Different revegetation types alter soil physicalchemical characteristics and fungal community in the Baishilazi Nature Reserve (#30722)

First submission

Editor guidance

Please submit by 25 Sep 2018 for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the materials page.

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the <u>materials page</u>.

8 Figure file(s)

9 Table file(s)

2

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING
- 2. EXPERIMENTAL DESIGN
- 3. VALIDITY OF THE FINDINGS
- 4. General comments
- 5. Confidential notes to the editor
- You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to **Peerl standards**, discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see Peerl policy).

EXPERIMENTAL DESIGN

- Original primary research within Scope of the journal.
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.
- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

The best reviewers use these techniques

	p

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57-86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

- 1. Your most important issue
- 2. The next most important item
- 3. ...
- 4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Different revegetation types alter soil physical-chemical characteristics and fungal community in the Baishilazi Nature Reserve

Jiaojiao Deng 1,2 , You Yin 1,3 , Jiyao Luo 4 , Wenxu Zhu $^{Corresp.,1,3}$, Yongbin Zhou $^{Corresp.,1,2,3}$

Corresponding Authors: Wenxu Zhu, Yongbin Zhou Email address: zhuwx@syau.edu.cn, yyzyb@163.com

The effects of different revegetation types on soil physical-chemical characteristics and fungal community have been established in the Baishilazi Nature Reserve. We studied the fungal community diversity and composition of soils sampled from five different revegetation types (JM, Juglans mandshurica; QM, Quercus mongolica; CB, coniferbroadleaf forest; LG, Larix gmelinii; PK, Pinus koraiensis) in the Baishilazi Nature Reserve. Soil fungal communities were assessed employing ITS rRNA Illunima Miseg highthroughput sequencing. Response of soil fungi community to soil environmental factors was assessed through canonical correspondence analysis (CCA) and Person's rank correlations. Our results suggested that coniferous forest (LG, PK) and conifer-broad forest (CB) had reduced soil total C, total N, and Available N compared with broad-leaved forest (JM, QM). The average fungus diversity according to Shannon index, ACE index, Chao1 index and Simpson index were increased in the JM. Basidiomycota, Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this region. The most predominant member ungal communities was the phylum Basidiomycota in the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most predominant group in the JM. The clear differentiation of fungal communities and the clustering in the heatmap and in NMDS plots showed that broad-leaved forests, coniferbroad forest and coniferous forests each owned different fungal community. The results of canonical correspondence analysis (CCA) shown that the soil environmental factors, such as soil pH, total C, total N, available N and available P had greatly influenced on the fungal community structure. Our results suggested that differential responses of soil fungal community composition to the different revegetation types largely dependent on soil physicochemical characteristic in Baishilazi Nature Reserve.

¹ Foresty college, Shenyang Agriculture University, Shenyang, China

² College of Land and Environment, Shenyang Agricultural University, Shenyang, China

³ Shenyang Agricultural University, Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Tieling, China

⁴ Baishilazi National Nature Reserve in Liaoning Province, Dandong, China

1	Different revegetation types alter soil physical-chemical characteristics and fungal community in
2	the Baishilazi Nature Reserve
3	Jiaojiao Deng ^{1,3} , You Yin ^{1,2} , Jiyao Luo ⁴ , Wenxu Zhu ^{1,2} , Yongbin Zhou ^{1,2,3}
4	¹ College of Foresty, Shenyang Agriculture University, Dongling Road, Shenyang, China
5	$^2 Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research $
6	Network (CFERN), Shenyang Agricultural University, Changtu, China
7	³ College of Land and Environment, Shenyang Agriculture University, Shenyang, China.
8	⁴ Liaoning Baishi Lazi National Nature Reserve Administration, Dandong, China.
9	
10	
11	
12	
13	
14	Corresponding Author
15	Wenxu Zhu, Yongbin Zhou
16	No. 120, Dongling Road, Shenhe Distinct, Shenyang, Liaoning Provience, 110161, China
17	Email address: zhuwenxu.315@163.com, yyzyb@163.com
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	Abstract

The effects of different revegetation types on soil physical-chemical characteristics and fungal 28 community have been established in the Baishilazi Nature Reserve. We studied the fungal 29 30 community diversity and composition of soils sampled from five different revegetation types (JM, Juglans mandshurica; QM, Quercus mongolica; CB, conifer-broadleaf forest; LG, Larix gmelinii; 31 PK, Pinus koraiensis) in the Baishilazi Nature Reserve. Soil fungal communities were assessed 32 employing ITS rRNA Illunima Miseq high-throughput sequencing. Response of soil fungi 33 34 community to soil environmental factors was assessed through canonical correspondence analysis (CCA) and Person's rank correlations. Our results suggested that coniferous forest (LG, 35 PK) and conifer-broad forest (CB) had reduced soil total C, total N, and Available N compared 36 with broad-leaved forest (JM, QM). The average fungus diversity according to Shannon index, 37 ACE index, Chao1 index and Simpson index were increased in the JM. Basidiomycota, 38 39 Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this region. The most predominant member of fungal communities was the phylum Basidiomycota in 40 the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most 41 predominant group in the JM. The clear differentiation of fungal communities and the clustering 42 in the heatmap and in NMDS plots showed that broad-leaved forests, conifer-broad forest and 43 coniferous forests each owned different fungal community. The results of canonical 44 correspondence analysis (CCA) shown that the soil environmental factors, such as soil pH, total 45 C, total N, available N and available P had greatly influenced on the fungal community structure. 46 47 Our results suggested that differential responses of soil fungal community composition to the different revegetation types largely dependent on soil physicochemical characteristic in Baishilazi 48 Nature Reserve. 49 Key words: Different revegetation types, Soil physical-chemical characteristics, Fungal 50 community, The Baishilazi Nature Reserve 51

Introduction

52

53

54

Due to long-term human disturbance and intensive land use, native vegetation temperate zone in

China have been severely damaged, resulting in the reduction of biodiversity and the deterioration 55 of ecological functions, threating the safety and sustainable development of regional ecological functions. 56 it can be seen that vegetation restoration is an important measure of ecological environment 57 restoration due to its multifarious ecological benefits imerous researches have illustrated that 58 revegetation had an effect on soil physicochemical characteristics, such as soil bulk density, field 59 capacity (Zhang et al., 2018), infiltration rate (Wu et al., 2016), soil organic carbon (Georgiadis et 60 61 al., 2017), and soil nitrogen (Fu et al., 2010). Feedback processes of plant-soil play crucial roles in altering the structure and dynamics of microbial communities (Herrera Paredes et al., 2016). 62 Soil microbial community, which is a key bridge to connect the advantage plant community 63 aboveground with ecological process underground, is one of the most important regulator of soil 64 65 nutrient transformation (Cheng et al., 2013). Soil microorganism can not only directly affect the storage of soil nutrients by its own biomass, but also can indirectly effect on soil nutrient 66 transformation through the metabolic activity (Jangid et al., 2013; You et al., 2014). However, 67 fewer researches have followed changes in soil microbial community dynamics, despite the 68 important role of microorganisms in biogeochemical cycling (Guo et al., 2018). 69 70 Fungal community and diversity have important influence on plant communities and ecosystems (van der Heijden et al., 2008; Devi et al., 2012). Furthermore, fungi play crucial roles in many 71 respects of ecosystem development (Chen et al., 2010; Geml et al., 2014), determining biochemical 72 73 cycle in continental ecosystem (Tedersoo et al., 2014). Fungal diversity and community 74 composition have been indicated to be closely related to numerous abiotic and biotic factors, such as elevation (Kernaghan & Harper, 2010; Bahram et al., 2012), soil environment (Peter et al., 2001; 75 Dickie et al., 2002), plant species (Lovett et al., 2004; Weand et al., 2010), plant diversity (Dickie. 76 2007; Waldrop et al., 2006), and stand age (Zhu et al., 2010; Wallander et al., 2010). An increasing 77 78 number of work have shown that a number of soil properties including soil pH (Fierer & Jackson, 2006), soil texture (Girvan et al., 2003), and soil nitrogen availability (Frey et al., 2004) can be 79 associated with changes fungal communities structure. Unfortunately, few researchers have 80 addressed the connection between the Different revegetation types and the fungi community 81

82

soil nutrient and the fungi community is not explicit, however, previous work has concentrated on 83 84 the effect of grassland and leguminous species (Harrison & Bardgett, 2010). But there remains a need for interpreting which of these factors was the dominant influence on the soil fungal 85 communities in different revegetation types. 86 As the national nature reserves, the Baishilazi Nature Reserve is located in the Montainous 87 88 Region of the Eastern Liaoning Province, China. The Baishilazi Nature Reserve was established in 1988, which belongs to the Changbai Mountain system. The original vegetation was broad-89 leaved *Pinus koraiensis* forests, which was severely damaged due to the over-exploitation of the 90 past 100 years. At present, vegetation mainly consist of natural secondary forests and conifer 91 92 plantations, which provides the unique opportunity to investigate the soil fungal community among 93 different revegetation ecosystems under the same climatic conditions. Luxuriant researches have investigated the changes of soil microbial biomass (Fan et al., 2014), soil organic carbon contents 94 (Qi et al., 2017) in different revegetation types, however it is acquainted scarcely about the how 95 the different revegetated forests determined the soils fungal community diversity and structure in 96 this area. For that matter, we applied pyrosequencing of the ITS rRNA gene to explore both 97 diversity and composition of soil fungal community responses to different revegetation types from 98 five sites in the Baishilazi Nature Reserve in Liaoning Province, China. Our objective was to use 99 five different revegetation types to examine how soil fungi may respond to different revegetation 100 101 types and, more specifically, how shifts in the abundance and composition of soil fungal communities response to changes in soil properties. 102 103

structure in natural secondary forest and plantation fores Directly, the relationship between the

Material and methods

Site description 104

108

The field study was carried out at the Baishilazi Nature Reserve (approval number# 20170628-7), 105

the Eastern Mountainous Areas of Liaoning Province (40° 50′ 00″ ~40° 57′ 12″ N. 106

124° 44′ 07″ ~124° 57′ 30″ E). It is a comprehensive nature reserve with forest ecosystem 107

as the main protection object. The total area of the Baishilazi Nature Reserve is 7407hm², which

belongs to the mountain range of Changbai Mountain. This area is characterized by continental monsoon climate, with long cold winters, warm wet summers, and higher diurnal temperature variation. The annual mean amount of evaporation is 885 mm. The annual average temperature is 6.4°C, and the average annual precipitation amount is 1158 mm. The region has a relatively rich and unique biodiversity, possessing significant ecological status and scientific value both in China and the world. The characteristics of the five selected study samples are listed in Table 1.

Soil sampling

In July, 2017, we sampled from three plots per forest type after removal of the litter layer, including *Juglans mandshurica* (JM), *Quercus mongolica* (QM), conifer-broadleaf forest (CB), *Larix gmelinii* (LG), and *Pinus koraiensis* (PK). Soil samples were collected with use of a soil auger (8 cm in diameter, 10 cm deep) from a 20 m×20 m plot with each forest type replicate. A strip sampling method was used to ensure the representativeness of soil samples in each forest. The soils of 15-20 points were mixed together and placed in sterilized ziplock bags as a replicate sample. Identifically, in each vegetation form, three subsamples were collected. Immediately arrival to the laboratory the sample in old boxes were sieved (2 mm mesh) to undock roots and dopant, and divided into two sub-samples, one of which was air-dried and used for physical and chemical analyses, and the other was stored at -80 °C until DNA extraction and used for microbial analyses.

DNA extraction and PCR amplification sequencing

Total fungal genomic DNA samples were extracted from 0.5 g of soil using the Fast DNA SPIN extraction kits (MP Biomedicals, Santa Ana, CA, USA), according to the manufacturer's instructions. The quantity and quality of extracted DNAs were measured using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The primer set: ITS1F (50-CTTGGTCATTTAGAGGAAGTAA-30) (Gardes &Bruns, 1993) and ITS2 (50-GCTGCGTTCTTCATCGATGC-30) (White et al., 1990) was selected to target the fungal ITS1 region. Sample-specific 7-bp barcodes were incorporated into the primers for multiplex

sequencing. PCR amplification were required two steps. During the first step, each of three 135 independent 25 µl reactions per DNA sample included 5 µl of Q5 reaction buffer (5×), 5 µl of Q5 136 High-Fidelity GC buffer (5×), 1 μl (10 uM) of each Forward and Reverse primer, 2 μl (2.5 mM) 137 of dNTPs, 0.25 µl of Q5 High-Fidelity DNA Polymerase (5U/µl), 2 µl of DNA Template, and 8.75 138 ul of ddH₂O. Cycling conditions were 98 °C for 5 min; 25 cycles of 98 °C for 15 s, 55 °C for 30 139 s, 72 °C for 30 s, followed by 72 °C for 5 min. PCR amplicons were purified with Agencourt 140 AMPure Beads (Beckman Coulter, Indianapolis, IN) and quantified using the PicoGreen dsDNA 141 Assay Kit (Invitrogen, Carlsbad, CA, USA). After the individual quantification step, amplicons 142 were pooled at equal amounts, and pair-end 2×300 bp sequencing was performed using the 143 Illlumina MiSeq platform with the MiSeq Reagent Kit v3. 144 145 **Data Analysis** Operational taxonomic units (OTU) alpha diversity indices, such as Chao1 index, ACE 146 index, Shannon index, and Simpson index, were computed using the OTU table in QIIME. The 147 shared and unique OTUs among samples were used to venn diagrams using the R software 148 package ple heatmap representation of the relative abundance of fungal OTUs among samples 149 was built using R. MDS analysis was also conducted based on the genus-level compositional 150

profiles. 151

152

153

154

155

156

157

158

One-way analysis of variance (ANOVA) was conducted using SPSS 19.0 software. ii physicochemical characteristics, fungal total abundances, alpha diversity indices, and the taxa (phyla and genus) different forest soils were compared using LSD tests. Larson correlation analysis was used to evaluate the correlations between soil fungal community diversity and structure soil characteristics. Canonical correspondence analysis (CCA) which was performed via Canoco 4.5, voused to evaluate the linkages between dominant fungal groups related to soil environmental factors.

Results 159

Soil physicochemical properties 160

As seen in Table 2, the soil pH value ranged from 4.89 to 5.70. Soil pH value under QM was the 161

most acidic with 4.89, compared to others, followed by CB, and JM contained the highest soil pH 162 value. There were significant difference among different forest types regarding soil total C and 163 total N. Prestingly, both total C and total N exhibited highest in the soil of JM, which was 100.53 164 g/kg and 7800.00mg/kg, but only 31.76g/kg and 2476.67 mg/kg in the PK, respectively. Soil C/N 165 in all the treatments were less than 25:1, among which CB had the highest C/N. Available N was 166 found in ranked order of JM> OM >CB >LG > PK (Table 2). There were also significant 167 differences in available P and total P among different forest types, the highest values under 168 PK and CB, respectively (Table 2). 169 Fungal community diversity responses to different revegetation types 170 Fungal a-diversity varied greatly across our samples. The Shannon index, ACE index, Chao1 index 171 and Simpson index were the highest in the JM, followed by the CB (Table 3). Person's correlation 172 coefficients indicated that the Simpson indices (r=0.680, P<0.01) and Shannon index (r=0.659, 173 P<0.01) were positively correlated with pH, and Shannon index was positively correlated with 174 C/N (r=0.528, P<0.05). In addition, ACE index and Chao1 index were significantly positively 175 correlated with total C (P<0.05), C/N and total P (P<0.01) (Table 4). 176 Fungal community structure responses to different revegetation types 177 A total of 640,914 high quality ITS sequences were obtained after the elimination of chimeras and 178 sequence of low quality, with an average of 42,727 sequences being acquired in each soil sample. 179 At the phylum, we found 8875 fungal operational taxonomic units (OTUs) after quality filtering. 180 On average, 592 OTUs were found in each sample. A maximum of 743 OTUs were detected in 181 the CB, however, only 455 OTUs were obtained in the LG (Table 3). In order to determine 182 rarefaction curves, richness, and diversity, 1,000 reads were randomly selected from each sample. 183 At the 3% dissimilarity level (Fig. 1), the curve tended to flatten with the number of measured 184 sequences increases, indicating that the experiment had obtained most of the sample information 185 and had been able to reflect the fungal community composition of the forest soil. 186 The obtained sequences were affiliated with 15 phyla (including unknown). The dominant phyla 187 accounted for more than 1% of the overall communities were Basidiomycota, Ascomycota, 188

Zygomycota and Rozellomycota, with relative abundances ranging from 21.31% to 66.08%, 189 24.82% to 51.88%, 2.21 to 6.37%, and 0.42% to 2.09%, respectively (Fig. 2). Phyla included 190 Cercozoa, Chytridiomycota, Glomeromycota, Ciliophora, which were less abundant (<1 % of all 191 classified sequences) still were found in all of the soils examined. The relative abundance of these 192 most abundant fungal phyla varied significantly among different forest types. The relative 193 abundances of Ascomycota was significantly higher in JM than others, while the relative 194 abundances of Basidiomycota was the lowest. The relative abundances of Basidiomycota was the 195 highest in the CB, while the relative abundances of Ascomycota and Rozellomycota were lowest 196 (Fig. 2). 197 At the genus level, the dominant genus accounted for more than 1% of the overall communities 198 199 were Sebacina, Russula, Tomentella, Mortierella, Trechispora, Piloderma, Humicola, Suillus, 200 Geminibasidium, Ramaria, Archaeorhizomyces, Cryptococcus, Simplicillium, Oidiodendron, *Inocybe*, *Basidiobolus* and *Bullera*. Their relative frequencies differed, respectively, as 5.95%, 201 4.38%, 3.74%, 2.97%, 2.17%, 1.92%, 1.75%, 1.69%, 1.65%, 1.62%, 1.59%, 1.54%, 1.50%, 202 1.37%, 1.32%, 1.20%, and 1.07% (Fig. 3). Sebacina was the most abundant genus at PK of 203 21.17%. The relative abundances of *Russula* showed highest in the CB than others (Fig. 3). 204 Venn diagrams were used to compare the fungal communities based on shared and unique OTUs 205 among the samples. At the genus level, the Venn diagram showed 110 OTUs among five forest 206 types (Fig. 4). A total of 1,453, 1,006, 1,321, 1,143 and 1,742 OTUs were observed in the CB, LG, 207 208 PK, QM and JM. JM harbored 864 unique OTUs. QM harbored 311 unique OTUs. CB harbored 428 unique OTUs. LG harbored 298 unique OTUs. PK harbored 542 unique OTUs. The number 209 of shared OTUs were 514 (JM vs. QM), 400 (LG vs. PK), 384 (JM vs. PK), 314 (JM vs. LG), 343 210 (QM vs. PK), 329 (QM vs. LG) (Fig. 4). 211 To show the fungal community structures of JM, QM, CB, LG, and PK, the heatmap analysis 212 based on the top 50 most abundant fungal community using R software was used to intuitively 213 display the differences in relative abundances of fungal OTUs among samples (Fig. 5), which can 214 reflect the compositions and relative abundance of soil fungus differences under different forest 215

PeerJ

types were quite different. Tomentella, Piloderma, Suillus, Oidiodendron, Inocybe, Entoloma, 216 Cortinarius, Helvellosebacina, and Phaeoacremonium dominated in LG. Russula, Trichoderma, 217 Leucoagaricus, Amphinema, Umbelopsis, and Thelephora dominated in CB. Cladophialophora, 218 Byssocorticium, Trichoderma, Hygrocybe, Exophiala, Leotia, and Knufia dominated in QM. 219 Correspondingly, NMDS based Unifrac distance was carried out to show significant separation 220 among treatments (Fig. 6). With both analyses indicating that different revegetation types had a 221 great effect on fungal community. 222 The LEfSe analysis was documented to determine the classified fungal taxa with significant 223 abundance differences among the different sampling sites. As presented in Fig.7, 63 fungal taxa 224 were showed significantly different with LDA effect size scores were > 4 (Fig. 7A), and 10 fungal 225 taxa were showed significantly different with LDA effect size scores were > 5 (Fig. 7B). At the 226 227 phylum level, the biomarkers were affiliated with Basidiomycota, and Ascomycota, respectively. Fungal community distribution relate to the soil properties 228 Canonical correspondence analysis (CCA) was used to analyze the relative abundance of dominant 229 fungal phyla constrained by soil properties variables (Fig. 8). The results showed that the 230 cumulative interpretation variations of the first and second axes were 93.5%, indicating that soil 231 environmental factors had greatly influenced the fungal community structure. At the phylum level 232 (Fig. 8), soil pH (r=0.9104) and available P (r=0.6891) were significantly correlated with axis1, 233 and the first axial interpretation rate was 69.1%. C/N (r=-0.7322) and total P (r=-0.8094) were 234 235 significantly related with axis2. Pearson correlation analyses were used to explore the relationships between soil properties and 236 the relative abundance of the 4 most abundant fungal phylum and 15 most abundant fungal genus. 237 At the phylum level, the relative abundances of Basidiomycota was significantly negatively 238 correlated with pH (r=-0.680, P<0.01) and AP (r=-0.611, P<0.01). Ascomycota was positively 239 correlated with total C (r=0.608, P<0.05), TN(r=0.655, P<0.01) and available N (r=0.693, 240 P<0.01). Zygomycota was positively correlated with pH (r=0.530, P<0.05) and available 241 P(r=0.665, P<0.01). Rozellomycota was significantly positively correlated with pH (r=0.716, 242

- 243 *P*<0.01) (Table 5).
- At the genus level, the abundance of *Sebacina* was significantly negatively correlated with total
- 245 C (r=-0.563, P<0.05), total N (r=-0.533, P<0.05) and available N(r=-0.604, P<0.05). Russula was
- significantly positively correlated with C/N (r=0.637, P<0.05) and total P (r=0.751, P<0.01).
- 247 Humicola was significantly positively with total C (r=0.745, P<0.01), total N (r=0.735, P<0.01)
- available N(r=0.705, P<0.01). The relative abundance of Geminibasidium was significantly
- negatively correlated with total C (r=-0.530, P<0.05), total N (r=-0.516, P<0.05) and available
- N(r=-0.569, P<0.05). Archaeorhizomyces was exhibited a positive correlation with C/N (r=0.672,
- 251 P<0.01) and total P (r=0.591, P<0.05). Cryptococcus abundance was existed a significantly
- negative correlation with total C (r=-0.655, P<0.01), total N (r=-0.655, P<0.01) available N(r=-
- 253 0.698, P < 0.01). Simplicillium (r=0.540, P < 0.05) and Bullera (r=0.596, P < 0.05) were significantly
- 254 negatively correlated with pH.
- 255 Discussion
- 256 Distinct soil characteristics among the different revegetation types
- 257 The soil physicochemical conditions we observed nutrient concentrations (C, N and P) varied
- significantly among different revegetation types (Table 2). According to our findings, coniferous
- 259 forest (LG, PK) and confer-broad forest (CB) had reduced soil total C, total N, and Available N
- 260 compared with broad-leaved forest (JM, QM), which was consistent with study of Rahimabady et
- al. (2015). This influence may be attributed to different tree species which have differences in litter
- 262 quality, and root exudates (Grayston & Prescott, 2005). Compared to others, the soil under QM
- 263 was more alkaline can be related with the quality of litter. Compared to other broadleaf forests, the
- QM litter leaf quality is low, with has low nitrogen content, high C/N ratio, higher lignin content,
- and higher lignin/N. Therefore, the decomposition rate of QM litter and the release rate of plant
- 266 nutrients are gradually slowed down. These are several reasons contributing to the effect that soil
- under QM was lowest.
- 268 Fungal community diversity and structure response to different revegetation types
- We documented that different forest revegetation types had distinct soil fungal community

diversity and composition (Table 3, Fig. 2, Fig. 3), as reported by Myers et al. (2001). We observed 270 that the average fungal Shannon index, ACE index, Chao1 index and Simpson index were the 271 highest in JM, followed by CB (Table 3). The composition of fungi phylum and in different 272 revegetation types were similar to each other, but the relative abundance of fungi phylum was 273 various, which may be related to different root residues and secretions produced by different 274 revegetation types (Degrune et al., 2015). The results of our comparison of soil fungal communities 275 276 among different revegetation types revealed that the predominant members of fungal communities were the phylum Basidiomycota in the QM, CB, LG, and PK, followed by Ascomycota, 277 Zygomycota and Rozellomycota (Fig. 2), which was consistent with the results from Gutianshan 278 National Nature Reserve (Yu et al., 2013) and Mount Nadu (Liu et al., 2018). And other previous 279 studies have also supported the conclusion (Leff et al., 2015; Yu et al., 2013). Basidiomycota 280 281 tended to live in dry and cooler environments due to their history of evolution (Treseder et al., 2014). The relative abundance of Basidiomycete in soils might be related to their ability of 282 degradation of lignocellulose (Lundell et al., 2010), which were affected by dynamics of soil 283 organic matter (Hannula et al., 2012). 284 On the contrary, in our study, we observed that the relative abundances of Ascomycota, over 285 Basidiomycota, Zygomycota, and Rozellomycota, was predominant group in the JM, which was 286 similar to the previous research (Curlevski et al., 2010). Moreover, these results proved that the 287 higher abundance of Ascomycota suggest the enrichment of saprotrophic species, which might be 288 related to organic matter input, given that Ascomycota tend to use the easily degradable residues 289 (Lundell et al., 2010). However, the finding from Yarraman natural forest and the hoop pine 290 plantation showed that Zygomycota was the dominant phylum (He et al., 2010). These disparate 291 results may indicate there is a lack of global common distribution and major fungal phyla in forest 292 soils. Our finding indicated that in the broadleaf forests (QM, JM), Ascomycota were the most 293 predominant phylum, which was similar to the findings from other tropical regions (Kerfahi et al., 294 2014; McGuire et al., 2014). 295 The dominant fungal genera (Sebacina, Russula, Tomentella) were representative of dominant 296

genera found in our study (Fig.3), which was accordant with previous researches (Welc et al. 2014). *Sebacina* was the most common genus in our study, and previous studies have put forward that *Sebacina* could help their host plant overcome biotic and abiotic stresses by supplying it with water and nutrients (Gao & Yang, 2016). *Tomentella* has been reported to be distributed throughout the world (Kõljalg et al., 2000), which was also the common genus in our study. The influence of different revegetation types on soil fungal community is often related to the nature and quantity of organic matter returned by plant litter and provides major resources for soil microorganisms (Saetre & Bååth, 2000; Wardle et al., 2004).

The clear differentiation of fungal communities and the clustering in the heatmap (Fig. 5) and in NMDS (Fig. 6) plots suggested that broad-leaved forests and coniferous forests each owned different fungal community.

Relationship between fungal communities and soil environmental factors

Soil environmental factors variables demonstrated remarkable relationship with fungal diversity. The Simpson index and Shannon index were positively correlated with pH (Table 4). Similar results have been reported (Djukic et al., 2014; Liu et al., 2018; Wang et al., 2015) that the diversity of the fungal community increased with soil pH value. In our study, soil Chao1 index, ACE index, and Shannon index significantly increased with the increasing C/N ratio (Table 4), which was not agreement with previous study. In addition, ACE index and Chao1 index were significantly positively correlated with total P (Table 4), which was accordance with previous work reported that fungal diversity was significantly affected by soil P-related factors (Liu et al., 2018). Just as the soil fungal diversity, soil environmental factors had greatly influenced on the fungal community structure. Previous studies have shown that soil physicochemical properties, such as soil moisture (Brockett et al., 2012), soil pH (Rousk et al., 2010), available soil nutrients (Lauber et al., 2008), soil total C (Yang et al., 2014), and C/N ratio (Christianl et al., 2008) more strongly affected fungal communities. Moreover, our study also confirmed that the abundances of the most dominant fungal communities correlated significantly with soil pH value. What's more, total C, total N, available N and available P were also closely linked to the fungal community structure

(Fig. 8, Table 5), which was consistent with other researches (Sun et al., 2016; Zhang et al., 2017). 324 Basidiomycota are generally sensitive to physic-chemical characteristic disturbance (Osono, 325 326 2007). In our study, the relative abundances of Basidiomycota was significantly negatively correlated with pH and available P, which was not agreement with previous studies (Tedersoo et 327 al., 2014; Tian et al., 2017). Soil with higher relative abundance of Ascomycetes has higher pH 328 values (Lauber et al., 2008). However, in our study, Ascomycota was not correlated with soil pH 329 330 value. A relatively small pH rang (4.89 to 5.70) existed in our study, which might be difficult to ascertain the correlation. Interestingly, the relative abundance of Ascomycota was positively 331 correlated with total C, total N and available N. It is supported by recent research that showed that 332 Ascomycota were associated with the content of soil organic matter (Sterkenburg et al., 2015). The 333 abundance of Zygomycota was positively correlated with available P in our study. Our results 334 335 ulteriorly proved that soil available P was considered an important regulator of fungal communities in the soil, consistent with Dang et al. (2017). These results indicated that differential responses of 336 soil fungal community composition to the different revegetation types largely dependent on soil 337 physicochemical characteristic. And the decisive role of soil physicochemical variables in altering 338 fungal communities during vegetation restoration, in consistent with previous studies (Kuramae et 339 al., 2010) 340

Conclusions

341

342

343

344

345

346

347

348

349

350

Our results here showed that different revegetation types were the main driver of the soil fungal diversity and community composition, which generated shifts in soil chemical characteristics, controlling the composition of fungal community in Baishilazi Nature Reserve. Basidiomycota, Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this region, and the relative abundance of these abundant fungal phyla varied significantly among different revegetation types. The average Shannon index, ACE index, Chao1 index and Simpson index were predicated for JM. The abundances of the most dominant fungal communities correlated significantly with soil pH, total C, total N, available N and available P.

Acknowledgment

- 351 This research was financially supported by the Startup Foundation for Doctor of Liaoning
- 352 (20170520064), the Special Fund for Forest Scientific Research in the Public Welfare
- 353 (201304216), and National Science and Technology Support Program of China
- 354 (2015BAD07B30103).
- 355 References
- Bahram M, Põlme S, Kõljalg U, et al. 2012. Regional and local patterns of ectomycorrhizal fungal
- diversity and community structure along an altitudinal gradient in the Hyrcanian forests of
- northern Iran. New Phytologist 193(2): 465-473 Doi 10.1111/j.1469-8137.2011.03927.x.
- Brockett BFT, Prescott CE, Grayston SJ. 2012. Soil moisture is the major factor influencing
- microbial community structure and enzyme activities across seven biogeoclimatic zones in
- western Canada. Soil Biology and Biochemistry 44(1):9-20. Doi
- org/10.1016/j.soilbio.2011.09.003.
- 363 Chen X, Sun XD, Bi SY, et al. 2010. Fungi diversity of ginseng rhizosphere soil in northeastern
- China. *Agricultural Science and Technology-Hunan* 11(2): 132-136.
- 365 Cheng F, Peng X, Zhao P, et al. 2013. Soil Microbial Biomass, Basal Respiration and Enzyme
- Activity of Main Forest Types in the Qinling Mountains. *Plos One* 8(6):e67353 Doi
- 367 10.1371/journal.pone.0067353.
- 368 Christianl L, Michaels S, Marka B, et al. 2008. The influence of soil properties on the structure of
- bacterial and fungal communities across land-use types. Soil Biology and Biochemistry,
- 40(9):2407-2415 Doi org/10.1016/j.soilbio.2008.05.021.
- Curlevski NJA, Xu ZH, Anderson IC, et al. 2010. Soil fungal communities differ in native mixed
- forest and adjacent *Araucaria cunninghamii* plantations in subtropical Australia. *Journal of*
- *Soils and Sediments* 10(7):1278-1288 Doi org/10.1007/s11368-010-0239-x
- Dang P, Yu X, Le H, et al. 2017. Effects of stand age and soil properties on soil bacterial and
- fungal community composition in Chinese pine plantations on the Loess Plateau. *Plos One*
- 376 12(10):e0186501 Doi 10.1371/journal.pone.0186501.
- Degrune F, Dufrêne M, Colinet G, et al. 2015. A novel sub-phylum method discriminates better

- the impact of crop management on soil microbial community. Agronomy for Sustainable
- 379 *Development* 35(3):1157-1166 DOI 10.1007/s13593-015-0291-4.
- Devi LS, Khaund P, Nongkhlaw FMW, et al. 2012. Diversity of culturable soil micro-fungi along
- altitudinal gradients of Eastern Himalayas. *Mycobiology* 40(3): 151-158 Doi
- 382 10.5941/MYCO.2012.40.3.151.
- Dickie IA, Xu B, Koide RT. 2002. Vertical niche differentiation of ectomycorrhizal hyphae in soil
- as shown by T-RFLP analysis. New Phytologist 156(3): 527-535 DOI 10.1046/j.1469-
- 385 8137.2002.00535.x.
- Dickie IA. 2007. Host preference, niches and fungal diversity. New Phytologist 174(2): 230-233
- 387 DOI 10.1111/j.1469-8137.2007.02055.x.
- Djukic I, Zehetner F, Mentler A, et al. 2010. Microbial community composition and activity in
- different Alpine vegetation zones. Soil Biology and Biochemistry 42(2):155-161 Doi
- 390 org/10.1016/j.soilbio.2009.10.006.
- Fan A, Liu F. 2014. Seasonal Variations of Soil Microbial Biomass and Its Influence on Soil
- Microbial Respiration in Secondary Forest Communities in Montane Region of Eastern
- Liaoning Province. Journal of Northeast Forestry University (3):99-102 DOI
- 394 10.13759/j.cnki.dlxb.2014.03.023
- Fierer N, Jackson JA, Vilgalys R, et al. 2005. Assessment of soil microbial community structure
- by use of taxon-specific quantitative PCR assays. Applied and Environmental Microbiology
- 397 71(7):4117-4120 Doi 10.1128/AEM.71.7.4117-4120.2005.
- Frey SD, Knorr M, Parrent JL, et al. 2004. Chronic nitrogen enrichment affects the structure and
- function of the soil microbial community in temperate hardwood and pine forests. Forest
- 400 *Ecology and Management* 196(1):159-171 Doi org/10.1016/j.foreco.2004.03.018.
- 401 Gao Q, Yang ZL. 2016. Diversity and distribution patterns of root-associated fungi on herbaceous
- plants in alpine meadows of southwestern China. *Mycologia* 108(2):281-291.
- Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application
- to the identification of mycorrhizae and rusts. *Molecular ecology* 2(2): 113-118 DOI

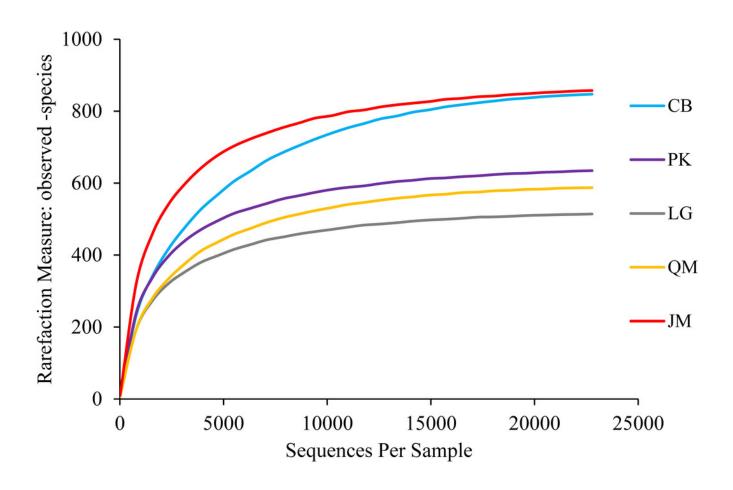
- 405 10.1111/j.1365-294X.1993.tb00005.x.
- 406 Geml J, Pastor N, Fernandez L, et al. 2014. Large-scale fungal diversity assessment in the Andean
- Yungas forests reveals strong community turnover among forest types along an altitudinal
- 408 gradient. *Molecular ecology* 23(10): 2452-2472 Doi 10.1111/mec.12765.
- 409 Georgiadis P, Vesterdal L, Stupak I, et al. 2017. Accumulation of soil organic carbon after cropland
- 410 conversion to short-rotation willow and poplar. GCB Bioenergy 9(8): 1390–1401 DOI
- 411 10.1111/gcbb.12416
- 412 Girvan MS, Bullimore J, Pretty JN, et al. 2003. Soil Type Is the Primary Determinant of the
- 413 Composition of the Total and Active Bacterial Communities in Arable Soils. *Applied and*
- *Environmental Microbiology* 69(3):1800-1809 DOI 10.1128/AEM.69.3.1800–1809.2003.
- Grayston SJ, Prescott CE. 2005. Microbial communities in forest floors under four tree species in
- coastal British Columbia. Soil Biology and Biochemistry 37(6):1157-1167 DOI
- 417 10.1016/j.soilbio.2004.11.014.
- 418 Guo Y, Chen X, Wu Y, et al. 2018. Natural revegetation of a semiarid habitat alters taxonomic
- and functional diversity of soil microbial communities. Science of the Total Environment 635:
- 420 598-606 Doi 10.1016/j.scitotenv.
- 421 Hannula SE, Boschker HTS, Boer WD, et al. 2012. ¹³C pulse-labeling assessment of the
- community structure of active fungi in the rhizosphere of a genetically starch-modified potato
- 423 (Solanum tuberosum) cultivar and its parental isoline. *New Phytologist* 194(3):784-799 Doi
- 424 10.1111/j.1469-8137.2012.04089.x.
- 425 Harrison KA, Bardgett RD. 2010. Influence of plant species and soil conditions on plant-soil
- feedback in mixed grassland communities. *Journal of Ecology* 98(2): 384-395 Doi
- 427 10.1111/j.1365-2745.2009.01614.x.
- Hatakka A. 2010. Lignin-modifying enzymes from selected white-rot fungi: production and role
- from in lignin degradation. Fems Microbiology Reviews 13(2-3):125-135 Doi
- 430 10.1111/j.1574-6976.1994.tb00039.x.
- 431 He J, Xu Z, Hughes J. 2010. Analyses of soil fungal communities in adjacent natural forest and

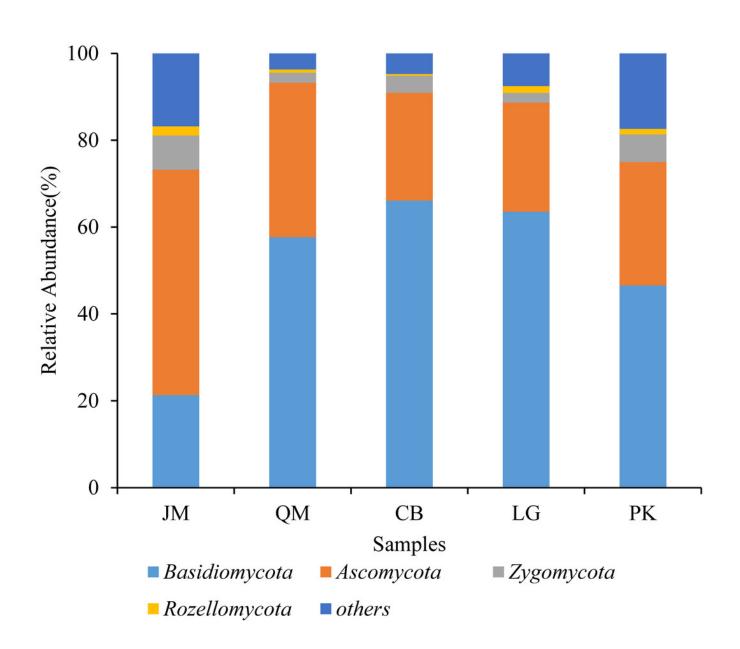
- 432 hoop pine plantation ecosystems of subtropical Australia using molecular approaches based
- on 18S rRNA genes. Fems Microbiology Letters 247(1):91-100 DOI
- 434 10.1016/j.femsle.2005.04.033.
- Herrera Paredes S, Lebeis SL. 2016. Giving back to the community: microbial mechanisms of
- plant-soil interactions. Functional Ecology 30(7):1043-1052 Doi 10.1111/j.1365-
- 437 2435.12684.
- Jangid K, Whitman WB, Condron LM, et al. 2013. Soil bacterial community succession during
- long-term ecosystem development. *Molecular Ecology* 22(12):3415-3424 DOI:
- 440 10.1111/mec.12325.
- Jin Z, Li X, Wang Y, et al. 2016. Comparing watershed black locust afforestation and natural
- revegetation impacts on soil nitrogen on the Loess Plateau of China. Scientific Reports
- 443 6(25048):25048 DOI 10.1038/srep25048
- Kerfahi D, Tripathi BM, Lee J, et al. 2014. The Impact of Selective-Logging and Forest Clearance
- for Oil Palm on Fungal Communities in Borneo. Plos One 9(11):e111525 DOI
- 446 10.1371/journal.pone.0111525.
- 447 Kernaghan G, Harper KA. 2001. Community structure of ectomycorrhizal fungi across an
- alpine/subalpine ecotone. *Ecography* 24(2): 181-188 DOI 10.1034/j.1600-
- 449 0587.2001.240208.x.
- 450 Koljalg U, Afs T, Larsson EHN, et al. 2010. Diversity and abundance of resupinate thelephoroid
- fungi as ectomycorrhizal symbionts in Swedish boreal forests. *Molecular Ecology*
- 9(12):1985-1996 Doi org/10.1046/j.1365-294X.2000.01105.x.
- 453 Kuramae EE, Gamper HA, Yergeau E, et al. 2010. Microbial secondary succession in a
- chronosequence of chalk grasslands. *Isme Journal* 4(5):711 Doi org/10.1038/ismej.2010.11.
- Lauber CL, Strickland MS, Bradford MA, et al. 2008. The influence of soil properties on the
- structure of bacterial and fungal communities across land-use types. Soil Biology and
- 457 *Biochemistry* 40(9):2407-2415 Doi org/10.1016/j.soilbio.2008.05.021.
- Leff JW, Jones SE, Prober SM, et al. 2015. Consistent responses of soil microbial communities to

- elevated nutrient inputs in grasslands across the globe. *Proceedings of the National Academy*
- of Sciences of the United States of America 112(35):10967-10972 Doi
- 461 10.1073/pnas.1508382112.
- Liu D, Liu G, Li C, et al. 2018. Soil pH determines fungal diversity along an elevation gradient in
- Southwestern China. *Science China Life Sciences* (6):1-9 Doi 10.1007/s11427-017-9200-1.
- Liu M, Liu J, Chen X, et al. 2018 Shifts in bacterial and fungal diversity in a paddy soil faced with
- phosphorus surplus. Biology and Fertility of Soils 54(2):259-267 Doi 10.1007/s00374-017-
- 466 1258-1.
- Lovett GM, Weathers KC, Arthur MA, et al. 2004. Nitrogen cycling in a northern hardwood forest:
- do species matter. Biogeochemistry 67(3): 289-308 DOI
- 469 10.1023/B:BIOG.0000015786.65466.f5.
- 470 Lundell TK, Makela MK. 2010. Lignin-modifying enzymes in filamentous basidiomycetes--
- ecological, functional and phylogenetic review. *Journal of Basic Microbiology* 50(1):5-20
- 472 Doi 10.1002/jobm.200900338.
- 473 Mcguire KL, D'Angelo H, Brearley FQ, et al. 2015. Responses of soil fungi to logging and oil
- palm agriculture in Southeast Asian tropical forests. *Microbial Ecology* 69(4):733-747 Doi
- 475 10.1007/s00248-014-0468-4.
- 476 Myers RT, Zak DR, White DC, et al. 2001. Landscape-Level Patterns of Microbial Community
- 477 Composition and Substrate Use in Upland Forest Ecosystems. *Soil Science Society of America*
- 478 *Journal* 65(2):359-367 DOI 10.2136/sssaj2001.652359x.
- 479 Ni Y, Yang T, Zhang K, et al. 2018. Fungal Communities Along a Small-Scale Elevational
- Gradient in an Alpine Tundra Are Determined by Soil Carbon Nitrogen Ratios. Frontiers in
- 481 *Microbiology* 9: 01815 Doi org/10.3389/fmicb.2018.01815
- Osono T. 2007. Ecology of ligninolytic fungi associated with leaf litter decomposition. *Ecological*
- 483 Research 22(6):955-974 DOI 10.1007/s11284-007-0390-z.
- Peter M, Ayer F, Egli S. 2001. Nitrogen addition in a Norway spruce stand altered macromycete
- sporocarp production and below-ground ectomycorrhizal species composition. New

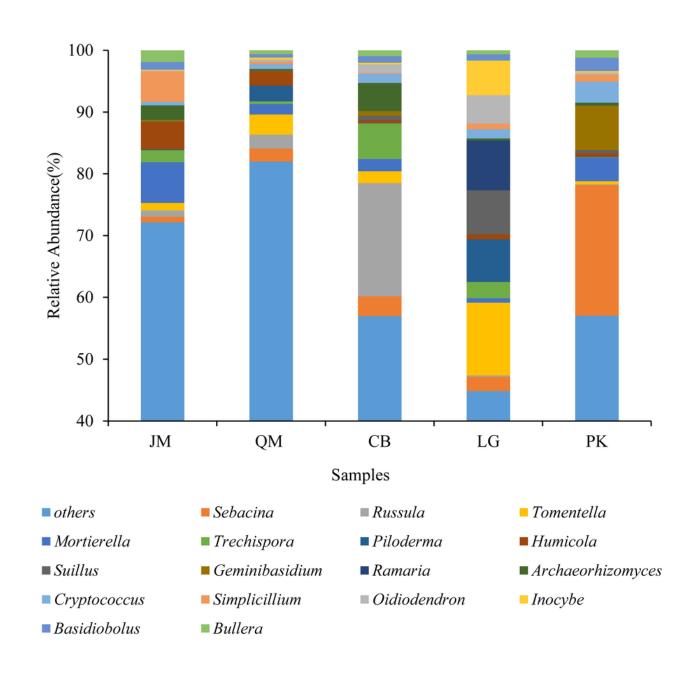
- 486 *Phytologist* 149(2): 311-325 DOI 10.1046/j.1469-8137.2001.00030.x.
- 487 Qi JH. 2017. Contents of soil organic carbon and its relations with physicochemical properties of
- secondary natural oak forests in Eastern Mountain Area of Liaoning Province. *Journal of Soil*
- and Water Conservation 31(4):135-140 DOI 10.13870/j.cnki.stbcxb.2017.04.022.
- Rahimabady MS, Akbarinia M, Kooch Y. 2015. The effect of land covers on soil quality properties
- in the Hyrcanian regions of Iran. *Journal of Bioscience and Biotechnology* 4(1) 73-79
- Rousk J, Bååth E, Brookes PC, et al. 2010. Soil bacterial and fungal communities across a pH
- 493 gradient in an arable soil. Isme Journal Multidisciplinary Journal of Microbial Ecology
- 494 4(10):1340-1351 DOI 10.1038/ismej.2010.58.
- Saetre P, Bååth E. 2000. Spatial variation and patterns of soil microbial community structure in a
- mixed spruce-birch stand. Soil Biology and Biochemistry 32(7):909-917 DOI
- 497 10.1016/S0038-0717(99)00215-1.
- 498 Sterkenburg E, Bahr A, Clemmensen KE, et al. 2015. Changes in fungal communities along a
- boreal forest soil fertility gradient. New Phytologist 207(4):1145-1158 Doi
- 500 10.1111/nph.13426.
- Sun H, Terhonen E, Kovalchuk A, et al. 2016. Dominant tree species and soil type affect fungal
- community structure in a boreal peatland forest. Applied and Environmental Microbiology
- 503 82(9):2632 Doi 10.1128/AEM.03858-15.
- Tedersoo L, Bahram M, Põlme S, et al. 2014. Global diversity and geography of soil fungi. Science
- 505 346(6213):1-11 DOI 10.1126/science.1256688.
- Tian Q, Taniguchi T, Shi WY, et al. 2017. Land-use types and soil chemical properties influence
- soil microbial communities in the semiarid Loess Plateau region in China. *Scientific Reports*
- 508 7(7):45289 Doi 10.1038/srep45289.
- Treseder KK, Maltz MR, Hawkins BA, et al. 2014. Evolutionary histories of soil fungi are reflected
- in their large-scale biogeography. *Ecology Letters* 17(9):1086-93 DOI 10.1111/ele.12311.
- Van DHMGA, Bardgett RD, Van Straalen NM. 2010. The unseen majority: soil microbes as
- drivers of plant diversity and productivity in terrestrial ecosystems. *Ecology Letters*

- 513 11(3):296-310 DOI 10.1111/j.1461-0248.2007.01139.x.
- Waldrop MP, Zak DR, Blackwood CB, et al. 2006. Resource availability controls fungal diversity
- across a plant diversity gradient. Ecology Letters 9(10): 1127-1135 DOI 10.1111/j.1461-
- 516 0248.2006.00965.x.
- Wallander H, Johansson U, Sterkenburg E, et al. 2010. Production of ectomycorrhizal mycelium
- peaks during canopy closure in Norway spruce forests. New Phytologist 187(4): 1124-1134
- DOI 10.1111/j.1469-8137.2010.03324.x.
- Wang JT, Zheng YM, Hu HW, et al. 2015. Soil pH determines the alpha diversity but not beta
- diversity of soil fungal community along altitude in a typical Tibetan forest ecosystem.
- *Journal of Soils and Sediments* 15(5):1224-1232 DOI 10.1007/s11368-015-1070-1.
- Wardle DA; Bardgett RD; Klironomos JN et al. 2004. Ecological linkages between aboveground
- and belowground biota. *Science* 304(5677):1629-1633 DOI 10.1126/science.1094875.
- Weand MP, Arthur MA, Lovett GM, et al. 2010. The phosphorus status of northern hardwoods
- differs by species but is unaffected by nitrogen fertilization. *Biogeochemistry* 97(2-3): 159-
- 527 181 DOI 10.1007/s10533-009-9364-2.
- Welc M, Frossard E, Egli S, et al. 2014. Rhizosphere fungal assemblages and soil enzymatic
- activities in a 110-years alpine chronosequence. Soil Biology and Biochemistry 74:21-30 Doi
- org/10.1016/j.soilbio.2014.02.014.
- White TJ, Bruns T, Lee S, et al. 1990. Amplification and direct sequencing of fungal ribosomal
- RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1):
- 533 315-322.
- Wu G, Liu Y, Fang N, et al. 2016. Soil physical properties response to grassland conversion from
- cropland on the semiâ arid area. *Ecohydrology* 9(8):1471-1479 DOI 10.1002/eco.1740.
- Yang Y, Gao Y, Wang S, et al. 2014. The microbial gene diversity along an elevation gradient of
- the Tibetan grassland. *Isme Journal Multidisciplinary Journal of Microbial Ecology* 8(2):430
- DOI 10.1038/ismej.2013.146.
- You Y, Wang J, Huang X, et al. 2014. Relating microbial community structure to functioning in

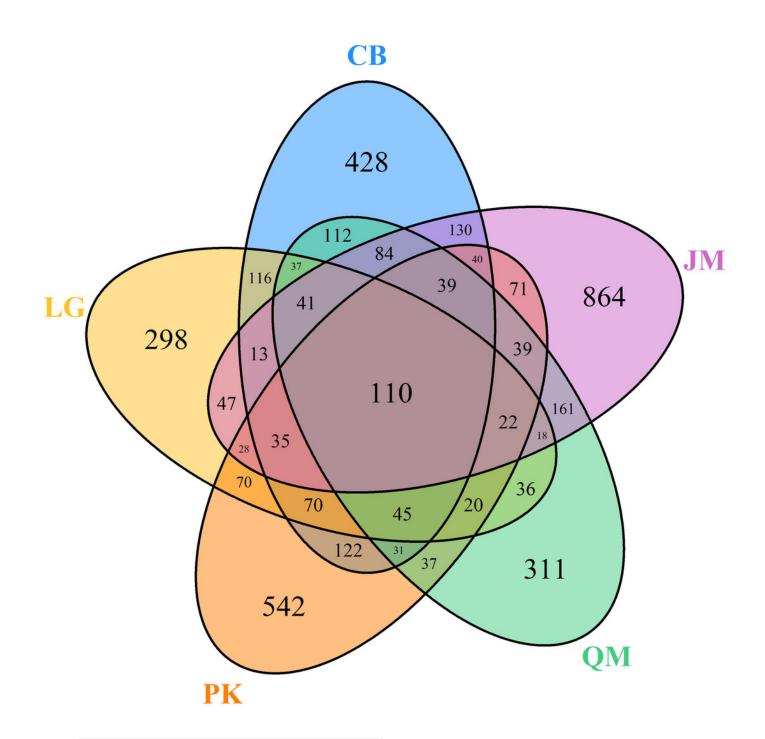



540	forest soil organic carbon transformation and turnover. <i>Ecology and Evolution</i> 4(5):633-647
541	DOI 10.1002/ece3.969.
542	Yu T W, Wubet T, Trogisch S, et al. 2013. Forest Age and Plant Species Composition Determine
543	the Soil Fungal Community Composition in a Chinese Subtropical Forest. Plos One
544	8(6):e66829 Doi 10.1371/journal.pone.0066829.
545	Yu TW, Wubet T, Trogisch S, et al. 2013. Forest Age and Plant Species Composition Determine
546	the Soil Fungal Community Composition in a Chinese Subtropical Forest. Plos One
547	8(6):e66829 Doi 10.1371/journal.pone.0066829.
548	Zhang Q, Jia X, Zhao C, et al. 2018. Revegetation with artificial plants improves topsoil
549	hydrological properties but intensifies deep-soil drying in northern Loess Plateau, China.
550	Journal of Arid Land (3):1-12 Doi org/10.1007/s40333-018-0007-0.
551	Zhang Z, Zhou X, Tian L, et al. 2017. Fungal communities in ancient peatlands developed from
552	different periods in the Sanjiang Plain, China. Plos One 12(12):e0187575 Doi
553	10.1371/journal.pone.0187575.
554	Zhu W, Cai X, Liu X, et al. 2010. Soil microbial population dynamics along a chronosequence of
555	moist evergreen broad-leaved forest succession in southwestern China. Journal of Mountain
556	Science 7(4): 327-338 DOI 10.1007/s11629-010-1098-z.
557	
558	
559	
560	

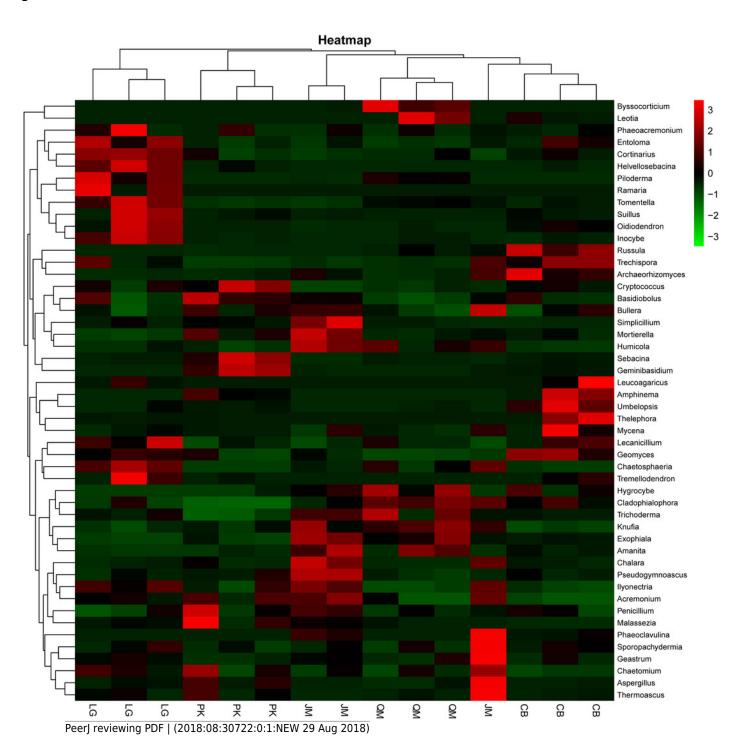
Rarefaction curves.



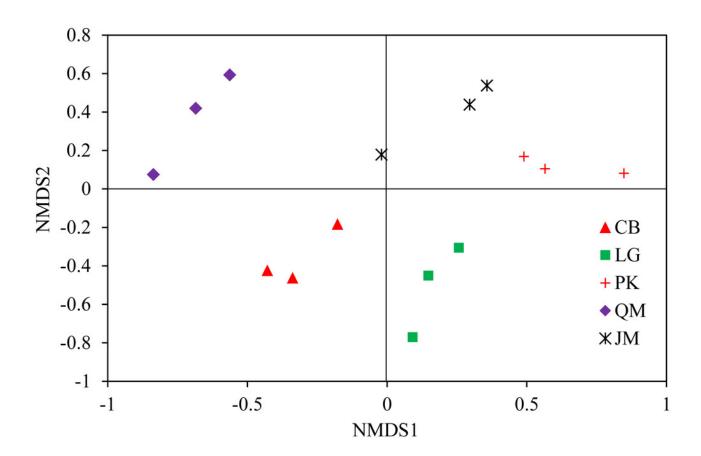
Relative abundance of fungus phyla present in five different revegetation types.



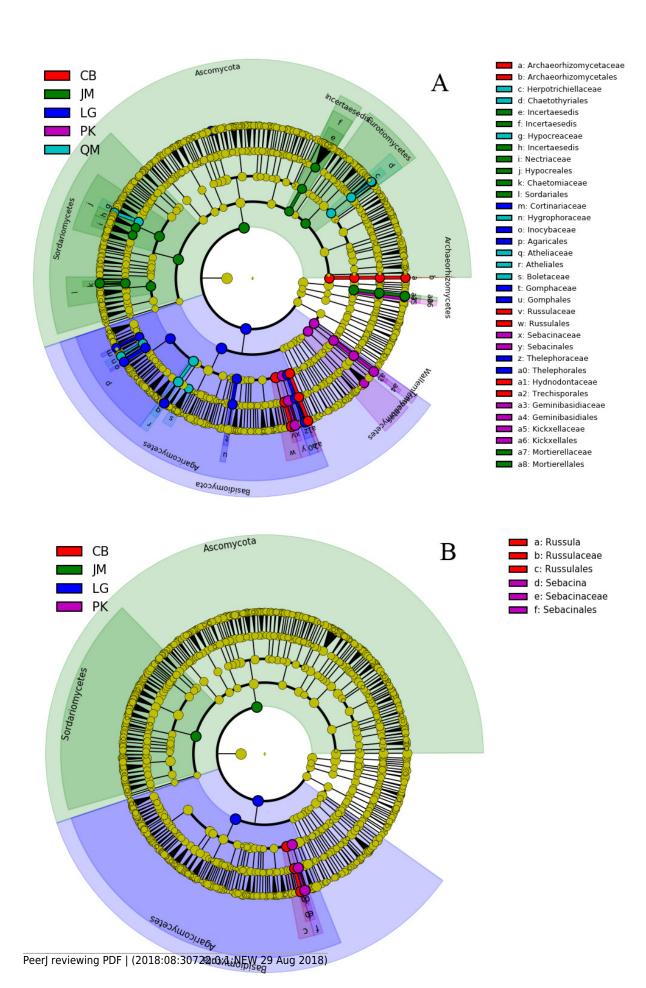
The distribution of partial sequences of fungal ITS gene at genus level.



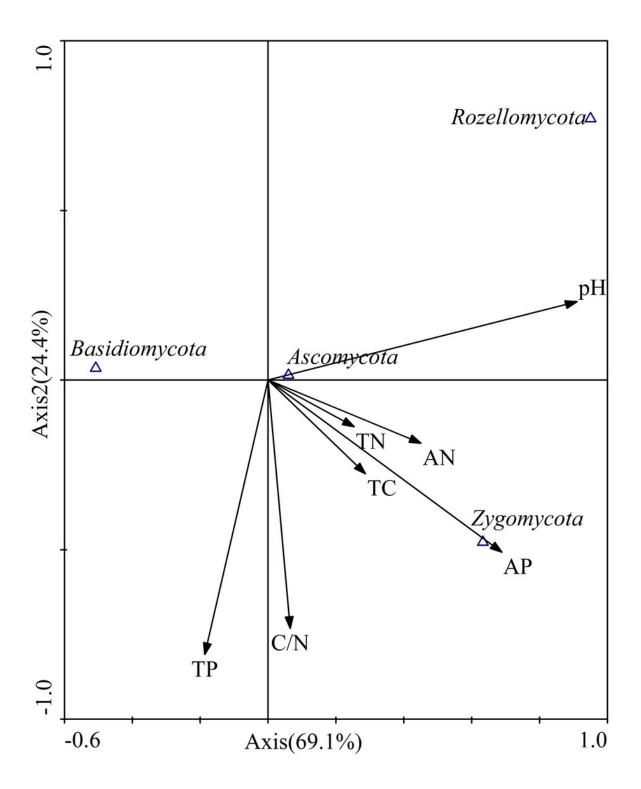
Venn diagrams of OUT richness.



Heat map and hierarchical cluster analysis based on the relative abundances of the top 50 genera identified in the bacterial communities of the soils.


Weighted UniFrac NMDS analysis of the composition of fungal communities in the soil of forests with different dominant trees.

The cladogram of fungal communities among different sampling sites. \Box



Canonical correspondence analysis (CCA) on soil dominant fungal phyla constrained by soil variables.

TC: Total Carbon; TN: Total Nitrogen; C/N: C-N ration; AN: Available Nitrogen; TP: Total

Phosphorus; AP: Available Phosphorus.

Table 1(on next page)

Sites information of the Baishilazi Nature Reserve.

1 Table 1:

2 Sites information of the Baishilazi Nature Reserve.

Types	Dominant Vegetation	Elevation (m)	Forest Type
JM	Acanthopanax senticosus, Padus racemose, Magnolia sieboldii, Pimpinella brachycarpa, Puccinellia tenuiflora	901.8	Natural secondary forest
QM	Acer mono, Cerasus tomentosa, Carpinus cordata	842.3	Natural secondary forest
СВ	Betula ermanii, Pinus koraiensis, Schisandra chinensis, Phryma leptostachya L. subsp. asiatica	826.5	Natural secondary forest
LG	Daemonorops margaritae	552.7	Plantation forest
PK	Daemonorops margaritae, Pteridium aquilinum	552.7	Plantation forest

3 Note:

4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

5 gmelinii; PK: Pinus koraiensis.

6

Table 2(on next page)

Soil physical and chemical properties of different revegetation types.

1 Table 2:

2 Soil physical and chemical properties of different revegetation types.

Types	nII	Total C	Total N	C/N	Available N	Total P	Available
	pН	(g/kg)	(mg/kg)	C/IN	(mg/kg)	(g/kg)	P (mg/kg)
JM	5.70a	100.53a	7800.00a	12.89ab	57.15a	0.93b	4.42ab
QM	4.89c	84.62b	7375.33a	11.64bc	41.25b	0.74bc	2.39ab
СВ	4.99c	75.49c	5466.67b	13.81a	43.60b	1.46a	2.53ab
LG	5.40b	43.79d	3853.50c	11.36c	33.35c	0.62c	1.21b
PK	5.48b	41.70d	3580.50c	11.65bc	28.04c	0.77bc	5.65a

3 Note:

4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

5 gmelinii; PK: Pinus koraiensis.

6

Table 3(on next page)

Soil fungal diversity indexes of different revegetation types.

- 1 Table 3:
- 2 Soil fungal diversity indexes of different revegetation types.

Tynes	No. of sequences	lnumber	Shannon Index	ACE Index	Chao1 Index	Simpson Index
JM	40811	715	8.18±0.23a	879.57±64.4767a	879.08±64.48a	0.99±0.00a
QM	33752	518	5.79±0.28c	597.78±98.62b	598.00±98.89b	0.89±0.03b
СВ	37669	743	7.18±0.34b	870.95±192.83a	866.17±184.59a	0.98±0.01a
LG	37959	455	6.49±0.22bc	522.15±100.95b	521.58±101.48b	0.97±0.01a
PK	63447	525	7.06±0.89b	650.67±108.58b	649.10±109.27b	0.97±0.02a

- 3 Note:
- 4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix
- 5 gmelinii; PK: Pinus koraiensis.

6

Table 4(on next page)

Person's rank correlation coefficients between fungi diversity indices and measured soil characteristics.

*Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01 level (2-tailed).

- 1 Table 4:
- 2 Person's rank correlation coefficients between fungi diversity indices and measured soil
- 3 characteristics.

	рН	Total C	Total N	C/N	Available N	Total P	Available P
Simpson	0.680**	-0.139	-0.337	0.472	-0.043	0.334	0.297
Chao1	0.089	0.573*	0.389	0.715**	0.397	0.725**	0.238
ACE	0.085	0.567*	0.383	0.714**	0.389	0.730**	0.234
Shannon	0.659**	0.302	0.132	0.528*	0.312	0.361	0.508

- 4 Note:
- *Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01 level
- 6 (2-tailed).

/

8

Table 5(on next page)

Person's rank correlations between the relative abundances of dominant bacteria groups and available edaphic factors.

**correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-tailed).

- 1 Table 5:
- 2 Person's rank correlations between the relative abundances of dominant bacteria groups and
- 3 available edaphic factors.

Fungal group	рН	Total C	Total N	C/N	Available N	Total P	Available P
Phylun							
Basidiomycota	-0.680**	-0.455	-0.466	-0.010	-0.506	0.107	-0.611**
Ascomycota	0.416	0.608*	0.655**	-0.004	0.693**	-0.058	0.462
Zygomycota	0.530*	0.274	0.179	0.284	0.245	0.146	0.665**
Rozellomycota	0.716**	-0.016	0.036	-0.278	0.052	-0.460	0.002
Genus							
Sebacina	0.192	-0.563*	-0.533*	-0.282	-0.604*	-0.132	0.171
Russula	-0.491	0.170	0.025	0.637*	0.171	0.751**	-0.121
Tomentella	0.009	-0.407	-0.339	-0.371	-0.247	-0.360	-0.473
Mortierella	0.524*	0.456	0.383	0.264	0.447	0.123	0.623*
Trechispora	-0.182	0.096	-0.039	0.490	0.071	0.593*	-0.415
Piloderma	-0.066	-0.378	-0.278	-0.452	-0.316	-0.534*	-0.482
Humicola	0.302	0.745**	0.735**	0.146	0.705**	-0.098	0.152
Suillus	0.118	-0.438	-0.402	-0.287	-0.263	-0.236	-0.266
Geminibasidium	0.252	-0.530*	-0.516*	-0.226	-0.569*	-0.105	0.271
Ramaria	0.116	-0.420	-0.378	-0.303	-0.353	-0.402	-0.368
Archaeorhizomyces	-0.111	0.300	0.132	0.672**	0.334	0.591*	-0.057
Cryptococcus	0.114	-0.655**	-0.655**	-0.212	-0.698**	-0.069	-0.031
Simplicillium	0.540*	0.415	0.380	0.110	0.387	-0.009	0.509
Oidiodendron	0.024	-0.417	-0.398	-0.211	-0.261	-0.098	-0.338
Inocybe	0.144	-0.518*	-0.459	-0.397	-0.340	-0.383	-0.380
Basidiobolus	0.431	-0.378	-0.434	0.023	-0.406	-0.143	0.578*
Bullera	0.596*	0.340	0.273	0.231	0.313	0.091	0.357

4 Note

5 **correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-

6 tailed).

7