried out in each
of these transects are detailed below.

Feeding trials: dominance hierarchy, food preference, and
discovery-dominance trade-off
This study employs the ant competition hierarchy created byVepsäläinen & Pisarski (1982).
Their hierarchical categorization comprises three levels: The lowest level (submissive or
subordinate) consists of ant species that defend only their nest. The intermediate level
(subdominant) corresponds to species that also defend the food resources they find,
and the top level (dominant) consists of species that successfully defend territories that
include their nests and foraging areas. These hierarchy levels correspond respectively, to the
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submissive, encounter and territorial categories later proposed by Savolainen & Vepsäläinen
(1989). The categories take into account characteristics such as aggressiveness, territoriality,
numerical prevalence and recruitment type (Cerdá, Arnan & Retana, 2013). Ants in the
subordinate species category have small colonies, have simple or non-existent recruitment
systems and avoid physical contact with workers of other colonies. Subdominant species
are aggressive, able to defend or to take over food resources, and have moderate population
densities; the dominant species are highly aggressive and numerically prevalent (Cerdá,
Arnan & Retana, 2013). Both dominant types can perform group and mass recruitment.

We chose numerical dominance to assess the dominance hierarchy of the ants (Andersen,
1992; Cerdá, Retana & Cros, 1997). As numerical and behavioral dominance are highly
correlated, this method has been widely accepted and used in the ant literature (Dejean &
Corbara, 2003; Santini et al., 2007; Parr, 2008; Parr & Gibb, 2012; Dáttilo, Díaz-Castelazo &
Rico-Gray, 2014). The method indicates which species are consistently present at the baits,
and which ones dominate the baits numerically and monopolize them (Parr, 2008). It is
effective when the objective is to evaluate which species of ants win the competition for a
resource but does not determine how they do it.

Numerical dominance was evaluated using the numerical dominance index (DI) for
each morphospecies using the formula: N = (Di)/(DI + Si). Here, DI is the number of
baits monopolized by the species of ant i, and Si is the number of baits that the species
of ant i used but did not monopolize. Baits were considered to be monopolized when
more than five individuals (workers or soldiers) of the same morphospecies were using
the resource without the presence of other morphospecies. This measure (more than five
individuals) takes into consideration that in temperate climates ants are less abundant
and recruitment is considered weaker than in tropical environments where the index has
been used more (Santini et al., 2007). Therefore, dominant morphospecies are those that
find and monopolize a larger proportion of the food resources in a given environment.
The range of the index goes from 0 (completely submissive species) to 1 (totally dominant
species) and is similar to the ‘‘monopolistic index’’ used in other studies (Fellers, 1987;
Santini et al., 2007; Parr & Gibb, 2012; Dáttilo, Díaz-Castelazo & Rico-Gray, 2014).

To quantify the numerical dominance, food preference and competitive skills of each
morphospecies, data were collected using an experiment with baits that was replicated
six times, between April and September 2015. A sampling point was placed on every
10 m of the transects. Each sampling point consisted of paired Petri dishes (at <10 cm
apart) with bait as attractants. Two types of baits were used: 0.5 ml of commercial honey
diluted with 50% water and 0.5 g of commercial tuna. For each transect, there were nine
sampling points with 18 Petri dishes. Each month, 108 Petri dishes were placed (2 types
of vegetation × 3 transects × 9 sampling points × 2 types of bait), which adds up to
a total of 648 Petri dishes. The baits were placed ad libitum in the center of each Petri
dish. Honey and tuna are attractive not only to ants that feed on nectar but also to those
that show a preference for resources rich in carbohydrates and protein (Koptur & Truong,
1998; Blüthgen & Fiedler, 2004). The observation period was from 9:00 to 17:00 h. When
climatic conditions permitted, Petri dishes were placed in the first pair of transects at 9:00
h., the second pair of transects at 11:00 h., and in the third at pair at 13:00 h. The order of
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placement of the Petri dishes in the transects was alternated each month. Each month, the
information collected during the day of sampling (108 Petri dishes) was used to calculate
the numerical dominance for each species registered. The DI was calculated for each species
by averaging the data collected during the 6 months of sampling.

To evaluate the discovery-dominance trade-off, observation of the attractant was carried
out at three time-points of exposure: at 1 h, 2 h, and 4 h. At the outset, all Petri dishes
were placed in the transects with baits. The first pair was observed continuously for an
hour during which the number of ants, morphospecies, time of arrival and permanence
(foraging) were quantified. The second pair of Petri dishes was exposed for two hours,
but at the end of the first hour of exposure, water was added to collect the ants present
in the bait and all those that arrived during the following hour. The third pair of Petri
dishes was exposed for four hours, but again, at the end of the first hour of exposure,
water was added to collect all the ants that arrived during the remaining 3 h. Water was
added because initially, we had few visits during the first and second hour of observation,
especially in the oak forest. However, we observed that if we left the Petri dish for four
hours, a greater number of ants and ant species were recorded. The water did not prevent
the recruitment of ants, as can be seen by a general increase in ants recorded after two and
four hours. Ant activity was also observed when the Petri dishes were recovered. Although
the addition of water to the bait after the first hour may have altered the interactions of
species competition, it allowed us to record the continual arrival of other species to the
bait during the second and fourth hrs.; that is, the ants kept coming despite the addition
of water. The data obtained at the 2 and 4 h. time points were sufficient to perform the
comparative analyses between times and species of ants. In addition, in the temperate
environment studied, aggressive encounters between the ant species were not observed
directly. On the contrary, we frequently observed more than two species foraging at the
same time without inference between them. Each exposure time of the baits (1 h, 2 h,
and 4 h) had three replicates, which formed the nine sampling points in each transect.
This sampling allowed us to quantify differences in the ability of the ants to discover
resources (based on the arrival times registered in baits exposed for 1 h) and their ability
to monopolize the resource (determined by the DI of the ants found in the baits exposed
for 2 h, and 4 h). All of the ants collected while visiting the baits were preserved in alcohol
at 70%. Specimens of each morphospecies were assembled and identified using taxonomic
keys (Mackay & Mackay, 1989) and the help of specialists from the Entomology Laboratory
of the Institute of Ecology, AC and the University of Quebec in Chicoutimi, Department
of Fundamental Sciences. All morphospecies identified in this study were assigned to
the functional groups proposed by Andersen (1997). The reference collection was then
integrated into the Entomological Collection (Formicidae) of the Entomology Laboratory
of the University of Las Américas Puebla (UDLAP).

In addition to characterizing the DI of the different morphospecies of ants, their
recruitment (mass or group) was determined by recording the average number of ants
per Petri dish. Incidence is an indicator of the amount of resources that the different
morphospecies of ants are capable of exploiting. This was calculated by observing the
number of Petri dishes used by each morphospecies.
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Statistical analysis
Foraging preference
Pearson’s chi-square tests (with Yates correction) were performed to analyze the foraging
preference of the ants, measured as the number of ants visiting each type of bait (honey
and tuna) in both of the environments (oak forest and agricultural land). Also, as an
alternative way of approaching the foraging preference, we used a Generalized Linear
Mixed Model (GLMM) with a Poisson distribution and log link function as implemented
in the glmer function from the nlme package of R (R Core Development Team, 2014). Given
that longer foraging times to a bait could indicate a greater preference for that bait, this
model was used to analyze variation in the duration of the foraging events. However, longer
foraging times could also indicate a limitation of the natural occurrence of that resource
in their environment. The full GLMM included the factors vegetation type (oak forest
and agricultural land), bait type (tuna and honey), morphospecies, and their interaction.
Foraging duration was treated as the dependent variable. Variation in DI values among
morphospecies was determined using a GLMM with a Poisson distribution and sqrt link
function in R (R Core Development Team, 2014). The full GLMM model included the
following factors: vegetation type (oak forest and agricultural land), bait type (tuna and
honey), bait exposure time (1 h, 2 h, and 4 h), morphospecies, and their interactions as
defined above, and DI estimates treated as the dependent variable. Months (as a repeated
measure) and transect were included in both models as random effects.

Discovery-dominance trade-off
The ant’s ability to discover the baits in the two habitats was evaluated considering
the probability of occurrence of visits (ants arriving at the bait while foraging). If a
morphospecies is more likely to visit a bait during the first hour of exposure and presents
a high DI in this first hour, then it can be cataloged as a discoverer. On the other hand,
a higher DI value at the baits exposed for 2 h and 4 h will indicate which species are
potentially monopolizing resources. Species are then ranked according to its DI and Tukey
test can be applied to form hierarchy groups at the different hour’s intervals.

Survival Analysis (‘‘time failure analysis’’) in R (R Core Development Team, 2014)
was used to analyze differences in ant arrival times the interaction effect of vegetation
type ×morphospecies. Survival analysis is a branch of statistics for analyzing the expected
duration of time until one or more events happen. One of the features of time failure
analysis is the use of censored data. Censored data points are those in which an event
is not observed because the study ended before the event could have happened to some
individuals under observation. This is useful in field biology, where the observation period
may be too brief for all possible events to be registered (Muenchow, 1986). The actual
time of visits to the baits is not always known; only the length of time during which the
event did not occur. For these data, we recorded the beginning of our observations as
time zero and subsequent foraging events as minutes from start time. The Kaplan–Meier
product-limit nonparametric method was used to calculate the likelihood that ants had
not yet visited a bait 60 min after the start of observation, and the logrank (Mantel-Cox)
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Table 1 Number of each ant morphospecies that arrived at the baits (tuna and honey) in both types of
vegetation (oak forest and agricultural land).

Type of vegetation Oak forest Agricultural land
Type of bait Tuna Honey Total Tuna Honey Total Sum totals

FG Subfamily
Formicinae

ccs Formica spp. 85 48 133 213 270 483 616
ccs Lasius sp. – – – 1 2 3 3
sC C. picipes pilosulus – – – – 3 3 3

Myrmicinae
gM M. minimum 19 7 26 1,636 337 1,973 1,999
gM Pheidole sp.1 31 1 32 310 20 330 362
gM Pheidole sp.2 – – – 236 2 238 238
ccs Temnothorax sp. 42 44 86 81 96 177 263
o M. mexicana 1 1 2 8 4 12 14

178 101 279 2,485 734 3,219 3,498

Notes.
FG, Functional Groups; gM, generalized Myrmicinae; ccs, cold-climate specialists; sC, subordinate Camponotini; o,
opportunists.
(−) No individuals of this morphospecies registered.

statistic was used to test for differences in foraging between the types of bait and vegetation
(Muenchow, 1986).

RESULTS
In total, 3,498 individuals were recorded during the study, which corresponded to eight
morphospecies from seven genera of the subfamiliesMyrmicinae (Monomorium minimum,
Pheidole sp.1, Pheidole sp.2, Temnothorax sp., andM. mexicana) and Formicinae (Formica
spp., Lasius sp., and C. picipes pilosulus). In the case of Formica spp., it was composed
of three morphospecies, only Formica retecta was identified, and another morphospecies
of the Fusca group and one more belonged to the Microgyna group. However, in the
study, it was managed as a single group of Formica spp., as these species are functionally
and competitively similar (Andersen, 1997). All morphospecies were present in both
environments, except for Pheidole sp.2, Lasius sp., and C. picipes pilosulus, which were
only recorded in the agricultural land. The highest number of individuals recorded
were Myrmicinae (Table 1). Also, the number of individuals per morphospecies varied
depending on the type of bait used (Table 1). These morphospecies pertain to four
functional groups: generalized Myrmicinae (Monomorium minimum, Pheidole sp.1, and
Pheidole sp.2), cold-climate specialists (Formica spp., Temnothorax sp., and Lasius sp.),
opportunists (M. mexicana) and subordinate Camponotini (C. picipes pilosulus).

Regardless of the bait visited, the number of ants recorded was significantly higher in
the agricultural land than in the oak forest (χ2

c = 2469.33, df = 1, P < 0.001, oak forest
n= 279, agricultural land n= 3,219). In the oak forest, a higher number of individuals
were recorded of Formica spp. and Temnothorax sp., while in the agricultural land the
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more abundant species were M. minimum, Formica spp., Temnothorax sp., Pheidole sp. 1,
Pheidole sp. 2, in that order (Table 1).

Does the change in land use alter food resource needs/preference in
these ant communities?
During the present study the total number of ants recorded in the tuna bait was higher than
in the honey bait (χ2

c = 945.90, df = 1, P < 0.001, tuna n= 2,663, honey n= 835) (Table 1).
All morphospecies were recorded at both baits, except for C. picipes pilosulus, which only
visited the honey bait. Significant differences in foraging preference were observed in
the morphospecies M. minimum, Pheidole sp.1, and Pheidole sp.2. Higher numbers of
these species foraged in the tuna bait (χ2

c = 858.47, df = 1, P < 0.001, χ2
c = 281.10,

df = 1, P < 0.001; χ2
c = 228.10, df = 1, P < 0.001, respectively). On the contrary, in

Formica spp., Temnothorax sp. and M. mexicana the difference was minimal between the
baits. (χ2

c = 0.58, df = 1, P = 0.443, χ2
c = 0.97, df = 1, P = 0.3239, χ2

c = 0.64, df = 1,
P = 0.4226, respectively). In the case of Lasius sp. the number of visits registered to either
bait was too low to establish their foraging preference, and just one C. picipes pilosulus was
recorded in the honey bait (Table 1).

The GLMM model showed significant differences in foraging duration between the ant
morphospecies (regardless of the vegetation type or bait) (χ2

= 100.44, df = 5, P < 0.0001).
Posthocmean contrasts (Tukeymethod) showed that the foraging duration ofM. minimum
(mean ± SE = 21.14 ± 0.17 min) was significantly longer than M. mexicana (5.80 ± 0.27
min), Formica spp. (4.67 ± 0.17 min), Temnothorax sp. (4.50 ± 0.22 min), Pheidole
sp.1 (3.56 ± 0.29 min) and Lasius sp. (P < 0.01). The duration of foraging events in the
agricultural land site (mean± SE= 5.95± 0.17min) was longer than in the oak forest (5.40
± 0.11 min), although the difference was not significant (χ2

= 0.386, df = 1, P = 0.535).
Whereas, in both habitats, foraging events were significantly longer to the honey bait (7.36
± 0.21 min) than to the tuna (4.49 ± 0.11) (χ2

= 15.50, df = 1, P < 0.001).
The interaction effects of morphospecies× bait type (χ2

= 42.17, df = 4, P < 0.001) and
morphospecies × vegetation type (χ2

= 183.7, df = 4, P < 0.001), were significant. Thus,
post hoc mean contrasts showed that the foraging duration of M. minimum increases
from 1.25 ± 0.25 min in the oak forest to 47.33 ± 11.66 min in the agricultural land
(P = 0.001). However, Formica spp. showed an inverse pattern with a foraging duration of
3.46 ± 0.59 min in the agricultural land increasing to 5.01 ± 1.35 min in the oak forest,
which was not significantly different (P = 1.0). Foraging duration of M. mexicana, Lasius
sp. (only found in agricultural land) ranged from 3 to 5 min, and they were not statistically
different (P > 0.05). The foraging duration of Pheidole sp.1 was similar in both vegetation
types (ranging from 2–4.2 min) (P = 0.99). The foraging duration of Temnothorax sp. was
similar in both vegetation types (ranging from 3–7.0 min, P = 1.00). In relation to the
morphospecies × bait type interaction, post hoc mean contrasts showed that the foraging
duration of M. minimum on tuna bait (21.14 ± 10.25) was longer than on honey bait (1.0
± 0 P < 0.001). While Formica spp. had longer foraging duration on honey bait (8.02 ±
1.93) than on tuna bait (2.49 ± 0.63). Also, the foraging duration ofM. minimum on tuna
bait was longer than Formica spp. or Themnotorax sp. (P < 0.001). The interaction effect
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Table 2 Average (median± SE, n) Numerical Dominance Index (DI) by ant morphospecies at the
three time points of exposure in the Petri dishes (1 h, 2 h and 4 h).

Morphospecies Time of exposure

1 h 2 h 4 h Average DI

Formica spp. 0.01± 0.01, 6 0.07± 0.03, 5 0.06± 0.02, 6 0.05± 0.01a, 6
Lasius sp. 0, 1 – 0± 0, 2 0± 0, 2
C. picipes pilosulus – – 0, 1 0, 1
M. minimum 0.25± 0.25, 4 0.60± 0.24, 5 0.27± 0.12, 6 0.35± 0.14a, 6
Pheidole sp.1 0.05± 0.05, 6 0± 0, 2 0.23± 0, 5 0.17± 0.07a, 6
Pheidole sp.2 – – 0± 0, 2 0± 0, 2
Temnothorax sp. 0± 0, 4 0± 0, 5 0.01± 0.01, 6 0.00± 0.00b, 6
M. mexicana 0± 0, 3 0± 0, 2 0, 1 0± 0b, 4

(–) No individuals of this morphospecies registered. Different letters (a, b) indicate there were significant differences in the
average DI between morphospecies (only where a sufficient number of individuals were registered for the morphospecies).
Tukey Test P < 0.05.

of vegetation type × morphospecies × bait type (χ2
= 0.640, df = 2, P = 0.726) was not

significant.

Does land-use change modify the competitive hierarchy in temperate
forest ant communities?
The estimation of the average DI of each morphospecies (based on the DI calculated for
the baits exposed for 1 h, 2 h, and 4 h) showed values lower than 0.5, which indicates a
generally submissive behavior, except for more dominant species such as M. minimum
(Table 2). The GLMM model showed that vegetation type, morphospecies, bait type and
bait exposure-time did not have a significant effect on numerical dominance (vegetation
type, χ2

= 0.159, df = 1, P = 0.689; morphospecies, χ2
= 3.647, df = 7, P = 0.819; bait

type, χ2
= 0.849, df = 1, P = 0.344; bait exposure time, χ2

= 0.427, df = 2, P = 0.152).
The effects of vegetation type×morphospecies (χ2

= 2.466, df = 4, P = 0.650), vegetation
type × bait type (χ2

= 0.013, df = 1, P = 0.907), vegetation type × bait exposure-
time (χ2

= 0.371, df = 2, P = 0.942), morphospecies × bait type (χ2
= 1.368, df = 6,

P = 0.967), morphospecies × bait exposure-time (χ2
= 1.368, df = 14, P = 0.967), bait

type × bait exposure-time (χ2
= 0.451, df = 2, P = 0.911), and the vegetation type

× morphospecies × bait type interaction × bait exposure-time (χ2
= 1.112, df = 84,

P = 0.439) were not significant.
Monomorium minimum was much more behaviorally dominant than all other species

(Table 2) and presented mass recruitment (on average 51 ants per Petri dish). However,
its incidence was intermediate (presence in 39 Petri dishes). Although the dominance
values for Formica spp. and Pheidole sp. 1 were not significantly different from those of
M. minimum, these species differ in their recruitment type and incidences (presence in
Petri dishes). Formica spp. showed group recruitment (on average three ants per Petri dish)
and was the morphospecies with the highest incidence (presence in 193 Petri dishes). In
the case of Pheidole sp.1, it had group recruitment (on average 11 individuals per Petri
dish), and its incidence was intermediate (presence in 33 Petri dishes). Temnothorax sp.
and M. mexicana comprised the next group in the dominance hierarchy. In the case of
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Temnothorax sp., it had group recruitment (on average 3.7 ants per Petri dish), and its
incidence was intermediate (presence in 71 Petri dishes).Myrmica mexicana showed group
recruitment (on average two ants per Petri dish) and had a very low incidence (presence in
seven Petri dishes). Finally, Lasius sp., Pheidole sp. 2 and C. picipes pilosulus formed a group
consisting of submissive and rarely registered species. In the case of Lasius sp., it had group
recruitment (on average one ant per Petri dish), and its incidence was very low (presence
in three Petri dishes). Pheidole sp.2 presented mass recruitment (on average 79 individuals
per Petri dish) with a very low incidence (presence in three Petri dishes). Finally, only three
individuals were registered for C. picipes pilosulus; presented group recruitment and a very
low incidence (presence in one Petri dish).

Does change in land use alter foraging strategies, favoring one
species over another (Discovery-dominance trade-off)?
The bait exposure-time did not have a significant effect on numerical dominance (see
results of the GLMM model of Dominance hierarchy). Considering the arrival times
during the one hour observation, neither the type of vegetation (χ2

= 0, df = 1, P = 0.854)
nor the type of bait (χ2

= 0.3, df = 1, P = 0.584) had a significant effect on the arrival
times of the ants to the resources offered in the baits. However, vegetation type changed
the different ant species probability of visiting baits exposed during 1 h. In the oak forest
(Fig. 1B), the arrival times of Formica spp., Temnothorax sp. and M. minimum were
continual during that hour; while Temnothorax sp. was the last ant species to reach the
baits (Fig. 1A). However, in the oak forest (Fig. 1A), there were no significant differences in
the arrival times of these morphospecies (χ2

= 2.8, df = 3, P = 0.432). In the agricultural
land (Fig. 1D), the ant’s arrival times to the resources offered in the baits differ significantly
(χ2
= 17, df = 5, P = 0.004). M. minimum (which also had the highest DI values) was the

first ant species to reach the baits (Fig. 1C), and its arrival time differed significantly of the
other ants (χ2

= 12.6, df = 1, P = 0.0004). The arrival times of the rest of the ants were
similar (χ2> 1.2, df = 1, P > 0.267). The last ant species to reach the baits was Lasius sp.,
although only one event was recorded for this ant.

DISCUSSION
In this study, we found that the eight registered morphospecies behaved as subdominant
(M. minimum, Pheidole sp. 1 and Formica spp.) or subordinate species (Temnothorax sp.
andM. mexicana). None of the observed species seem to fit the profile of dominant, which
agrees with what was predicted for this type of communities where lower ant dominance is
expected. Of the two baits, more visits were recorded to the tuna. In morphospecies such
asM. minimum, Pheidole sp.1, and Pheidole sp.2, the higher number of visits to this type of
bait could indicate a preference for protein resources or a limitation of that resource. In the
case ofM. minimum, it also spent more time foraging on tuna bait. The transformation of
the oak forest does not seem to havemuch effect on dominance (dominance hierarchy), but
it does affect the morphospecies’ foraging times (M. minimum had greater foraging times
in the agricultural land) and arrival times (in the agricultural land, M. minimum was the
first ant to arrive to the baits). Also, this change in land use resulted in a greater abundance
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Figure 1 Ant morphospecies’ probability of visiting baits for foraging during the 60-min observation
periods. The y-axis represents the likelihood of arrival events still occurring. The x-axis, is the time until
an ant forager arrives from the start of the observation period. The analysis only includes ant species that
arrived at the baits in both (A, B) oak forest and (C, D) agricultural land. Photos by Carlos Lara.

Full-size DOI: 10.7717/peerj.6255/fig-1

of ants of all registered species. In addition, three species that were present in the modified
habitat (agricultural land) were not present in the original habitat, Pheidole sp.2, Lasius sp.,
and C. picipes pilosulus. We found little evidence of the discovery-dominance trade-off and
instead found diversity in the strategies used by the different species to access resources.
This diversity can be seen in the foraging strategies of the generalized Myrmicinae M.
minimum, the cold-climate specialist Formica spp. and rare ants such as the cold climate
specialist Lasius sp.

Differences between the two vegetation types
A low number of species were registered in this study, which agrees with the low richness (25
morphospecies) reported for this site (Silva Rodríguez, 2015). Of the eight morphospecies
recorded, five were found in both vegetation types (M. minimum, Formica spp., Pheidole
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sp.1, Temnothorax sp., and M. mexicana) and only three were found exclusively in the
agricultural land (Pheidole sp.2, Lasius sp. and C. picipes pilosulus). The type of vegetation
seemed to have little influence on the hierarchy of dominance, but it did affect the arrival
and foraging times of the morphospecies, and especially the number of visits to the baits.
Both for the ant community as a whole (across species) and for individual morphospecies
(within species), the total number of visits was higher in the agricultural land. The greater
number of visits recorded in the agricultural land may be due to the fact that in this type of
open vegetation, the temperature and solar radiation are usually higher (Barranco-León et
al., 2016), which, for physiological reasons, may increase the activity of the ants (Retana &
Cerdá, 2000). The most abundant morphospecies differed according to the vegetation type.
In the oak forest, the cold-climate specialists Formica spp. and Temnothorax sp. were more
frequently recorded at the baits. While, in the agricultural land, the generalizedMyrmicinae
M. minimum was more abundant and had longer foraging times. This coincides with what
we expected as Formica spp. and Temnothorax sp. are cold-climate specialists, which are
better adapted for the cooler conditions of the oak forest (Andersen, 1997; Andersen, 2000;
Cuautle, Vergara & Badano, 2016). In the case of the Formica genus, different studies point
to it being a possible bioindicator in temperate ecosystems (Ellison, 2012) and species
of this genus are identified as key species around which temperate communities are
structured (Trigos Peral et al., 2016). On the other hand, generalized Myrmicinae, such as
M. minimum, are successful competitors that predominate under moderate levels of stress
and disturbance but are not as active and aggressive as dominant Dolichoderinae, which are
aggressive species most abundant in environments with low levels of stress and disturbance
(Andersen, 1997). Interestingly, as with our study site, Dominant Dolichoderines are
absent in cool-temperate regions elsewhere in the world. Behavioral dominance is usually
exhibited by cold-climate specialists in these regions.

Food preferences
The least submissive species (with the highest DIs) are generalized Myrmicinae (i.e.,
Monomorium minimum, Pheidole sp. 1). These species showed a preference for certain
foods, which can be interpreted as a preference for less abundant (or scarce) food sources,
in this case, proteins. This suggests that more dominant ants or generalists are able to
monopolize the resources that are more desirable because of their nutritional quality or
scarcity. This finding contrasts with other studies in temperate ecosystems where the food
preference, especially of the dominant species, is for carbohydrates (Houadria et al., 2015).
Formica spp. had a longer foraging duration on honey bait, while, Temnothorax sp. andM.
mexicana, used both types of resources, possibly to reduce competition with other ants in
the community for protein sources. This inference is also supported by the longer foraging
times registered to tuna bait, in the agricultural land by M. Monomorium, a generalized
Myrmicinae.

Dominance hierarchy
When analyzing the hierarchy of dominance in the community (measured with the
numerical dominance index), we found that the ants had very low indexes (<0.5) indicating
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subdominant or submissive behavior. M. minimum was the species that obtained the
highest recruitment value and DI, but its incidence was intermediate. Meanwhile, Formica
spp., submissive and with group recruitment, had the highest incidence. This tells us that
Formica spp. is important in the structure of the ant community, as it appears to be having
an impact on a more extensive area. Although foraging in smaller groups, its larger range
allows it to reach a greater number of food resources.

These results seem to confirm what is anticipated for this type of communities. In
temperate ecosystems, there are fewer dominant species than, for example, in the tropical
(e.g., García-Martínez et al., 2015) or arid and semi-arid (seasonal) ecosystems of Australia
(Arnan, Gaucherei & Andersen, 2011) where the richness and abundance of dominant
species are high. Fewer dominant species promotes low competition, which is then reflected
in a lower number of registered species and low dominance indices. However, the inclusion
of the different species recorded in this study in one of the two categories and subcategories
indicated by Trigos Peral et al. (2016), or one of the three categories proposed by Cerdá,
Arnan & Retana, (2013), is not so simple. The absence of a dominant element is evident,
which also agrees with what is expected for temperate ecosystems. In stressful environments
such as oak forests with low temperatures, the absence of dominant Dolichoderinae
is anticipated, and species adapted to these stressful environments assume dominance
(Andersen, 2000; Andersen, 1997; Cuautle, Vergara & Badano, 2016), which in this ant
community are the cold-climate specialists such as Formica spp. and Temnothorax sp. In
disturbed environments, such as agricultural land, the absence of dominant Dolichoderinae
and the predominance of the generalized Myrmicinae are also expected (Andersen, 2000;
Arnan, Gaucherei & Andersen, 2011), in the case of our study M. minimum. Land use
change from forest to agricultural land will cause a change in microclimatic conditions as
temperature, and it is expected to find colder conditions in the oak forest than in the open
vegetation (Cuautle, Vergara & Badano, 2016; Barranco-León et al., 2016). In this study,
the differences in microclimatic conditions (especially temperature) between habitats,
might explain the predominance of different functional groups in each type of vegetation.

Discovery-dominance trade-off
The results of this study do not support the existence of a discovery-dominance trade-off
in this temperate ant community. This is in agreement with a study by Parr & Gibb (2012),
that found the discovery-dominance trade-off could be relaxed by the substantial effect
temperature variance has on foraging activity and potentially by other trade-offs such as
the trade-off between stress tolerance and competitive dominance (Bestelmeyer, 2000).
As change in land use from forest to agricultural land is likely relaxing the discovery-
dominance trade-off, the warmer ground temperatures of the disturbed vegetation types
may be facilitating operation of other trade-offs such as stress tolerance and competitive
dominance in the study site. The stress tolerance and competitive dominance trade-off
hypothesis points out that dominants ants will forage when temperatures are optimal, but
when temperatures are close to the physiological limits (critical temperatures) dominants
will reduce their foraging activity, and this gives subordinate ants opportunity to forage
in these extreme temperatures (Cerdá, Arnan & Retana, 2013). The opposite situation
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is also valid; ants tolerant to cold climatic (cryophilic) conditions can forage at lower
temperatures than the dominant ants (Bestelmeyer, 2000). Parr & Gibb (2012) found that
in structurally complex habitats such as forest, the increased heterogeneity and rugosity
of the environment, can also relax these trade-offs as these factors affect discovery by
slowing recruitment and altering species interactions, which prevent aggressive species
from monopolizing resources.

Differential behavioral strategies and dominance hierarchy of
morphospecies
Although a discovery-dominance trade-off was not evident in the behavior of the ants in
this study, differences in abundance, incidence (Petri dish occupation) and recruitment
numbers (mean number of ants per Petri dish) were recorded. These differences could be
indicating that the ants of this community may be using different strategies to access and
dominate resources. As expected in temperate communities, this community has a simple
dominance hierarchy (similar to that proposed by Trigos Peral et al., 2016), which appears
to lack the territorial dominance level. On the top of this hierarchy would beM. minimum,
which could be defined as a subdominant species (sensu Cerdá, Arnan & Retana, 2013).
Not only was this ant the first to arrive but its prevalence at the 4 h time point demonstrates
its dominance of the food resources. In the group of M. minimum, Pheidole sp.1 seems to
be good at discovery, although the low number of this species registered at the midtime (2
h), could be indicating that it is not as good at maintaining and defending food resources.
Below M. minimum, we could identify two groups of subordinate species, one formed
by the cold-climate specialist, Formica spp. and Themnotorax, and the opportunist M.
mexicana, and another group formed by the rare species (Lasius sp. ,C. picipes pilosulus).
The rare species, Lasius sp. and C. picipes pilosulus, would be in the subordinate category
too, although their behavior would be better interpreted as that of an insinuator species
(sensu Wilson, 1971). Insinuators arrive in small numbers and discretely steal food (see
Yitbarek, Vandermeer & Perfecto, 2017). What about the cold-climate specialist Formica
spp. and Temnothorax sp.? Could Formica spp. be a dominant ant? Its DI does not support
this idea, but the number of Petri dish occupied by this ant shows that Formica spp. uses
a high percentage of the available resources, which could be associated with its defense of
the territory. It is well known that this genus is a dominant ant species in temperate forest
(Savolainen & Vepsäläinen, 1989; Vepsäläinen & Pisarski, 1982). Temnothorax sp. was the
second most prevalent ant in the Petri dishes, and its behavior was similar to that reported
for Formica spp. We think that although Formica spp. and Temnothorax sp. were found in
both vegetation types, they were probably part of the original ant community in the oak
forest. The agricultural lands were a result of the modification of the native oak forest, so
it is possible that Formica spp. and Temnothorax sp. migrated to the agricultural land; and
that conversely, Myrmicinae could have moved to the oak forest from the agricultural land.
The higher abundance of the cold-climate specialist in the oak forest may be a reminder
of the previous history/land use. It is likely that the degree of disturbance in the temperate
oak forest of the ‘‘La Malinche’’ is blurring the limits between the oak and agricultural land
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ant communities. The low number of morphospecies recorded in this study may also be
due to a long history of disturbance in the zone.

Ants have been shown to be effective indicators of the ecological impact of human
disturbance. As temperate forest clearing and land use change are accelerating across the
globe, there is an urgent need for the study of the temperate ant communities especially
in transition zones between temperate and tropical ecosystems, where Nearctic and
tropical faunal elements such as ant communities are in contact with each other. The
present study corroborates the proposal/theory that dominance hierarchies are simpler in
temperate ecosystems than in tropical ecosystems. However, there is a need for a hierarchy
categorization that is consistent both in its terms and application; one that may be used for
all kinds of ecosystems. In this particular temperate ecosystem, the top dominant category
appears to be absent; the subdominant category is well represented by M. minimum, a
generalized Myrmicinae, and Pheidole spp. and insinuator species such as Lasius sp. and C.
picipes pilosulus represent the subordinate category. Formica spp. is in the middle of these
two categories, with no clear categorization as subdominant or subordinate species.

ACKNOWLEDGEMENTS
The authors thank F. Luna Castellanos, J.C. Arrieta Meza and L. Morales Cuatepotzo for
field assistance, J. Valenzuela and André Francoeur for ant identification and to the staff of
the La Malinche National Park for logistic support (non-financial) and for allowing access
to their facilities; and an anonymous reviewer provided useful comments on previous
versions of the manuscript. Additional thanks to Rachel M. West for proofreading the
manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The Consejo Nacional de Ciencia y Tecnología (CONACYT: 223033) provided Mariana
Cuautle with financial support. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Consejo Nacional de Ciencia y Tecnología: 223033.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Citlalli Castillo-Guevara, Mariana Cuautle and Carlos Lara conceived and designed
the experiments, performed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, prepared figures and/or tables, authored or reviewed
drafts of the paper, approved the final draft.

Castillo-Guevara et al. (2019), PeerJ, DOI 10.7717/peerj.6255 16/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.6255


• Brenda Juárez-Juárez performed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the paper, approved the final draft.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

The field research reported here was performed using the required permit (SEMARNAT
No. DGVS/06901/15).

Data Availability
The following information was supplied regarding data availability:

The raw data are provided in the Supplemental Files.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.6255#supplemental-information.

REFERENCES
Andersen AN. 1992. Regulation of ‘‘momentary’’ diversity by dominant species in

exceptionally rich ant communities of the Australian seasonal tropics. American
Naturalist 140(3):401–420 DOI 10.1086/285419.

Andersen AN. 1995. A classification of Australian ant communities, based on functional
groups which parallel plant life-forms in relation to stress and disturbance. Journal of
Biogeography 22(1):15–29 DOI 10.2307/2846070.

Andersen AN. 1997. Functional groups and patterns of organization in North Amer-
ican ant communities: a comparison with Australia. Journal of Biogeography
24(4):433–460 DOI 10.1111/j.1365-2699.1997.00137.x.

Andersen AN. 2000. A global ecology of rainforest ants: functional groups in relation
to environmental stress and disturbance. In: Agosti D, Majer JD, Alonso LE,
Schultz TR, eds. Ants: standard methods for measuring and monitoring biodiversity.
Washington, D.C.: Smithsonian Institution Press, 25–34.

Andersen AN, Majer JD. 2004. Ants show the way down under: invertebrates as bioindi-
cators in land management. Frontiers in Ecology and the Environment 2(6):291–298
DOI 10.1890/1540-9295(2004)002[0292:ASTWDU]2.0.CO;2.

Arnan X, Andersen AN, Gibb H, Parr CL, Sanders NJ, Dunn RR, Angulo E, Baccaro FB,
Bishop TR, Boulay R, Castracani C, Cerdá X, Del Toro I, Delsinne T, Donoso DA,
Elten EK, Fayle TM, Fitzpatrick MC, Gómez C, Grasso DA, Grossman BF, Guénard
B, Gunawardene N, Heterick B, Hoffman BD, JandaM, Jenkins CN, Klimes P,
Lach L, Laeger T, LeponceM, Lucky A, Majer J, Menke S, Mezger D, Mori A, Moses
J, Munyai TC, Paknia O, Pfeiffer M, Philpott SM, Souza JLP, Tista M, Vasconcelos
HL, Retana J. 2018. Dominance–diversity relationships in ant communities differ
with invasion. Global Change Biology 24(10):4614–4625 DOI 10.1111/gbc.14331.

Castillo-Guevara et al. (2019), PeerJ, DOI 10.7717/peerj.6255 17/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.6255#supplemental-information
http://dx.doi.org/10.7717/peerj.6255#supplemental-information
http://dx.doi.org/10.7717/peerj.6255#supplemental-information
http://dx.doi.org/10.1086/285419
http://dx.doi.org/10.2307/2846070
http://dx.doi.org/10.1111/j.1365-2699.1997.00137.x
http://dx.doi.org/10.1890/1540-9295(2004)002[0292:ASTWDU]2.0.CO;2
http://dx.doi.org/10.1111/gbc.14331
http://dx.doi.org/10.7717/peerj.6255


Arnan X, Cerdá X, Retana J. 2012. Distinctive life traits and distribution along environ-
mental gradients of dominant and subordinate Mediterranean ant species. Oecologia
170(2):489–500 DOI 10.1007/S00442-012-2315-y.

Arnan X, Gaucherei C, Andersen AN. 2011. Dominance and species co-ocurrence
in highly diverse ant communities: a test of the interstitial hypothesis and
discovery of a three-tiered competition cascade. Oecologia 166:783–794
DOI 10.1007/s00442-011-1919-y.

Barranco-LeónM de las N, Luna-Castellanos F, Vergara CH, Badano EI. 2016. Butterfly
conservation within cities: a landscape scale approach integrating natural habitats
and abandoned fields in central Mexico. Tropical Conservation Science 9(2):607–628
DOI 10.1177/194008291600900204.

Bestelmeyer BT. 2000. The trade-off between thermal tolerance and behavioral domi-
nance in a subtropical South American ant community. Journal of Animal Ecology
69(6):998–1009 DOI 10.1111/j.1365-2656.2000.00455.x.

Blüthgen N, Fiedler K. 2004. Competition for composition: lessons from nectar-feeding
ant communities. Ecology 85(6):1479–1485 DOI 10.1890/03-0430.

Cerdá X, Arnan X, Retana J. 2013. Is competition a significant hallmark of ant (Hy-
menoptera:Formicidae) ecology?Myrmecological News 18(1):131–147.

Cerdá X, Retana J, Cros S. 1997. Thermal disruption of transitive hierarchies in
Mediterranean ant communities. Journal of Animal Ecology 66(3):363–374
DOI 10.2307/5982.

Cuautle M, Vergara CH, Badano EI. 2016. Comparison of ant community diversity
and functional group associated to land use change in a seasonally dry oak forest.
Neotropical Entomology 45(2):170–179 DOI 10.1007/s13744-015-0353-y.

DáttiloW, Díaz-Castelazo C, Rico-Gray V. 2014. Ant dominance hierarchy determines
the nested pattern in ant-plant networks. Biological Journal of the Linnean Society
113(2):405–414 DOI 10.1111/bij.12350.

Davidson DW. 1998. Resource discovery versus resource domination in ants: a func-
tional mechanism for breaking the trade-off. Ecological Entomology 2:484–490
DOI 10.1046/j.1365-2311.1998.00145.x.

Dejean A, Corbara B. 2003. A review of mosaics of dominant ants in rainforests and
plantations. In: Basset Y, Novotny V, Miller SE, Kitching RL, eds. Arthropods of
tropical forests: spatio-temporal dynamics and resource use in the canopy. Cambridge:
Cambridge University Press, 341–347.

Delsinne T, Roisin Y, LeponceM. 2007. Spatial and temporal foraging overlaps in a
Chacoan ground-foraging ant assemblage. Journal of Arid Environments 71(1):29–44
DOI 10.1016/j.jaridenv.2007.02.007.

Ellison AM. 2012. Out of oz: opportunities and challenges for using ants (Hymenoptera:
Formicidae) as biological indicators in north-temperate cold biomes.Myrmecological
News 17:105–119.

Fellers JH. 1987. Interference and exploitation in a guild of woodland ants. Ecology
68(5):1466–1478 DOI 10.2307/1939230.

Castillo-Guevara et al. (2019), PeerJ, DOI 10.7717/peerj.6255 18/20

https://peerj.com
http://dx.doi.org/10.1007/S00442-012-2315-y
http://dx.doi.org/10.1007/s00442-011-1919-y
http://dx.doi.org/10.1177/194008291600900204
http://dx.doi.org/10.1111/j.1365-2656.2000.00455.x
http://dx.doi.org/10.1890/03-0430
http://dx.doi.org/10.2307/5982
http://dx.doi.org/10.1007/s13744-015-0353-y
http://dx.doi.org/10.1111/bij.12350
http://dx.doi.org/10.1046/j.1365-2311.1998.00145.x
http://dx.doi.org/10.1016/j.jaridenv.2007.02.007
http://dx.doi.org/10.2307/1939230
http://dx.doi.org/10.7717/peerj.6255


García-Martínez MA, Martínez-Tlapa DL, Pérez-Toledo GR, Quiroz-Robledo LN,
CastañoMeneses G, Laborde J, Valenzuela-González JE. 2015. Taxonomic, species
and functional group diversity ants in a tropical anthropogenic landscape. Tropical
Conservation Science 8(4):1017–1032 DOI 10.1177/194008291500800412.

Hoffman BD, Andersen AN. 2003. Responses of ants to disturbance in Australia
with particular reference to functional groups. Austral Ecology 28:444–464
DOI 10.1046/j.1442-9993.2003.01301.x.

Houadria M, Salas-Lopez A, Orivel J, Blüthgen N, Menzel F. 2015. Dietary and temporal
niche differentiation in tropical ants—can they explain local ant coexistence?
Biotropica 47(2):208–217 DOI 10.1111/btp.12184.

Kneital JM, Chase JM. 2004. Trade-offs in community ecology: linking spatial scales and
species coexistence. Ecology Letters 7:69–80 DOI 10.1046/j.1461-0248.2003.00551.x.

Koptur S, Truong N. 1998. Facultative ant–plant interactions: nectar sugar prefer-
ences of introduced pest ant species in south Florida. Biotropica 30(2):179–189
DOI 10.1111/j.1744-7429.1998.tb00053.x.

López-Domínguez JC, Acosta R. 2005. Descripción del Parque Nacional La Malinche.
In: Fernández-Fernández JA, López-Domínguez JC, eds. Biodiversidad del Parque
Nacional La Malinche. Tlaxcala: Coordinación General de Ecología del Gobierno del
Estado de Tlaxcala, 20–30.

Lynch JF, Johnson AK. 1988. Spatial and temporal variation in the abundance and
diversity of ants (Hymenoptera:Formicidae) in the soil and litter layers of a Maryland
forest. The American Midland Naturalist 119(1):31–44 DOI 10.2307/2426051.

MackayWP, Mackay E. 1989. Clave de los géneros de hormigas en México (Hymeoptera:
Formicidae). In:Memoria del II simposio nacional de insectos sociales. Oaxtepec:
Sociedad Mexicana de Entomología, 1–82.

Muenchow G. 1986. Ecological use of failure time analysis. Ecology 67:246–250
DOI 10.2307/1938524.

Parr CL. 2008. Dominant ants can control assemblage species richness in a South Africa
savanna. Journal of Animal Ecology 77(6):1191–1198
DOI 10.1111/j.1365-2656.2008.01450.x.

Parr CL, Gibb H. 2012. The discovery-dominance trade-off is the exception, rather than
the rule. Journal of Animal Ecology 81(1):233–241
DOI 10.1111/j.1365-2656.2011.01899.x.

Pearce-Duvet JMC, Feener Jr DH. 2010. Resource discovery in ant communi-
ties: do food type and quantity matter? Ecological Entomology 35:549–556
DOI 10.1111/j.1365-2311.2010.01214.x.

R Core Development Team. 2014. R: a language and environment for statistical com-
puting. Vienna: R foundation for statistical computing. Available at http://WWW.r-
project.org/ .

Retana J, Cerdá X. 2000. Patterns of diversity and composition of Mediterranean
ground ant communities tracking spatial and temporal variability in the thermal
environment. Oecologia 123(3):436–444 DOI 10.1007/s004420051.

Castillo-Guevara et al. (2019), PeerJ, DOI 10.7717/peerj.6255 19/20

https://peerj.com
http://dx.doi.org/10.1177/194008291500800412
http://dx.doi.org/10.1046/j.1442-9993.2003.01301.x
http://dx.doi.org/10.1111/btp.12184
http://dx.doi.org/10.1046/j.1461-0248.2003.00551.x
http://dx.doi.org/10.1111/j.1744-7429.1998.tb00053.x
http://dx.doi.org/10.2307/2426051
http://dx.doi.org/10.2307/1938524
http://dx.doi.org/10.1111/j.1365-2656.2008.01450.x
http://dx.doi.org/10.1111/j.1365-2656.2011.01899.x
http://dx.doi.org/10.1111/j.1365-2311.2010.01214.x
http://WWW.r-project.org/
http://WWW.r-project.org/
http://dx.doi.org/10.1007/s004420051
http://dx.doi.org/10.7717/peerj.6255


Santini G, Tucci L, Ottonetti L, Frizzi L. 2007. Competition trade-offs in the organ-
isation of a Mediterranean ant assemblage. Ecological Entomology 32(3):319–326
DOI 10.1111/j.1365-2311.2007.00882.x.

Savolainen R, Vepsäläinen K. 1989. Niche differentiation of ant species within territories
of the wood ant Formica polyctena. Oikos 56:3–16 DOI 10.2307/3566082.

Silva Rodríguez J. 2015. Uso de hormigas como bioindicadores del cambio en el uso
del suelo en el Parque Nacional La Malinche. Bachelor’s thesis, Universidad de las
Américas Puebla.

Soares S de A. 2013. The role of competition in structuring ant communities: a review.
Oecologia Australis 17(2):271–281 DOI 10.4257/oeco.2013.1702.08.

Stuble KL, Jurić I, Cerdá X, Sanders NJ. 2017. Dominance hierarchies are a dominant
paradigm in ant ecology (Hymenopter: Formicidae), but should they be? And what is
a dominance hierarchy anyways?Mirmecological News 24:71–81.
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