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The effects of different revegetation types on soil physical-chemical characteristics and
fungal community have been established in the Baishilazi Nature Reserve. We studied the
fungal community diversity and composition of soils sampled from five different
revegetation types (JM, Juglans mandshurica; QM, Quercus mongolica; CB, conifer- @
broadleaf forest; LG, Larix gmelinii; PK, Pinus koraiensis) in the Baishilazi Nature Reserve.
Soil fungal communities were assessed employing ITS rRNA Illunima Miseq high-
throughput sequencing. Response of soil fungi community to soil environmental factors
was assessed through canonical correspondence analysis (CCA) and Person’s rank
correlations. Our results suggested that coniferous forest (LG, PK) and conifer-broad forest
(CB) had reduced soil total C, total N, and Available N compared with broad-leaved forest
(JM, QM). The average fungus diversity according to Shannon index, ACE index, Chaol
index and Simpson index were increased in the JM. Basidiomycota, Ascomycota,
Zygomycota and Rozellomycota were the predominant fungal community in this region.
The most predominantimember @mgal communities was the phylum Basidiomycota in
the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most
predominant group in the JM. The clear differentiation of fungal communities and the
clustering in the heatmap and in NMDS plots showed that broad-leaved forests, conifer-
broad forest and coniferous forests each owned different fungal community. The results of
canonical correspondence analysis (CCA) shown that the soil environmental factors, such
as soil pH, total C, total N, available N and available P had greatly influenced on the fungal
community structure. Our results suggested that differential responses of soil fungal
community composition to the different revegetation types largely dependent on soil
physicochemical characteristic in Baishilazi Nature Reserve.
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The effects of different revegetation types on soil physical-chemical characteristics and fungal
community have been established in the Baishilazi Nature Reserve. We studied the fungal
community diversity and composition of soils sampled from five different revegetation types (JM,
Juglans mandshurica; QM, Quercus mongolica; CB, conifer-broadleaf forest; LG, Larix gmelinii;
PK, Pinus koraiensis) in the Baishilazi Nature Reserve. Soil fungal communities were assessed
employing ITS rRNA Illunima Miseq high-throughput sequencing. Response of soil fungi
community to soil environmental factors was assessed through canonical correspondence
analysis (CCA) and Person’s rank correlations. Our results suggested that coniferous forest (LG,
PK)) and conifer-broad forest (CB) had reduced soil total C, total N, and Available N compared
with broad-leaved forest (JM, QM). The average fungus diversity according to Shannon index,
ACE index, Chaol index and Simpson index were increased in the JM. Basidiomycota,
Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this
region. The most predominant member of fungal communities was the phylum Basidiomycota in
the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most
predominant group in the JM. The clear differentiation of fungal communities and the clustering
in the heatmap and in NMDS plots showed that broad-leaved forests, conifer-broad forest and
coniferous forests each owned different fungal community. The results of canonical
correspondence analysis (CCA) shown that the soil environmental factors, such as soil pH, total
C, total N, available N and available P had greatly influenced on the fungal community structure.
Our results suggested that differential responses of soil fungal community composition to the
different revegetation types largely dependent on soil physicochemical characteristic in Baishilazi
Nature Reserve.

Key words: Different frevegetation types, Soil physical-chemical characteristics, Fungal

community, The Baishilazi Nature Reserve @

Introduction

Due to long-term human disturbance and intensive land use, native vegetation temperate zone in
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China have been severely damaged, resulting in the reduction of biodiversity and the deterioration
of ecological functions, threating the safety and sustainable development of regional ecol@ Thus
it can be seen that vegetation restoration is an important measure of ecological environment
restoration due to its imultifarious ecological beneﬁts@lmerous researches have illustrated that
revegetation had an effect on soil physicochemical characteristics, such as soil bulk density, field
capacity (Zhang et al., 2018), infiltration rate (Wu et al., 2016), soil organic carbon (Georgiadis et
al., 2017), and soil nitrogen (Fu et al., 2010). Feedback processes of plant-soil play crucial roles
in altering the structure and dynamics of microbial communities (Herrera Paredes et al., 2016).
Soil microbial community, which is a key bridge to connect the advantage plant community
aboveground with ecological process underground, is one of the most important regulator of soil
nutrient transformation (Cheng et al., 2013). Soil microorganism can not only directly affect the
storage of soil nutrients by its own biomass, but also can indirectly effect on soil nutrient
transformation through the metabolic activity (Jangid et al., 2013; You et al., 2014). However,
fewer researches have followed changes in soil microbial community dynamics, despite the
important role of microorganisms in biogeochemical cycling (Guo et al., 2018).

Fungal community and diversity have important influence on plant communities and ecosystems
(van der Heijden et al., 2008; Devi et al., 2012). Furthermore, fungi play crucial roles in many
respects of ecosystem development (Chen et al., 2010; Geml et al., 2014), determining biochemical
cycle in continental ecosystem (Tedersoo et al., 2014). Fungal diversity and community
composition have been indicated to be closely related to numerous abiotic and biotic factors, such
as elevation (Kernaghan & Harper, 2010; Bahram et al., 2012), soil environment (Peter et al., 2001;
Dickie et al., 2002), plant species (Lovett et al., 2004; Weand et al., 2010), plant diversity (Dickie.
2007; Waldrop et al., 2006), and stand age (Zhu et al., 2010; Wallander et al., 2010). An increasing
number of work have shown that a number of soil properties including soil pH (Fierer & Jackson,
2006), soil texture (Girvan et al., 2003), and soil nitrogen availability (Frey et al., 2004) can be
associated with changes fungal communities structure. Unfortunately, few researchers have

addressed the connection between the Different revegetation types and the fungi community
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structure in natural secondary forest and plantation fores@birectly, the relationship between the
soil nutrient and the fungi community is not explicit, however, previous work has concentrated on
the effect of grassland and leguminous species (Harrison & Bardgett, 2010). But there remains a
need for interpreting which of these factors was the dominant influence on the soil fungal
communities in different revegetation types.

As the national nature reserves, the Baishilazi Nature Reserve is located in the Montainous
Region of the Eastern Liaoning Province, China. The Baishilazi Nature Reserve was established
in 1988, which belongs to the Changbai Mountain system. The original vegetation was broad-
leaved Pinus koraiensis forests, which was severely damaged due to the over-exploitation of the
past 100 years. At present, vegetation mainly consist of natural secondary forests and conifer
plantations, which provides the unique opportunity to investigate the soil fungal community among
different revegetation ecosystems under the same climatic conditions. Luxuriant researches have
investigated the changes of soil microbial biomass (Fan et al., 2014), soil organic carbon contents
(Qi et al., 2017) in different revegetation types, however it is acquainted scarcely about the how
the different revegetated forests determined the soils fungal community diversity and structure in
this area. For that matter, we applied pyrosequencing of the ITS rRNA gene to explore both
diversity and composition of soil fungal community responses to different revegetation types from
five sites in the Baishilazi Nature Reserve in Liaoning Province, China. Our objective was to use
five different revegetation types to examine how soil fungi may respond to different revegetation
types and, more specifically, how shifts in the abundance and composition of soil fungal
communities response to changes in soil properties.

Material and methods

Site description@

The field study was carried out at the Baishilazi Nature Reserve (approval number# 20170628-7),

the Eastern Mountainous Areas of Liaoning Province (40° 50" 00" ~40° 57" 12" N,

124° 44" 07" ~124° 57" 30" E). It is a comprehensive nature reserve with forest ecosystem

as the main protection object. The total area of the Baishilazi Nature Reserve is 7407hm?, which
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belongs to the mountain range of Changbai Mountain. This area is characterized by continental
monsoon climate, with long cold winters, warm wet summers, and higher diurnal temperature

variation. The annual mean amount of evaporation is 885 mm. The annual average temperature is

6.4°C, and the average annual precipitation amount is 1158 mm. The region has a relatively rich

and unique biodiversity, possessing significant ecological status and scientific value both in China
and the world. The characteristics of the five selected study samples are listed in Table 1.

Soil sampling

In July, 2017, we sampled from three plots per forest type after removal of the litter layer, including
Juglans mandshurica (JM), Quercus mongolica (QM), conifer-broadleaf forest (CB), Larix

gmelinii (LG), and Pinus koraiensis (PK). Soil samples were collected with use of a soil auger (8

cm in diameter, 10 cm deep) from a 20 mX20 m plot with each forest type replicate. A strip

sampling method was used to ensure the representativeness of soil samples in each forest. The
soils of 15-20 points@re mixed together and placed in sterilized ziplock bags as a replicate
sample. Identifically, in each vegetation form, three subsamples were collected. Immediately
arrival to the laboratory the sample iled boxes were sieved (2 mm mesh) to undock roots and

dopant, and divided into two sub-samples, one of which was air-dried and used for physical and

chemical analyses, a@the other was stored at -80 ‘C until DNA extraction and used for microbial

analyses.

DNA extraction and PCR amplification sequencing

Total fungal genomic DNA samples were extracted from 0.5 g of soil using the Fast DNA SPIN
extraction kits (MP Biomedicals, Santa Ana, CA, USA), according to the manufacturer’s
instructions. The quantity and quality of extracted DNAs were measured using a NanoDrop ND-
1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The primer set: ITS1F
(50-CTTGGTCATTTAGAGGAAGTAA-30) (Gardes &Bruns, 1993) and ITS2 (50-
GCTGCGTTCTTCATCGATGC-30) (White et al., 1990) was selected to target the fungal ITS1

region. Sample-specific 7-bp barcodes were incorporated into the primers for multiplex
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sequencing. PCR amplification were requiresd two steps. During the first step, each of three
independent 25 ul reactions per DNA sample included 5 pl of Q5 reaction buffer (5x), 5 ul of Q5
High-Fidelity GC buffer (5x), 1 ul (10 uM) of each Forward and Reverse primer, 2 pl (2.5 mM)
of dNTPs, 0.25 ul of Q5 High-Fidelity DNA Polymerase (5U/ul), 2 ul of DNA Template, and 8.75
ul of ddH,0. Cycling conditions were 98 °C for 5 min; 25 cycles of 98 °C for 15 s, 55 °C for 30
s, 72 °C for 30 s, followed by 72 °C for 5 min. PCR amplicons were purified with Agencourt
AMPure Beads (Beckman Coulter, Indianapolis, IN) and quantified using the PicoGreen dsDNA
Assay Kit (Invitrogen, Carlsbad, CA, USA). After the individual quantification step, amplicons
were pooled at equal amounts, and pair-end 2x300 bp sequencing was performed using the
[lllumina MiSeq platform with the MiSeq Reagent Kit v3.

Data Analysis

Operational taxonomic units (OTU)-@I alpha diversity indices, such as Chaol index, ACE
index, Shannon index, and Simpson index, were computed using the OTU table in QIIME. The
shared and unique OTUs among samples were used to venn diagrams using the R software
package@e heatmap representation of the relative abundance of fungal OTUs among samples
was built using R- DS analysis was also conducted based on the genus-level compositional
profiles. @

One-way analysis of variance (ANOVA) was conducted using (SPSS 19.0 software.@il
physicochemical characteristics, fungal total abundances, alpha diversity indices, and the taxa
(phyla and genus)@different forest soils were compared using ([ESD tests.@arson correlation
analysis was used to evaluate the correlations between soil fungal community diversity and
structure @soil characteristics. Canonical correspondence analysis (CCA) which was performed
via (Canoco 4.5, v@used to evaluate the linkages between dominant fungal groups related to soil
environmental factors.

Results
Soil physicochemical properties

As seen in Table 2, the soil pH value ranged from 4.89 to 5.70. Soil pH value under QM was the
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most acidic with 4.89, compared to others, followed by CB, and JM contained the highest soil pH
value. There were significant difference among different forest types regarding soil total C and
total N. @estingly, both total C and total N exhibited highest in the soil of JM, which was 100.53
g/kg and 7800.00mg/kg, but only 31.76g/kg and 2476.67 mg/kg in the PK, respectively. Soil C/N
in all the treatments were less than 25:1, among which CB had the highest C/N. Available N was
found in ranked order of JM> QM >CB >LG > PK (Table 2). (There were also significant
differences in available P and total P among different forest types, @1 the highest values under
PK and CB, respectively (Table 2).
Fungal community diversity responses to different revegetation types
Fungal a-diversity varied greatly across our samples. The Shannon index, ACE index, Chaol index
and Simpson index were the highest in the JM, followed by the CB (Table 3). Person’s correlation
coefficients indicated that the Simpson indices (r=0.680, P<0.01) and Shannon index (r=0.659,
P<0.01) were positively correlated with pH, and Shannon index was positively correlated with
C/N (r=0.528, P<0.05). In addition, ACE index and Chaol index were significantly positively
correlated with total C (P<0.05), C/N and total P (P<0.01) (Table 4).
Fungal community structure responses to different revegetation types
A total of 640,914 high quality ITS sequences were obtained after the elimination of chimeras and
sequence of low quality, @) an average of 42,727 sequences being acquired in each soil sample.
At the phylum, we found 8875 fungal operational taxonomic units (OTUs) after quality filtering.
On average, 592 OTUs were found in each sample. A maximum of 743 OTUs were detected in
the CB, however, only 455 OTUs were obtained in the LG (Table 3). In order to determine
rarefaction curves, richness, and diversity, 1,000 reads were randomly selected from each sample.
At the 3% dissimilarity level (Fig. 1), the curve tended to flatten with the number of measured
sequences increases, indicating that the experiment had obtained most of the sample information
and had been able to reflect the fungal community composition of the forest soil.

The obtained sequences were affiliated with 15 phyla (including unknown). The dominant phyla

accounted for more than 1% of the overall communities were Basidiomycota, Ascomycota,
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Zygomycota and Rozellomycota, with relative abundances ranging from 21.31% to 66.08%,
24.82% to 51.88%, 2.21 to 6.37%, and 0.42% to 2.09%, respectively (Fig. 2). Phyla included
Cercozoa, Chytridiomycota, Glomeromycota, Ciliophora, which were less abundant (<1 % of all
classified sequences) still were found in all of the soils examined. The relative abundance of these
most abundant fungal phyla varied significantly among different forest types. The relative
abundances of Ascomycota was significantly higher in JM than others, while the relative
abundances of Basidiomycota was the lowest. The relative abundances of Basidiomycota was the
highest in the CB, while the relative abundances of Ascomycota and Rozellomycota were lowest
(Fig. 2).

At the genus level, the dominant genus accounted for more than 1% of the overall communities
were Sebacina, Russula, Tomentella, Mortierella, Trechispora, Piloderma, Humicola, Suillus,
Geminibasidium, Ramaria, Archaeorhizomyces, Cryptococcus, Simplicillium, Oidiodendron,
Inocybe, Basidiobolus and Bullera. Their relative frequencies differed, respectively, as 5.95%,
4.38%, 3.74%, 2.97%, 2.17%, 1.92%, 1.75%, 1.69%, 1.65%, 1.62%, 1.59%, 1.54%, 1.50%,
1.37%, 1.32%, 1.20%, and 1.07% (Fig. 3). Sebacina was the most abundant genus at PK of
21.17%. The relative abundances of Russula showed highest in the CB than others (Fig. 3).

Venn diagrams were used to compare the fungal communities based on shared and unique OTUs
among the samples. At the genus level, the Venn diagram showed 110 OTUs among five forest
types (Fig. 4). A total of 1,453, 1,006, 1,321, 1,143 and 1,742 OTUs were observed in the CB, LG,
PK, QM and JM. JM harbored 864 unique OTUs. QM harbored 311 unique OTUs. CB harbored
428 unique OTUs. LG harbored 298 unique OTUs. PK harbored 542 unique OTUs. The number
of shared OTUs were 514 (JM vs. QM), 400 (LG vs. PK), 384 (JM vs. PK), 314 (JM vs. LG), 343
(QM vs. PK), 329 (QM vs. LG) (Fig. 4).

To show the fungal community structures of JM, QM, CB, LG, and PK, the heatmap analysis
based on the top 50 most abundant fungal community using R software was used to intuitively
display the differences in relative abundances of fungal OTUs among samples (Fig. 5), @ch can

reflect the compositions and relative abundance of soil fungus differences under different forest
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types were quite different. Tomentella, Piloderma, Suillus, Oidiodendron, Inocybe, Entoloma,
Cortinarius, Helvellosebacina, and Phaeoacremonium dominated in LG. Russula, Trichoderma,
Leucoagaricus, Amphinema, Umbelopsis, and Thelephora dominated in CB. Cladophialophora,
Byssocorticium, Trichoderma, Hygrocybe, Exophiala, Leotia, and Knufia dominated in QM.
Correspondingly, NMDS based Unifrac distance was carried out to show significant separation
among treatments (Fig. 6). With both analyses indicating that different revegetation types had a
great effect on fungal community.

The LEfSe analysis documented to determine the classified fungal taxa with significant
abundance differences among the different sampling sites. As presented in Fig.7, 63 fungal taxa
were showed significantly different with LDA effect size scores were > 4 (Fig. 7A), and 10 fungal
taxa were showed significantly different with LDA effect size scores were > 5 (Fig. 7B). At the
phylum level, the biomarkers were affiliated with Basidiomycota, and Ascomycota, respectively.
Fungal community distribution relate to the soil properties
Canonical correspondence analysis (CCA) was used to analyze the relative abundance of dominant
fungal phyla constrained by soil properties variables (Fig. 8). The results showed that the
cumulative interpretation variations of the first and second axes were 93.5%, indicating that soil
environmental factors had greatly influenced the fungal community structure. At the phylum level
(Fig. 8), soil pH (r=0.9104) and available P (r=0.6891) were significantly correlated with axisl,
and the first axial interpretation rate was 69.1%. C/N (1=-0.7322) and total P (r=-0.8094) were
significantly related with axis2.

Pearson correlation analyses were used to explore the relationships between soil properties and
the relative abundance of the 4 most abundant fungal phylum and 15 most abundant fungal genus.
At the phylum level, the relative abundances of Basidiomycota was significantly negatively
correlated with pH (r=-0.680, P<0.01) and AP (r=-0.611, P<0.01). Ascomycota was positively
correlated with total C (r=0.608, P<0.05), TN(r=0.655, P<0.01) and available N (r=0.693,
P<0.01). Zygomycota was positively correlated with pH (r=0.530, P<0.05) and available

P(r=0.665, P<0.01). Rozellomycota was significantly positively correlated with pH (r=0.716,
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P<0.01) (Table 5).

At the genus level, the abundance of Sebacina was significantly negatively correlated with total
C (r=-0.563, P<0.05), total N (r=-0.533, P<0.05) and available N(r=-0.604, P<0.05). Russula was
significantly positively correlated with C/N (r=0.637, P<0.05) and total P (r=0.751, P<0.01).
Humicola was significantly positively with total C (r=0.745, P<0.01), total N (r=0.735, P<0.01)
available N(r=0.705, P<0.01). The relative abundance of Geminibasidium was significantly
negatively correlated with total C (r=-0.530, P<0.05), total N (r=-0.516, P<0.05) and available
N(r=-0.569, P<0.05). Archaeorhizomyces was exhibited a positive correlation with C/N (r=0.672,
P<0.01) and total P (r=0.591, P<0.05). Cryptococcus abundance was existed a significantly
negative correlation with total C (r=-0.655, P<0.01), total N (r=-0.655, P<0.01) available N(r=-
0.698, P<0.01). Simplicillium (r=0.540, P<0.05) and Bullera (r=0.596, P<0.05) were significantly
negatively correlated with pH.
Discussion
Distinct soil characteristics among the different revegetation types
The soil physicochemical conditions we observed nutrient concentrations (C, N and P) varied
significantly among different revegetation types (Table 2). According to our findings, coniferous
forest (LG, PK) and confer-broad forest (CB) had reduced soil total C, total N, and Available N
compared with broad-leaved forest (JM, QM), which was consistent with study of Rahimabady et
al. (2015). This influence may be attributed to different tree species which have differences in litter
quality, and root exudates (Grayston & Prescott, 2005). Compared to others, the soil under QM
was more alkaline can be related with the quality of litter. Compared to other broadleaf forests, the
QM litter leaf quality is low,@ich has low nitrogen content, high C/N ratio, higher lignin content,
and higher lignin/N. Therefore, the decomposition rate of QM litter and the release rate of plant
nutrients are gradually slowed down. These are several reasons contributing to the effect that soil
under QM was lowest.
Fungal community diversity and structure response to different revegetation types

We documented that different forest revegetation types had distinct soil fungal community
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diversity and composition (Table 3, Fig. 2, Fig. 3), as reported by Myers et al. (2001). We observed
that the average fungal Shannon index, ACE index, Chaol index and Simpson index were the
highest in JM, followed by CB (Table 3). The composition of fungi phylum and in different
revegetation types were similar to each other, but the relative abundance of fungi phylum was
various, which may be related to different root residues and secretions produced by different
revegetation types (Degrune et al., 2015). The results of our comparison of soil fungal communities
among different revegetation types revealed that the predominant members of fungal communities
were the phylum Basidiomycota in the QM, CB, LG, and PK, followed by Ascomycota,
Zygomycota and Rozellomycota (Fig. 2), which was consistent with the results from Gutianshan
National Nature Reserve (Yu et al., 2013) and Mount Nadu (Liu et al., 2018). And other previous
studies have also supported the conclusion (Leff et al., 2015; Yu et al., 2013). Basidiomycota
tended to live in dry and cooler environments due to their history of evolution (Treseder et al.,
2014). The relative abundance of Basidiomycete in soils might be related to their ability of
degradation of lignocellulose (Lundell et al., 2010), which were affected by dynamics of soil
organic matter (Hannula et al., 2012).

On the contrary, in our study, we observed that the relative abundances of Ascomycota, over
Basidiomycota, Zygomycota, and Rozellomycota, was predominant group in the JM, which was
similar to the previous research (Curlevski et al., 2010). Moreover, these results proved that the
higher abundance of Ascomycota suggest the enrichment of saprotrophic species, which might be
related to organic matter input, given that Ascomycota tend to use the easily degradable residues
(Lundell et al., 2010). However, the finding from Yarraman natural forest and the hoop pine
plantation showed that Zygomycota was the dominant phylum (He et al., 2010). These disparate
results may indicate there is a lack of global common distribution and major fungal phyla in forest
soils. Our finding indicated that in the broadleaf forests (QM, JM), Ascomycota were the most
predominant phylum, which was similar to the findings from other tropical regions (Kerfahi et al.,
2014; McGuire et al., 2014).

The dominant fungal genera (Sebacina, Russula, Tomentella) were representative of dominant
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genera found in our study (Fig.3), which was accordant with previous researches (Welc et al.
2014). Sebacina was the most common genus in our study, and previous studies have put forward
that Sebacina could help their host plant overcome biotic and abiotic stresses by supplying it with
water and nutrients (Gao & Yang, 2016). Tomentella has been reported to be distributed
throughout the world (Kdljalg et al., 2000), which was also the common genus in our study. The
influence of different revegetation types on soil fungal community is often related to the nature
and quantity of organic matter returned by plant litter and provides major resources for soil
microorganisms (Saetre & Baéth, 2000; Wardle et al., 2004).

The clear differentiation of fungal communities and the clustering in the heatmap (Fig. 5) and
in NMDS (Fig. 6) plots suggested that broad-leaved forests and coniferous forests each owned
different fungal community.

Relationship between fungal communities and soil environmental factors

Soil environmental factors variables demonstrated remarkable relationship with fungal diversity.
The Simpson index and Shannon index were positively correlated with pH (Table 4). Similar
results have been reported (Djukic et al., 2014; Liu et al., 2018; Wang et al., 2015) that the
diversity of the fungal community increased with soil pH value. In our study, soil Chaol index,
ACE index, and Shannon index significantly increased with the increasing C/N ratio (Table 4),
which was not agreement with previous study. In addition, ACE index and Chaol index were
significantly positively correlated with total P (Table 4), which was accordance with previous work
reported that fungal diversity was significantly affected by soil P-related factors (Liu et al., 2018).

Just as the soil fungal diversity, soil environmental factors had greatly influenced on the fungal
community structure. Previous studies have shown that soil physicochemical properties, such as
soil moisture (Brockett et al., 2012), soil pH (Rousk et al., 2010), available soil nutrients (Lauber
et al., 2008), soil total C (Yang et al., 2014), and C/N ratio (Christianl et al., 2008) more strongly
affected fungal communities. Moreover, our study also confirmed that the abundances of the most
dominant fungal communities correlated significantly with soil pH value. What’s more, total C,

total N, available N and available P were also closely linked to the fungal community structure
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(Fig. 8, Table 5), which was consistent with other researches (Sun et al., 2016; Zhang et al., 2017).
Basidiomycota are generally sensitive to physic-chemical characteristic disturbance (Osono,
2007). In our study, the relative abundances of Basidiomycota was significantly negatively
correlated with pH and available P, which was not agreement with previous studies (Tedersoo et
al., 2014; Tian et al., 2017). Soil with higher relative abundance of Ascomycetes has higher pH
values (Lauber et al., 2008). However, in our study, Ascomycota was not correlated with soil pH
value. A relatively small pH rang (4.89 to 5.70) existed in our study, which might be difficult to
ascertain the correlation. Interestingly, the relative abundance of Ascomycota was positively
correlated with total C, total N and available N. It is supported by recent research that showed that
Ascomycota were associated with the content of soil organic matter (Sterkenburg et al., 2015).The
abundance of Zygomycota was positively correlated with available P in our study. Our results
ulteriorly proved that soil available P was considered an important regulator of fungal communities
in the soil, consistent with Dang et al. (2017). These results indicated that differential responses of
soil fungal community composition to the different revegetation types largely dependent on soil
physicochemical characteristic. And the decisive role of soil physicochemical variables in altering
fungal communities during vegetation restoration, in consistent with previous studies (Kuramae et
al., 2010)

Conclusions

Our results here showed that different revegetation types were the main driver of the soil fungal
diversity and community composition, ch generated shifts in soil chemical characteristics,
controlling the composition of fungal community in Baishilazi Nature Reserve. Basidiomycota,
Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this
region, and the relative abundance of these abundant fungal phyla varied significantly among
different revegetation types. The average Shannon index, ACE index, Chaol index and Simpson
index were predicated for JM. The abundances of the most dominant fungal communities
correlated significantly with soil pH, total C, total N, available N and available P.
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Figure 1

Rarefaction curves.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 2

Relative abundance of fungus phyla present in five different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 3

The distribution of partial sequences of fungal ITS gene at genus level.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 4

Venn diagrams of OUT richness.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 5

Heat map and hierarchical cluster analysis based on the relative abundances of the top
50 genera identified in the bacterial communities of the soils.@

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 6

Weighted UniFrac NMDS analysis of the composition of fungal communities in the soil of
forests with different dominant trees.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 7

The cladogram of fungal communities among different sampling sites.@

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 8

Canonical correspondence analysis (CCA) on soil dominant fungal phyla constrained by
soil variables.

TC: Total Carbon; TN: Total Nitrogen; C/N: C-N ration; AN: Available Nitrogen; TP: Total
Phosphorus; AP: Available Phosphorus.
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Table 1(on next page)

Sites information of the Baishilazi Nature Reserve.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1 Table 1:
2 Sites information of the Baishilazi Nature Reserve.
Types Dominant Vegetation Elevation (m) | Forest Type
Acanthopanax senticosus, Padus
o o Natural
M racemose, Magnolia sieboldii, Pimpinella | 901.8

o : secondary forest
brachycarpa, Puccinellia tenuiflora

Acer mono, Cerasus tomentosa, Carpinus Natural
QM 842.3
cordata secondary forest

Betula  ermanii, Pinus  koraiensis,
CB Schisandra chinensis, Phryma | 826.5

leptostachya L. subsp. asiatica

Natural

secondary forest

LG Daemonorops margaritae 552.7 Plantation forest
Daemonorops  margaritae, Pteridium .
PK o 552.7 Plantation forest
aquilinum
Note:

IM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.

o U b~ W
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Table 2(on next page)

Soil physical and chemical properties of different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1
2

o U b~ W

Table 2:

Soil physical and chemical properties of different revegetation types.
Types bH Total C | Total N C/N Available N | Total P | Available

(g/kg) (mg/kg) (mg/kg) (g/kg) | P (mg/kg)

IM 5.70a | 100.53a | 7800.00a | 12.89ab | 57.15a 0.93b |4.42ab
oM 4.89¢c | 84.62b 7375.33a | 11.64bc | 41.25b 0.74bc | 2.39ab
CB 4.99¢ | 75.49¢ 5466.67b | 13.81a 43.60b 1.46a | 2.53ab
LG 5.40b | 43.79d 3853.50c | 11.36¢ 33.35¢ 0.62¢ 1.21b
PK 5.48b | 41.70d 3580.50c | 11.65bc | 28.04c 0.77bc | 5.65a

Note:

IM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Table 3(on next page)

Soil fungal diversity indexes of different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1 Table 3:
2 Soil fungal diversity indexes of different revegetation types.
OTUs .
Types Is\i:(c)l.u(e):lflces number ISI?;:;on ACE Index Chaol Index Istigleison
(phylum)
M 40811 715 8.18+0.23a [879.57+64.4767a [879.08+64.48a |0.99+0.00a
QM 33752 518 5.79+0.28c [597.78+98.62b 598.00+98.89b  [0.89+0.03b
CB 37669 743 7.18+0.34b [870.95+192.83a  [866.17+£184.59a |0.98+0.01a
LG 37959 455 6.49+0.22bc [522.15£100.95b  [521.58+101.48b [0.97+0.01a
PK 63447 525 7.06+0.89b [650.67£108.58b  [649.10+£109.27b [0.97+0.02a
Note:

o b~ W

gmelinii; PK: Pinus koraiensis.
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Table 4(on next page)

Person’s rank correlation coefficients between fungi diversity indices and measured soil
characteristics.

*Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01
level (2-tailed).
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1 Table 4:
2 Person’s rank correlation coefficients between fungi diversity indices and measured soil

3 characteristics.

pH Total C | Total N C/N Available N | Total P |Available P

Simpson | 0.680"" -0.139 -0.337 0.472 -0.043 0.334 0.297
Chaol 0.089 0.573* 0.389 0.715%* 0.397 0.725%* 0.238
ACE 0.085 0.567* 0.383 0.714%* 0.389 0.730%* 0.234

Shannon | 0.659%* 0.302 0.132 0.528* 0.312 0.361 0.508
Note:
*Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01 level
(2-tailed).

0 N o U b
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Table 5(on next page)

Person’s rank correlations between the relative abundances of dominant bacteria
groups and available edaphic factors.

**correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-
tailed).
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1 Table 5:
2 Person’s rank correlations between the relative abundances of dominant bacteria groups and

3 available edaphic factors.

Fungal group pH Total C [Total N |C/N  |Available N [Total P |Available P
Phylun -~ -- -~ -~ -~ -- --
Basidiomycota -0.680" [-0.455 |-0.466 |-0.010 [-0.506 0.107  |0.611""
Ascomycota 0.416  [0.608" 0.655™ [-0.004 [0.693"" -0.058  [0.462
Zygomycota 0.530° (0.274 |0.179  |0.284 |0.245 0.146  0.665"
Rozellomycota 0.716" [-0.016 0.036  [-0.278 [0.052 -0.460  0.002
Genus -~ -- -~ -~ -~ -- --
Sebacina 0.192  }0.563" |-0.533" [-0.282 |-0.604" -0.132 0.171
Russula -0.491  0.170  |0.025  |0.637" |0.171 0.751"" [-0.121
Tomentella 0.009  -0.407 [-0.339 |-0.371 [-0.247 -0.360 -0.473
Mortierella 0.524" (0.456  |0.383  |0.264 (0.447 0.123  0.623"
Trechispora -0.182  10.096  |-0.039 [0.490 1(0.071 0.593" |0.415
Piloderma -0.066  [-0.378  [-0.278  |-0.452 [-0.316 -0.534"  |-0.482
Humicola 0.302  (0.745™ 0.735" 10.146 [0.705™" -0.098  [0.152
Suillus 0.118  [-0.438 [-0.402 |-0.287 [-0.263 -0.236  -0.266
Geminibasidium 0.252  }0.530" |-0.516" [-0.226 |-0.569" -0.105  0.271
Ramaria 0.116  [-0.420 [-0.378 |-0.303 |-0.353 -0.402  |-0.368
Archaeorhizomyces [-0.111  [0.300  |0.132  [0.672" |0.334 0.591° [-0.057
Cryptococcus 0.114  0.655" |-0.655" [-0.212 |-0.698™" -0.069  -0.031
Simplicillium 0.540° (0.415 |0.380 [0.110 [0.387 -0.009  |0.509
Oidiodendron 0.024  |-0.417 [-0.398 |-0.211 [-0.261 -0.098  -0.338
[nocybe 0.144  +0.518" |-0.459 [-0.397 [-0.340 -0.383  -0.380
Basidiobolus 0.431 -0.378  |-0.434 10.023 [-0.406 -0.143  0.578"
Bullera 0.596° [0.340 |0.273  0.231 [0.313 0.091 0.357

4  Note:

5 **correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-

6 tailed).

7
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