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The effects of different revegetation types on soil physical-chemical characteristics and

fungal community have been established in the Baishilazi Nature Reserve. We studied the

fungal community diversity and composition of soils sampled from five different

revegetation types (JM, Juglans mandshurica; QM, Quercus mongolica; CB, conifer-

broadleaf forest; LG, Larix gmelinii; PK, Pinus koraiensis) in the Baishilazi Nature Reserve.

Soil fungal communities were assessed employing ITS rRNA Illunima Miseq high-

throughput sequencing. Response of soil fungi community to soil environmental factors

was assessed through canonical correspondence analysis (CCA) and Person’s rank

correlations. Our results suggested that coniferous forest (LG, PK) and conifer-broad forest

(CB) had reduced soil total C, total N, and Available N compared with broad-leaved forest

(JM, QM). The average fungus diversity according to Shannon index, ACE index, Chao1

index and Simpson index were increased in the JM. Basidiomycota, Ascomycota,

Zygomycota and Rozellomycota were the predominant fungal community in this region.

The most predominant member of fungal communities was the phylum Basidiomycota in

the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most

predominant group in the JM. The clear differentiation of fungal communities and the

clustering in the heatmap and in NMDS plots showed that broad-leaved forests, conifer-

broad forest and coniferous forests each owned different fungal community. The results of

canonical correspondence analysis (CCA) shown that the soil environmental factors, such

as soil pH, total C, total N, available N and available P had greatly influenced on the fungal

community structure. Our results suggested that differential responses of soil fungal

community composition to the different revegetation types largely dependent on soil

physicochemical characteristic in Baishilazi Nature Reserve.
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28 The effects of different revegetation types on soil physical-chemical characteristics and fungal 

29 community have been established in the Baishilazi Nature Reserve. We studied the fungal 

30 community diversity and composition of soils sampled from five different revegetation types (JM, 

31 Juglans mandshurica; QM, Quercus mongolica; CB, conifer-broadleaf forest; LG, Larix gmelinii; 

32 PK, Pinus koraiensis) in the Baishilazi Nature Reserve. Soil fungal communities were assessed 

33 employing ITS rRNA Illunima Miseq high-throughput sequencing. Response of soil fungi 

34 community to soil environmental factors was assessed through canonical correspondence  

35 analysis (CCA) and Person’s rank correlations. Our results suggested that coniferous forest (LG, 

36 PK) and conifer-broad forest (CB) had reduced soil total C, total N, and Available N compared 

37 with broad-leaved forest (JM, QM). The average fungus diversity according to Shannon index, 

38 ACE index, Chao1 index and Simpson index were increased in the JM. Basidiomycota, 

39 Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this 

40 region. The most predominant member of fungal communities was the phylum Basidiomycota in 

41 the QM, CB, LG, and PK. On the contrary, the relative abundances of Ascomycota was most 

42 predominant group in the JM. The clear differentiation of fungal communities and the clustering 

43 in the heatmap and in NMDS plots showed that broad-leaved forests, conifer-broad forest and 

44 coniferous forests each owned different fungal community. The results of canonical 

45 correspondence analysis (CCA) shown that the soil environmental factors, such as soil pH, total 

46 C, total N, available N and available P had greatly influenced on the fungal community structure. 

47 Our results suggested that differential responses of soil fungal community composition to the 

48 different revegetation types largely dependent on soil physicochemical characteristic in Baishilazi 

49 Nature Reserve. 

50 Key words: Different revegetation types, Soil physical-chemical characteristics, Fungal 

51 community, The Baishilazi Nature Reserve

52

53 Introduction

54 Due to long-term human disturbance and intensive land use, native vegetation temperate zone in 
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55 China have been severely damaged, resulting in the reduction of biodiversity and the deterioration 

56 of ecological functions, threating the safety and sustainable development of regional ecology. Thus 

57 it can be seen that vegetation restoration is an important measure of ecological environment 

58 restoration due to its multifarious ecological benefits. Numerous researches have illustrated that 

59 revegetation had an effect on soil physicochemical characteristics, such as soil bulk density, field 

60 capacity (Zhang et al., 2018), infiltration rate (Wu et al., 2016), soil organic carbon (Georgiadis et 

61 al., 2017), and soil nitrogen (Fu et al., 2010). Feedback processes of plant-soil play crucial roles 

62 in altering the structure and dynamics of microbial communities (Herrera Paredes et al., 2016). 

63 Soil microbial community, which is a key bridge to connect the advantage plant community 

64 aboveground with ecological process underground, is one of the most important regulator of soil 

65 nutrient transformation (Cheng et al., 2013). Soil microorganism can not only directly affect the 

66 storage of soil nutrients by its own biomass, but also can indirectly effect on soil nutrient 

67 transformation through the metabolic activity (Jangid et al., 2013; You et al., 2014). However, 

68 fewer researches have followed changes in soil microbial community dynamics, despite the 

69 important role of microorganisms in biogeochemical cycling (Guo et al., 2018).

70 Fungal community and diversity have important influence on plant communities and ecosystems 

71 (van der Heijden et al., 2008; Devi et al., 2012). Furthermore, fungi play crucial roles in many 

72 respects of ecosystem development (Chen et al., 2010; Geml et al., 2014), determining biochemical 

73 cycle in continental ecosystem (Tedersoo et al., 2014). Fungal diversity and community 

74 composition have been indicated to be closely related to numerous abiotic and biotic factors, such 

75 as elevation (Kernaghan & Harper, 2010; Bahram et al., 2012), soil environment (Peter et al., 2001; 

76 Dickie et al., 2002), plant species (Lovett et al., 2004; Weand et al., 2010), plant diversity (Dickie. 

77 2007; Waldrop et al., 2006), and stand age (Zhu et al., 2010; Wallander et al., 2010). An increasing 

78 number of work have shown that a number of soil properties including soil pH (Fierer & Jackson, 

79 2006), soil texture (Girvan et al., 2003), and soil nitrogen availability (Frey et al., 2004) can be 

80 associated with changes fungal communities structure. Unfortunately, few researchers have 

81 addressed the connection between the Different revegetation types and the fungi community 
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82 structure in natural secondary forest and plantation forests. Directly, the relationship between the 

83 soil nutrient and the fungi community is not explicit, however, previous work has concentrated on 

84 the effect of grassland and leguminous species (Harrison & Bardgett, 2010). But there remains a 

85 need for interpreting which of these factors was the dominant influence on the soil fungal 

86 communities in different revegetation types. 

87 As the national nature reserves, the Baishilazi Nature Reserve is located in the Montainous 

88 Region of the Eastern Liaoning Province, China. The Baishilazi Nature Reserve was established 

89 in 1988, which belongs to the Changbai Mountain system. The original vegetation was broad-

90 leaved Pinus koraiensis forests, which was severely damaged due to the over-exploitation of the 

91 past 100 years. At present, vegetation mainly consist of natural secondary forests and conifer 

92 plantations, which provides the unique opportunity to investigate the soil fungal community among 

93 different revegetation ecosystems under the same climatic conditions. Luxuriant researches have 

94 investigated the changes of soil microbial biomass (Fan et al., 2014), soil organic carbon contents 

95 (Qi et al., 2017) in different revegetation types, however it is acquainted scarcely about the how 

96 the different revegetated forests determined the soils fungal community diversity and structure in 

97 this area. For that matter, we applied pyrosequencing of the ITS rRNA gene to explore both 

98 diversity and composition of soil fungal community responses to different revegetation types from 

99 five sites in the Baishilazi Nature Reserve in Liaoning Province, China. Our objective was to use 

100 five different revegetation types to examine how soil fungi may respond to different revegetation 

101 types and, more specifically, how shifts in the abundance and composition of soil fungal 

102 communities response to changes in soil properties. 

103 Material and methods

104 Site description 

105 The field study was carried out at the Baishilazi Nature Reserve (approval number# 20170628-7), 

106 the Eastern Mountainous Areas of Liaoning Province (40°50′00″~40°57′12″N, 

107 124°44′07″~124°57′30″E). It is a comprehensive nature reserve with forest ecosystem 

108 as the main protection object. The total area of the Baishilazi Nature Reserve is 7407hm2, which 
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109 belongs to the mountain range of Changbai Mountain. This area is characterized by continental 

110 monsoon climate, with long cold winters, warm wet summers, and higher diurnal temperature 

111 variation. The annual mean amount of evaporation is 885 mm. The annual average temperature is 

112 6.4℃, and the average annual precipitation amount is 1158 mm. The region has a relatively rich 

113 and unique biodiversity, possessing significant ecological status and scientific value both in China 

114 and the world. The characteristics of the five selected study samples are listed in Table 1. 

115 Soil sampling

116 In July, 2017, we sampled from three plots per forest type after removal of the litter layer, including 

117 Juglans mandshurica (JM), Quercus mongolica (QM), conifer-broadleaf forest (CB), Larix 

118 gmelinii (LG), and Pinus koraiensis (PK). Soil samples were collected with use of a soil auger (8 

119 cm in diameter, 10 cm deep) from a 20 m×20 m plot with each forest type replicate. A strip 

120 sampling method was used to ensure the representativeness of soil samples in each forest. The 

121 soils of 15-20 points were mixed together and placed in sterilized ziplock bags as a replicate 

122 sample. Identifically, in each vegetation form, three subsamples were collected. Immediately 

123 arrival to the laboratory the sample in cooled boxes were sieved (2 mm mesh) to undock roots and 

124 dopant, and divided into two sub-samples, one of which was air-dried and used for physical and 

125 chemical analyses, and the other was stored at -80 ℃ until DNA extraction and used for microbial 

126 analyses. 

127 DNA extraction and PCR amplification sequencing

128 Total fungal genomic DNA samples were extracted from 0.5 g of soil using the Fast DNA SPIN 

129 extraction kits (MP Biomedicals, Santa Ana, CA, USA), according to the manufacturer’s 

130 instructions. The quantity and quality of extracted DNAs were measured using a NanoDrop ND-

131 1000 spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The primer set: ITS1F 

132 (50-CTTGGTCATTTAGAGGAAGTAA-30) (Gardes &Bruns, 1993) and ITS2 (50-

133 GCTGCGTTCTTCATCGATGC-30) (White et al., 1990) was selected to target the fungal ITS1 

134 region. Sample-specific 7-bp barcodes were incorporated into the primers for multiplex 
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135 sequencing. PCR amplification were requiresd two steps. During the first step, each of three 

136 independent 25 μl reactions per DNA sample included 5 μl of Q5 reaction buffer (5×), 5 μl of Q5 

137 High-Fidelity GC buffer (5×), 1 μl (10 uM) of each Forward and Reverse primer, 2 μl (2.5 mM) 

138 of dNTPs, 0.25 μl of Q5 High-Fidelity DNA Polymerase (5U/μl), 2 μl of DNA Template, and 8.75 

139 μl of ddH2O. Cycling conditions were 98 °C for 5 min; 25 cycles of 98 °C for 15 s, 55 °C for 30 

140 s, 72 °C for 30 s, followed by 72 °C for 5 min. PCR amplicons were purified with Agencourt 

141 AMPure Beads (Beckman Coulter, Indianapolis, IN) and quantified using the PicoGreen dsDNA 

142 Assay Kit (Invitrogen, Carlsbad, CA, USA). After the individual quantification step, amplicons 

143 were pooled at equal amounts, and pair-end 2×300 bp sequencing was performed using the 

144 Illlumina MiSeq platform with the MiSeq Reagent Kit v3.

145 Data Analysis

146 Operational taxonomic units (OTU)-level alpha diversity indices, such as Chao1 index, ACE 

147 index, Shannon index, and Simpson index, were computed using the OTU table in QIIME. The 

148 shared and unique OTUs among samples were used to venn diagrams using the R software 

149 package. The heatmap representation of the relative abundance of fungal OTUs among samples 

150 was built using R. NMDS analysis was also conducted based on the genus-level compositional 

151 profiles. 

152 One-way analysis of variance (ANOVA) was conducted using SPSS 19.0 software. Soil 

153 physicochemical characteristics, fungal total abundances, alpha diversity indices, and the taxa 

154 (phyla and genus) of different forest soils were compared using LSD tests. Pearson correlation 

155 analysis was used to evaluate the correlations between soil fungal community diversity and 

156 structure and soil characteristics. Canonical correspondence analysis (CCA) which was performed 

157 via Canoco 4.5, was used to evaluate the linkages between dominant fungal groups related to soil 

158 environmental factors.

159 Results 

160 Soil physicochemical properties

161 As seen in Table 2, the soil pH value ranged from 4.89 to 5.70. Soil pH value under QM was the 
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162 most acidic with 4.89, compared to others, followed by CB, and JM contained the highest soil pH 

163 value. There were significant difference among different forest types regarding soil total C and 

164 total N. Interestingly, both total C and total N exhibited highest in the soil of JM, which was 100.53 

165 g/kg and 7800.00mg/kg, but only 31.76g/kg and 2476.67 mg/kg in the PK, respectively. Soil C/N 

166 in all the treatments were less than 25:1, among which CB had the highest C/N. Available N was 

167 found in ranked order of JM> QM >CB >LG > PK (Table 2). There were also significant 

168 differences in available P and total P among different forest types, with the highest values under 

169 PK and CB, respectively (Table 2). 

170 Fungal community diversity responses to different revegetation types

171 Fungal a-diversity varied greatly across our samples. The Shannon index, ACE index, Chao1 index 

172 and Simpson index were the highest in the JM, followed by the CB (Table 3). Person’s correlation 

173 coefficients indicated that the Simpson indices (r=0.680, P<0.01) and Shannon index (r=0.659, 

174 P<0.01) were positively correlated with pH, and Shannon index was positively correlated with 

175 C/N (r=0.528, P<0.05). In addition, ACE index and Chao1 index were significantly positively 

176 correlated with total C (P<0.05), C/N and total P (P<0.01) (Table 4).

177 Fungal community structure responses to different revegetation types

178 A total of 640,914 high quality ITS sequences were obtained after the elimination of chimeras and 

179 sequence of low quality, with an average of 42,727 sequences being acquired in each soil sample. 

180 At the phylum, we found 8875 fungal operational taxonomic units (OTUs) after quality filtering. 

181 On average, 592 OTUs were found in each sample. A maximum of 743 OTUs were detected in 

182 the CB, however, only 455 OTUs were obtained in the LG (Table 3). In order to determine 

183 rarefaction curves, richness, and diversity, 1,000 reads were randomly selected from each sample. 

184 At the 3% dissimilarity level (Fig. 1), the curve tended to flatten with the number of measured 

185 sequences increases, indicating that the experiment had obtained most of the sample information 

186 and had been able to reflect the fungal community composition of the forest soil.

187 The obtained sequences were affiliated with 15 phyla (including unknown). The dominant phyla 

188 accounted for more than 1% of the overall communities were Basidiomycota, Ascomycota, 
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189 Zygomycota and Rozellomycota, with relative abundances ranging from 21.31% to 66.08%, 

190 24.82% to 51.88%, 2.21 to 6.37%, and 0.42% to 2.09%, respectively (Fig. 2). Phyla included 

191 Cercozoa, Chytridiomycota, Glomeromycota, Ciliophora, which were less abundant (<1 % of all 

192 classified sequences) still were found in all of the soils examined. The relative abundance of these 

193 most abundant fungal phyla varied significantly among different forest types. The relative 

194 abundances of Ascomycota was significantly higher in JM than others, while the relative 

195 abundances of Basidiomycota was the lowest. The relative abundances of Basidiomycota was the 

196 highest in the CB, while the relative abundances of Ascomycota and Rozellomycota were lowest 

197 (Fig. 2). 

198 At the genus level, the dominant genus accounted for more than 1% of the overall communities 

199 were Sebacina, Russula, Tomentella, Mortierella, Trechispora, Piloderma, Humicola, Suillus, 

200 Geminibasidium, Ramaria, Archaeorhizomyces, Cryptococcus, Simplicillium, Oidiodendron, 

201 Inocybe, Basidiobolus and Bullera. Their relative frequencies differed, respectively, as 5.95%, 

202 4.38%, 3.74%, 2.97%, 2.17%, 1.92%, 1.75%, 1.69%, 1.65%, 1.62%, 1.59%, 1.54%, 1.50%, 

203 1.37%, 1.32%, 1.20%, and 1.07% (Fig. 3). Sebacina was the most abundant genus at PK of 

204 21.17%. The relative abundances of Russula showed highest in the CB than others (Fig. 3). 

205 Venn diagrams were used to compare the fungal communities based on shared and unique OTUs 

206 among the samples. At the genus level, the Venn diagram showed 110 OTUs among five forest 

207 types (Fig. 4). A total of 1,453, 1,006, 1,321, 1,143 and 1,742 OTUs were observed in the CB, LG, 

208 PK, QM and JM. JM harbored 864 unique OTUs. QM harbored 311 unique OTUs. CB harbored 

209 428 unique OTUs. LG harbored 298 unique OTUs. PK harbored 542 unique OTUs. The number 

210 of shared OTUs were 514 (JM vs. QM), 400 (LG vs. PK), 384 (JM vs. PK), 314 (JM vs. LG), 343 

211 (QM vs. PK), 329 (QM vs. LG) (Fig. 4).

212 To show the fungal community structures of JM, QM, CB, LG, and PK, the heatmap analysis 

213 based on the top 50 most abundant fungal community using R software was used to intuitively 

214 display the differences in relative abundances of fungal OTUs among samples (Fig. 5), which can 

215 reflect the compositions and relative abundance of soil fungus differences under different forest 
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216 types were quite different. Tomentella, Piloderma, Suillus, Oidiodendron, Inocybe, Entoloma, 

217 Cortinarius, Helvellosebacina, and Phaeoacremonium dominated in LG. Russula, Trichoderma, 

218 Leucoagaricus, Amphinema, Umbelopsis, and Thelephora dominated in CB. Cladophialophora, 

219 Byssocorticium, Trichoderma, Hygrocybe, Exophiala, Leotia, and Knufia dominated in QM. 

220 Correspondingly, NMDS based Unifrac distance was carried out to show significant separation 

221 among treatments (Fig. 6). With both analyses indicating that different revegetation types had a 

222 great effect on fungal community. 

223 The LEfSe analysis was documented to determine the classified fungal taxa with significant 

224 abundance differences among the different sampling sites. As presented in Fig.7, 63 fungal taxa 

225 were showed significantly different with LDA effect size scores were > 4 (Fig. 7A), and 10 fungal 

226 taxa were showed significantly different with LDA effect size scores were > 5 (Fig. 7B). At the 

227 phylum level, the biomarkers were affiliated with Basidiomycota, and Ascomycota, respectively. 

228 Fungal community distribution relate to the soil properties

229 Canonical correspondence analysis (CCA) was used to analyze the relative abundance of dominant 

230 fungal phyla constrained by soil properties variables (Fig. 8). The results showed that the 

231 cumulative interpretation variations of the first and second axes were 93.5%, indicating that soil 

232 environmental factors had greatly influenced the fungal community structure. At the phylum level 

233 (Fig. 8), soil pH (r=0.9104) and available P (r=0.6891) were significantly correlated with axis1, 

234 and the first axial interpretation rate was 69.1%. C/N (r=-0.7322) and total P (r=-0.8094) were 

235 significantly related with axis2. 

236 Pearson correlation analyses were used to explore the relationships between soil properties and 

237 the relative abundance of the 4 most abundant fungal phylum and 15 most abundant fungal genus. 

238 At the phylum level, the relative abundances of Basidiomycota was significantly negatively 

239 correlated with pH (r=-0.680, P<0.01) and AP (r=-0.611, P<0.01). Ascomycota was positively 

240 correlated with total C (r=0.608, P<0.05), TN(r=0.655, P<0.01) and available N (r=0.693, 

241 P<0.01). Zygomycota was positively correlated with pH (r=0.530, P<0.05) and available 

242 P(r=0.665, P<0.01). Rozellomycota was significantly positively correlated with pH (r=0.716, 
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243 P<0.01) (Table 5). 

244 At the genus level, the abundance of Sebacina was significantly negatively correlated with total 

245 C (r=-0.563, P<0.05), total N (r=-0.533, P<0.05) and available N(r=-0.604, P<0.05). Russula was 

246 significantly positively correlated with C/N (r=0.637, P<0.05) and total P (r=0.751, P<0.01). 

247 Humicola was significantly positively with total C (r=0.745, P<0.01), total N (r=0.735, P<0.01) 

248 available N(r=0.705, P<0.01). The relative abundance of Geminibasidium was significantly 

249 negatively correlated with total C (r=-0.530, P<0.05), total N (r=-0.516, P<0.05) and available 

250 N(r=-0.569, P<0.05). Archaeorhizomyces was exhibited a positive correlation with C/N (r=0.672, 

251 P<0.01) and total P (r=0.591, P<0.05). Cryptococcus abundance was existed a significantly 

252 negative correlation with total C (r=-0.655, P<0.01), total N (r=-0.655, P<0.01) available N(r=-

253 0.698, P<0.01). Simplicillium (r=0.540, P<0.05) and Bullera (r=0.596, P<0.05) were significantly 

254 negatively correlated with pH.

255 Discussion

256 Distinct soil characteristics among the different revegetation types

257 The soil physicochemical conditions we observed nutrient concentrations (C, N and P) varied 

258 significantly among different revegetation types (Table 2). According to our findings, coniferous 

259 forest (LG, PK) and confer-broad forest (CB) had reduced soil total C, total N, and Available N 

260 compared with broad-leaved forest (JM, QM), which was consistent with study of Rahimabady et 

261 al. (2015). This influence may be attributed to different tree species which have differences in litter 

262 quality, and root exudates (Grayston & Prescott, 2005). Compared to others, the soil under QM 

263 was more alkaline can be related with the quality of litter. Compared to other broadleaf forests, the 

264 QM litter leaf quality is low, which has low nitrogen content, high C/N ratio, higher lignin content, 

265 and higher lignin/N. Therefore, the decomposition rate of QM litter and the release rate of plant 

266 nutrients are gradually slowed down. These are several reasons contributing to the effect that soil 

267 under QM was lowest. 

268 Fungal community diversity and structure response to different revegetation types

269 We documented that different forest revegetation types had distinct soil fungal community 
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270 diversity and composition (Table 3, Fig. 2, Fig. 3), as reported by Myers et al. (2001). We observed 

271 that the average fungal Shannon index, ACE index, Chao1 index and Simpson index were the 

272 highest in JM, followed by CB (Table 3). The composition of fungi phylum and in different 

273 revegetation types were similar to each other, but the relative abundance of fungi phylum was 

274 various, which may be related to different root residues and secretions produced by different 

275 revegetation types (Degrune et al., 2015). The results of our comparison of soil fungal communities 

276 among different revegetation types revealed that the predominant members of fungal communities 

277 were the phylum Basidiomycota in the QM, CB, LG, and PK, followed by Ascomycota, 

278 Zygomycota and Rozellomycota (Fig. 2), which was consistent with the results from Gutianshan 

279 National Nature Reserve (Yu et al., 2013) and Mount Nadu (Liu et al., 2018). And other previous 

280 studies have also supported the conclusion (Leff et al., 2015; Yu et al., 2013). Basidiomycota 

281 tended to live in dry and cooler environments due to their history of evolution (Treseder  et al., 

282 2014). The relative abundance of Basidiomycete in soils might be related to their ability of 

283 degradation of lignocellulose (Lundell et al., 2010), which were affected by dynamics of soil 

284 organic matter (Hannula et al., 2012). 

285 On the contrary, in our study, we observed that the relative abundances of Ascomycota, over 

286 Basidiomycota, Zygomycota, and Rozellomycota, was predominant group in the JM, which was 

287 similar to the previous research (Curlevski et al., 2010). Moreover, these results proved that the 

288 higher abundance of Ascomycota suggest the enrichment of saprotrophic species, which might be 

289 related to organic matter input, given that Ascomycota tend to use the easily degradable residues 

290 (Lundell et al., 2010). However, the finding from Yarraman natural forest and the hoop pine 

291 plantation showed that Zygomycota was the dominant phylum (He et al., 2010). These disparate 

292 results may indicate there is a lack of global common distribution and major fungal phyla in forest 

293 soils. Our finding indicated that in the broadleaf forests (QM, JM), Ascomycota were the most 

294 predominant phylum, which was similar to the findings from other tropical regions (Kerfahi et al., 

295 2014; McGuire et al., 2014). 

296 The dominant fungal genera (Sebacina, Russula, Tomentella) were representative of dominant 
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297 genera found in our study (Fig.3), which was accordant with previous researches (Welc et al. 

298 2014). Sebacina was the most common genus in our study, and previous studies have put forward 

299 that Sebacina could help their host plant overcome biotic and abiotic stresses by supplying it with 

300 water and nutrients (Gao & Yang, 2016). Tomentella has been reported to be distributed 

301 throughout the world (Kõljalg et al., 2000), which was also the common genus in our study. The 

302 influence of different revegetation types on soil fungal community is often related to the nature 

303 and quantity of organic matter returned by plant litter and provides major resources for soil 

304 microorganisms (Saetre & Bååth, 2000; Wardle et al., 2004).

305 The clear differentiation of fungal communities and the clustering in the heatmap (Fig. 5) and 

306 in NMDS (Fig. 6) plots suggested that broad-leaved forests and coniferous forests each owned 

307 different fungal community. 

308 Relationship between fungal communities and soil environmental factors

309 Soil environmental factors variables demonstrated remarkable relationship with fungal diversity. 

310 The Simpson index and Shannon index were positively correlated with pH (Table 4). Similar 

311 results have been reported (Djukic et al., 2014; Liu  et al., 2018; Wang et al., 2015) that the 

312 diversity of the fungal community increased with soil pH value. In our study, soil Chao1 index, 

313 ACE index, and Shannon index significantly increased with the increasing C/N ratio (Table 4), 

314 which was not agreement with previous study. In addition, ACE index and Chao1 index were 

315 significantly positively correlated with total P (Table 4), which was accordance with previous work 

316 reported that fungal diversity was significantly affected by soil P-related factors (Liu et al., 2018).

317 Just as the soil fungal diversity, soil environmental factors had greatly influenced on the fungal 

318 community structure. Previous studies have shown that soil physicochemical properties, such as 

319 soil moisture (Brockett et al., 2012), soil pH (Rousk et al., 2010), available soil nutrients (Lauber 

320 et al., 2008), soil total C (Yang et al., 2014), and C/N ratio (Christianl et al., 2008) more strongly 

321 affected fungal communities. Moreover, our study also confirmed that the abundances of the most 

322 dominant fungal communities correlated significantly with soil pH value. What’s more, total C, 

323 total N, available N and available P were also closely linked to the fungal community structure 
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324 (Fig. 8, Table 5), which was consistent with other researches (Sun et al., 2016; Zhang et al., 2017). 

325 Basidiomycota are generally sensitive to physic-chemical characteristic disturbance (Osono, 

326 2007). In our study, the relative abundances of Basidiomycota was significantly negatively 

327 correlated with pH and available P, which was not agreement with previous studies (Tedersoo et 

328 al., 2014; Tian et al., 2017). Soil with higher relative abundance of Ascomycetes has higher pH 

329 values (Lauber et al., 2008). However, in our study, Ascomycota was not correlated with soil pH 

330 value. A relatively small pH rang (4.89 to 5.70) existed in our study, which might be difficult to 

331 ascertain the correlation. Interestingly, the relative abundance of Ascomycota was positively 

332 correlated with total C, total N and available N. It is supported by recent research that showed that 

333 Ascomycota were associated with the content of soil organic matter (Sterkenburg et al., 2015).The 

334 abundance of Zygomycota was positively correlated with available P in our study. Our results 

335 ulteriorly proved that soil available P was considered an important regulator of fungal communities 

336 in the soil, consistent with Dang et al. (2017). These results indicated that differential responses of 

337 soil fungal community composition to the different revegetation types largely dependent on soil 

338 physicochemical characteristic. And the decisive role of soil physicochemical variables in altering 

339 fungal communities during vegetation restoration, in consistent with previous studies (Kuramae et 

340 al., 2010) 

341 Conclusions

342 Our results here showed that different revegetation types were the main driver of the soil fungal 

343 diversity and community composition, which generated shifts in soil chemical characteristics, 

344 controlling the composition of fungal community in Baishilazi Nature Reserve. Basidiomycota, 

345 Ascomycota, Zygomycota and Rozellomycota were the predominant fungal community in this 

346 region, and the relative abundance of these abundant fungal phyla varied significantly among 

347 different revegetation types. The average Shannon index, ACE index, Chao1 index and Simpson 

348 index were predicated for JM. The abundances of the most dominant fungal communities 

349 correlated significantly with soil pH, total C, total N, available N and available P. 
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Figure 1

Rarefaction curves.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 2

Relative abundance of fungus phyla present in five different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 3

The distribution of partial sequences of fungal ITS gene at genus level.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 4

Venn diagrams of OUT richness.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 5

Heat map and hierarchical cluster analysis based on the relative abundances of the top

50 genera identified in the bacterial communities of the soils.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 6

Weighted UniFrac NMDS analysis of the composition of fungal communities in the soil of

forests with different dominant trees.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 7

The cladogram of fungal communities among different sampling sites.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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Figure 8

Canonical correspondence analysis (CCA) on soil dominant fungal phyla constrained by

soil variables.

TC: Total Carbon; TN: Total Nitrogen; C/N: C-N ration; AN: Available Nitrogen; TP: Total

Phosphorus; AP: Available Phosphorus.
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Table 1(on next page)

Sites information of the Baishilazi Nature Reserve.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1 Table 1:

2 Sites information of the Baishilazi Nature Reserve. 

Types Dominant Vegetation Elevation (m) Forest Type

JM

Acanthopanax senticosus, Padus 

racemose, Magnolia sieboldii, Pimpinella 

brachycarpa, Puccinellia tenuiflora

901.8
Natural 

secondary forest

QM
Acer mono, Cerasus tomentosa, Carpinus 

cordata
842.3

Natural 

secondary forest

CB

Betula ermanii, Pinus koraiensis, 

Schisandra chinensis, Phryma 

leptostachya L. subsp. asiatica

826.5
Natural 

secondary forest

LG Daemonorops margaritae 552.7 Plantation forest

PK
Daemonorops margaritae, Pteridium 

aquilinum
552.7 Plantation forest

3 Note:

4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix 

5 gmelinii; PK: Pinus koraiensis.

6
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Table 2(on next page)

Soil physical and chemical properties of different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1 Table 2:

2 Soil physical and chemical properties of different revegetation types.

Types
pH

Total C 

(g/kg)

Total N 

(mg/kg)
C/N

Available N 

(mg/kg)

Total P 

(g/kg)

Available 

P (mg/kg)

JM 5.70a 100.53a 7800.00a 12.89ab 57.15a 0.93b 4.42ab

QM 4.89c 84.62b 7375.33a 11.64bc 41.25b 0.74bc 2.39ab

CB 4.99c 75.49c 5466.67b 13.81a 43.60b 1.46a 2.53ab

LG 5.40b 43.79d 3853.50c 11.36c 33.35c 0.62c 1.21b

PK 5.48b 41.70d 3580.50c 11.65bc 28.04c 0.77bc 5.65a

3 Note:

4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix 

5 gmelinii; PK: Pinus koraiensis.
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Table 3(on next page)

Soil fungal diversity indexes of different revegetation types.

JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix

gmelinii; PK: Pinus koraiensis.
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1 Table 3: 

2 Soil fungal diversity indexes of different revegetation types. 

Types
No. of 

sequences

OTUs 

number 

(phylum)

Shannon 

Index
ACE Index Chao1 Index

Simpson 

Index

JM 40811 715 8.18±0.23a 879.57±64.4767a 879.08±64.48a 0.99±0.00a

QM 33752 518 5.79±0.28c 597.78±98.62b 598.00±98.89b 0.89±0.03b

CB 37669 743 7.18±0.34b 870.95±192.83a 866.17±184.59a 0.98±0.01a

LG 37959 455 6.49±0.22bc 522.15±100.95b 521.58±101.48b 0.97±0.01a

PK 63447 525 7.06±0.89b 650.67±108.58b 649.10±109.27b 0.97±0.02a

3 Note:

4 JM: Juglans mandshurica; QM: Quercus mongolica; CB: Conifer-broadleaf forest; LG: Larix 

5 gmelinii; PK: Pinus koraiensis.
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Table 4(on next page)

Person’s rank correlation coefficients between fungi diversity indices and measured soil

characteristics.

*Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01

level (2-tailed).
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1 Table 4: 

2 Person’s rank correlation coefficients between fungi diversity indices and measured soil 

3 characteristics. 

pH Total C Total N C/N Available N Total P Available P

Simpson 0.680** -0.139 -0.337 0.472 -0.043 0.334 0.297

Chao1 0.089 0.573* 0.389 0.715** 0.397 0.725** 0.238

ACE 0.085 0.567* 0.383 0.714** 0.389 0.730** 0.234

Shannon 0.659** 0.302 0.132 0.528* 0.312 0.361 0.508

4 Note:

5 *Correlation is significant at the 0.05 level (1-tailed). **Correlation is significant at the 0.01 level 

6 (2-tailed).

7

8
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Table 5(on next page)

Person’s rank correlations between the relative abundances of dominant bacteria

groups and available edaphic factors.

**correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-

tailed).
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1 Table 5:

2 Person’s rank correlations between the relative abundances of dominant bacteria groups and 

3 available edaphic factors. 

Fungal group pH Total C Total N C/N Available N Total P Available P

Phylun -- -- -- -- -- -- --

Basidiomycota -0.680** -0.455 -0.466 -0.010 -0.506 0.107 -0.611**

Ascomycota 0.416 0.608* 0.655** -0.004 0.693** -0.058 0.462

Zygomycota 0.530* 0.274 0.179 0.284 0.245 0.146 0.665**

Rozellomycota 0.716** -0.016 0.036 -0.278 0.052 -0.460 0.002

Genus -- -- -- -- -- -- --

Sebacina 0.192 -0.563* -0.533* -0.282 -0.604* -0.132 0.171

Russula -0.491 0.170 0.025 0.637* 0.171 0.751** -0.121

Tomentella 0.009 -0.407 -0.339 -0.371 -0.247 -0.360 -0.473

Mortierella 0.524* 0.456 0.383 0.264 0.447 0.123 0.623*

Trechispora -0.182 0.096 -0.039 0.490 0.071 0.593* -0.415

Piloderma -0.066 -0.378 -0.278 -0.452 -0.316 -0.534* -0.482

Humicola 0.302 0.745** 0.735** 0.146 0.705** -0.098 0.152

Suillus 0.118 -0.438 -0.402 -0.287 -0.263 -0.236 -0.266

Geminibasidium 0.252 -0.530* -0.516* -0.226 -0.569* -0.105 0.271

Ramaria 0.116 -0.420 -0.378 -0.303 -0.353 -0.402 -0.368

Archaeorhizomyces -0.111 0.300 0.132 0.672** 0.334 0.591* -0.057

Cryptococcus 0.114 -0.655** -0.655** -0.212 -0.698** -0.069 -0.031

Simplicillium 0.540* 0.415 0.380 0.110 0.387 -0.009 0.509

Oidiodendron 0.024 -0.417 -0.398 -0.211 -0.261 -0.098 -0.338

Inocybe 0.144 -0.518* -0.459 -0.397 -0.340 -0.383 -0.380

Basidiobolus 0.431 -0.378 -0.434 0.023 -0.406 -0.143 0.578*

Bullera 0.596* 0.340 0.273 0.231 0.313 0.091 0.357

4 Note:

5 **correlation significant at 0.01 level (two-tailed); *correlation significant at 0.05 level (two-

6 tailed).
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