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Ospreys are renowned for their fishing abilities, which have largely been attributed to their

specialized talon morphology and semi-zygodactyly−the ability to rotate the fourth toe to

accompany the first toe in opposition of toes II and III. Anecdotal observations indicate that

zygodactyly in Ospreys is associated with prey capture, although to our knowledge this has

not been rigorously tested. As a first pass toward understanding the functional significance

of semi-zygodactyly in Ospreys, we scoured the internet for images of Osprey feet in a

variety of circumstances. From these we cross-tabulated the number of times each of

three toe configurations (anisodactylous, zygodactylous, and an intermediate condition

between these) was associated with different grasping scenarios (e.g., grasping prey or

perched), contact conditions (e.g., fish, other objects, or substrate), object sizes (relative

to foot size), and grasping behaviors (e.g., using one or both feet). Our analysis confirms

an association between zygodactyly and grasping behavior; the odds that an osprey

exhibited zygodactyly while grasping objects in flight were 5.7 times greater than whilst

perched. Furthermore, the odds of zygodactyly during single-foot grasps were 4.1 times

greater when pictured grasping fish compared to other objects. This suggests a functional

association between predatory behavior and zygodactyly and has implications for the

selective role of predatory performance in the evolution of zygodactyly more generally.
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16 ABSTRACT

17 Ospreys are renowned for their fishing abilities, which have largely been attributed to their 

18 specialized talon morphology and semi-zygodactylythe ability to rotate the fourth toe to 

19 accompany the first toe in opposition of toes II and III. Anecdotal observations indicate that 

20 zygodactyly in Ospreys is associated with prey capture, although to our knowledge this has not 

21 been rigorously tested. As a first pass toward understanding the functional significance of semi-

22 zygodactyly in Ospreys, we scoured the internet for images of Osprey feet in a variety of 

23 circumstances. From these we cross-tabulated the number of times each of three toe 
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24 configurations (anisodactylous, zygodactylous, and an intermediate condition between these) 

25 was associated with different grasping scenarios (e.g., grasping prey or perched), contact 

26 conditions (e.g., fish, other objects, or substrate), object sizes (relative to foot size), and grasping 

27 behaviors (e.g., using one or both feet). Our analysis confirms an association between 

28 zygodactyly and grasping behavior; the odds that an osprey exhibited zygodactyly while 

29 grasping objects in flight were 5.7 times greater than whilst perched. Furthermore, the odds of 

30 zygodactyly during single-foot grasps were 4.1 times greater when pictured grasping fish 

31 compared to other objects. This suggests a functional association between predatory behavior 

32 and zygodactyly and has implications for the selective role of predatory performance in the 

33 evolution of zygodactyly more generally. 

34

35 KEYWORDS: foraging; grasping; Pandion haliaetus; perching; zygaodactyl; Osprey

36

37 INTRODUCTION

38 Ospreys (Pandion haliaetus) feed primarily on fish (accounting for ~99% of their diet) that they 

39 take from the water (Poole et al., 2002). They are able to achieve substantial prey-capture 

40 success rates for a predator (up to 82%; Poole et al., 2002), despite the difficulties inherent in 

41 penetrating an aquatic medium to pursue fish. This ability is afforded by several adaptive 

42 modifications of their foot form and function, compared to other birds of prey. Among these 

43 adaptations is the ability to rotate the fourth toe (digit IV) antero-posteriorly, and apparently 

44 toggle between anisodactyl (digits II-IV face anteriorly; digit I posteriorly) and zygodactyl 

45 (digits II and III face anteriorly; digits I and IV face posteriorly) toe arrangements (Shufeldt, 

46 1909; Jollie, 1976, 1977; Raikow, 1985; Polson, 1993; Ramos and Walker, 1998) (Fig. 1). The 
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47 ability to facultatively shift from anisodactyly to zygodactyly (i.e., semi-zygodactyly; Raikow, 

48 1985; Botelho et al., 2015) is thought to enhance their extreme grasping capabilities. For 

49 instance, previous researchers have proposed that the facultative zygodactyl arrangement in 

50 predatory birds, such as owls and Black-shouldered Kites (Tsang, 2012), provides advantages for 

51 distributing the toes (and prey-contact surface area) more symmetrically (Payne, 1962; Goslow, 

52 1972), as well as for generating greater grip strength (Ward et al., 2002; Einoder and Richardson, 

53 2007). Both of these advantages ostensibly pertain to the Osprey, which grasps evasive, slippery 

54 fish from above by plunge-diving to capture prey well below the surface of the water (Polson, 

55 1993).

56

57 Despite the common knowledge of Osprey semi-zygodactyly, it is not abundantly clear 

58 specifically when and how Ospreys employ one toe configuration over the other. Casual 

59 observations of ospreys captured in photographs reveal that the zygodactyl configuration is often 

60 assumed during perching as well as when clutching fish. Thus, the advantages to zygodactyly for 

61 grasping prey in Ospreys, although perfectly reasonable, remain somewhat speculative.  

62 Furthermore, it is unclear specifically how the change in toe configuration is controlled. Ospreys 

63 possess several anatomical peculiarities that are presumed to be associated with semi-

64 zygodactyly. These include a relatively long digit IV that is semi-reversible, claws of near equal 

65 length across all toes, distinctly well-developed inner, and a truncated ventro-posteriorly-oriented 

66 lateral projection on the outer, trochleae of the distal tarsometatarsus, well-developed M. 

67 lumbricales, the absence of a membrane between digits III and IV, and a strongly developed M. 

68 abductor digiti IV (Hudson, 1948; Jollie, 1976, 1977; Tsang, 2012). However, the extent to 

69 which Ospreys are able to reposition digit IV voluntarily, or if such repositioning is 
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70 mechanistically coupled with other hindlimb and/or digital movements (e.g., Ramos and Walker, 

71 1998), or simply a consequence of the grasping scenario (i.e., the object is contacted between the 

72 third and fourth toes), is unclear.

73

74 As part of a larger project aimed at understanding the anatomy, control, and functional 

75 significance of semi-zygodactyly in Ospreys, we first set out to examine the behavioral correlates 

76 of semi-zygodactyly. We approached this by conducting a quantitative analysis of foot use 

77 behaviors captured in digital images and videos, publically available on the internet. We used 

78 data gleaned from these images specifically to test for associations among toe configurations, 

79 grasping scenario, and object size (Fig. 2). Following conventional wisdom, we predicted that 

80 Ospreys photographed clutching fish were more likely to display a zygodactyl (2×2) toe 

81 configuration. Furthermore, under the assumption that zygodactyly enhances grip force and/or 

82 the probability of prey contact (cited above), we anticipated that larger object (prey) sizes, (but 

83 not necessarily perching substrates), would also elicit a 2×2 toe configuration.

84

85 MATERIALS AND METHODS

86 We searched the World-Wide Web (predominantly Google Images [English]) for photographs of 

87 Ospreys interacting with prey and/or various substrates, using the following search terms: 

88 “osprey,” “Pandion haliaetus,” and combinations of the previous two terms with “clutching,” 

89 "grasping,” "nest,” "fish,” and "photos.” We then moved on to searching personal/professional 

90 websites, and then videos (where we took screenshots of appropriate footage). Finally, we moved 

91 on to different languages of Google and repeated the above. Two observers independently scored 

92 each foot of each Osprey in every image for the characteristics described below and in Table 1. 
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93 A third independent observer served as a “moderator,” by compiling the scores of the other two 

94 observers and resolving any disagreements. The three observers rotated among tasks, such that 

95 each one served as a moderator for one component of the data set or another. Although we made 

96 an effort to avoid scoring duplicated images, we cannot exclude the possibility that the same 

97 individual Ospreys may have appeared in more than one distinct image.

98

99 Each Osprey pictured in an image constituted a “subject,” and each foot pictured was a replicate 

100 in the analyses. We used generalized estimating equations (a repeated-measures form of logistic 

101 regression; SPSS, 2013), with image identity included as a subject variable, and foot identity 

102 (left or right) included as a within-subjects variable, for which we specified an unstructured 

103 correlation matrix. We treated toe configuration as an ordinal (logistic) response variable ranging 

104 between 1 (= 3×1) and 3 (= 2×2), in which 2 (= 2.5×1.5) constituted an intermediate 

105 configuration analogous to Bock and Miller’s (1959) “ectropodactyl” foot type (Fig. 2 B, C, F). 

106 We performed two series of analyses: one overall test to examine the effects of relative “object 

107 size” (ordinal variable ranging 0 [no object] to 4 [extra-large]; Table 1) and “grasping scenario” 

108 (0 = nothing in feet, P = perched on substrate, G = grasping an object), as well as their 

109 interaction. Although we were not specifically interested in the effects of foot identity (left or 

110 right), we performed an additional test including “foot identity” as a fixed effect to screen for 

111 any footedness biases. We then followed this analysis with a more refined test on data including 

112 only cases of contact between foot and object or substrate. For this test, we included an 

113 additional nested effect of “contact condition” (F = fish, O = other object, T = tree, S = other 

114 substrate; Table 1) within grasping scenario (P vs. G), to determine whether the general types of 

115 objects or substrates grasped have any further effects on toe configuration within each of the two 
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116 main grasping scenarios. We also added an additional variable, “footing,” indicating whether 

117 grasping was performed with one or both feet. For both sets of analyses, we began with full 

118 models (main effects and interactions) and successively removed non-significant interactions (by 

119 order of decreasing P-value) to obtain the most parsimonious final models. Significance was 

120 based on the Type III sums of squares, and an α = 0.05.

121

122 RESULTS

123 The 1184 images of Osprey grasping behavior that we scored (Supplemental Data S1) fell into 

124 five main categories: (1) flying with fish, perching (2) with and (3) without fish, (4) nest-

125 building, and (5) pre-contact with prey or substrate. Of these, obscured visibility of the feet and 

126 casewise deletions from one or more missing variables resulted in 1123 Osprey images of n = 

127 1882 feet, both in contact with objects and not, entered into the analysis. Overall, there was no 

128 significant interaction between object size and grasping scenario on toe configuration (Type III 

129 Wald Chi-square (χ2) test of model effects = 4.34, df = 2, P = 0.114). The effect of grasping 

130 scenario remained significant (χ2 = 198.61, df = 1, P < 0.0001), and the effect object size 

131 remained non-significant (χ2= 0.457, df = 3, P = 0.928), after removing the non-significant 

132 interaction term from the model. The parameter estimates (B) revealed that the probability of 

133 zygodactyly significantly increased for the flying without an object and flying with an object 

134 scenarios, compared to the grasping while perched scenario (Table 2, Fig. 3). In particular, the 

135 odds that an osprey exhibited a zygodactyl toe configuration during flight were 5.7 times greater 

136 when pictured grasping objects, and 2.6 times greater when grasping nothing, than whilst 

137 perched. When “foot identity” was included as a fixed (between-subjects) effect in an auxiliary 

138 analysis implemented specifically to test for differences between left and right feet (rather than 
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139 including it as a repeated effect, as in the omnibus analysis), there was no significant effect of 

140 foot identity, nor any interaction with objects size or grasping scenario, on toe configuration 

141 (Supplemental Table S1).

142

143 When considering object-contact cases only (n = 1503 feet from 995 images), all main effects 

144 and interactions were significant (Table 3). Both interaction effects (footing × contact condition 

145 within grasping scenario, and object size × contact condition within grasping scenario) reflect 

146 variation in responses between contact conditions within each perching and grasping scenarios 

147 (Fig. 4).  In the former case, the interaction was due primarily to an increase in the probability of 

148 zygodactyly from dual- to single-foot grasping for fish, relative to the “other substrate” reference 

149 contact condition of perching (B = 0.882 ± 0.378, df = 1, P = 0.019, Exp(B) = 2.42 [1.15-5.07, 

150 95% CI]). The object size × contact condition within grasping scenario interaction was due to 

151 two marginally non-significant effects: a decrease in the probability of zygodactyly for small 

152 object sizes, relative to large, when grasping fish compared to the “other substrate”/perching 

153 reference category (B = -1.08 ± 0.598, df = 1, P = 0.072, Exp(B) = 0.341 [0.106-1.10, 95% CI]), 

154 and an increase in the probability of zygodactyly for medium object sizes, relative to large, when 

155 perched in trees compared to the “other substrate”/perching reference category (B = 1.14 ± 

156 0.631, df = 1, P = 0.071, Exp(B) = 3.13 [0.908-10.79, 95% CI]). However, because these 

157 parameters were not significant, we felt justified in excluding the object size × contact condition 

158 within grasping scenario interaction effect in subsequent analyses (below).  

159

160 In the subsequent model, all effects remained significant, with the exception of object size (Table 

161 3). Because the effect of contact condition within grasping scenario depended upon whether or 
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162 not the grasp was single- or dual-footed, we generated new models for dual-footed (n = 962) and 

163 single-footed (n = 541) grasps, separately (Fig. 4). In both models the main effect of grasping 

164 scenario was significant (Table 3), such that the odds of zygodactyl grasps were 2.8 and 6.4 

165 times greater during flying than perching (Table 4). Furthermore, there was a significant effect of 

166 contact condition within grasping scenario for single-footed grasps, but not for bi-axial grasps 

167 (Table 3). For the former, the probability of zygodactyly was significantly greater for the fish, 

168 compared to the “other object” contact condition (Exp(B) = 4.05 [1.93-8.53, 95% CI]), as well as 

169 for the tree, compared to the “other substrate” contact condition (Exp(B) = 1.95 [1.03-3.69, 95% 

170 CI]; Table 4).

171

172 DISCUSSION

173 We analyzed grasping behavior of Ospreys from 1184 web images and videos of Ospreys in 

174 various states of utilizing their feet. Our results support predictions from casual observations, 

175 photographs, and anecdotal reports from the literature: that Ospreys tend to employ a 

176 zygodactylous foot configuration when grasping objects, and in particular when gripping fish. 

177 This suggests a functional association between predatory behavior and zygodactyly and has 

178 implications for the selective role of predatory performance in the evolution of zygodactyly more 

179 generally. Notably, the use of a zygodactylous configuration during single-foot grasps of fish 

180 (e.g., Fig. 4) strongly suggests that this toe configuration affords a performance advantage under 

181 the most challenging grasping conditions. Along these lines, however, it seems odd that object 

182 size was ostensibly unrelated to zygodactyly (e.g., Fig. 3), with a (non-significant) tendency for 

183 zygodactyl toe configurations to be pictured with smaller object sizes. On biomechanical 

184 grounds, very large and very small objects (relative to grasper size) pose greater challenges for 
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185 grasping (e.g., Seo et al., 2008; Irwin & Radwin, 2008; Fok & Chou, 2010). Perhaps this is 

186 explained by the potential benefits of the multiarticular nature of their digital flexion mechanism 

187 (Backus et al., 2015), which might afford the ability to grasp a wide range of object sizes  

188 regardless of toe configuration (Dollar & Howe, 2011).

189

190 Embryological evidence supports developmental mechanisms as the primary drivers of toe 

191 configuration across taxa (Botelho et al., 2015). Semi-zygodactyly has apparently evolved only 

192 three times (Ospreys, turacos, and the common ancestor of owls and mousebirds), in each case in 

193 groups related to fully-zygodactylous clades, suggesting semi-zygodactyly as an intermediate 

194 stage (Botelho et al., 2015). However, semi-zygodactyl Ospreys (Pandionidae) are nested well 

195 within the predominantly anisodactylous Accipitriformes (Botelho et al., 2015), which, coupled 

196 with their extreme piscivorous specialization, suggests an adaptive, causal role for semi-

197 zygodactyly. Furthermore, a recent analysis of the pedal flexibility of Australian raptors, 

198 including Osprey, has indicated that diurnal raptors do indeed possess a wider range of angle 

199 divarication of digits (i.e., the degree to which toes are splayed out from one another) as a group 

200 (Tsang & McDonald, in press). The Osprey exceeded the maximum digit angle divarication of 

201 digit IV (the digit that enables semi-zygodactyl grasping) of other anisodactylous raptors, 

202 achieving wider digit IV angle divarication results that overlapped with the digit IV angle 

203 divarications of the nocturnal owls. This degree of convergence between Ospreys and owls lends 

204 further support to the ecological, adaptive, origin of semi-zygodactyly, since Osprey (and owls) 

205 feed mostly on prey that can be difficult to capture (e.g. plunge-diving for slippery fish or 

206 nocturnally hunting small, fast moving prey). The observed lack of skin between digits III and 

207 IV in both species would no doubt facilitate wider lateral movement of digit IV. 
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208

209 The ability to transition between toe configurations is a feat of which very few species are 

210 capable, and ostensibly provides a performance advantage. We present quantitative data linking 

211 prey capture behavior with zygodactyly in Ospreys. Nevertheless, the extent to which semi- or 

212 full-zygodactyly provides a biomechanical/ functional advantage for grasping performance has 

213 yet to be explicitly tested. Thus, further work is required, supported by consistent field 

214 observations of reliably located individuals at close range, to facilitate further study of this 

215 unique behavior. Citizen science potentially has much to offer in this regard, via nest cams 

216 and/or automated cameras positioned near prime foraging grounds (Bierregaard et al., 2014). 

217 Another important avenue of inquiry currently underway is to uncover precisely how rotation of 

218 the outer toe is biomechanically accomplished; e.g., whether it is actively controlled via 

219 musculature or passively enabled by contact.

220

221 CONCLUSIONS

222 From our analysis of web images, we found that semi-zygodactylous Ospreys are pictured using 

223 three predominant toe configurations: anisodactylous, zygodactylous, and an intermedite 

224 condition we labeled “2.5×1.5”. Our generalized estimating equation models confirmed the oft-

225 cited association between zygodactyly and grasping behavior in general; the odds that an osprey 

226 exhibited zygodactyly while pictured grasping objects in flight were 5.7 times greater than whilst 

227 perched. Contrary to our expectations, zygodactyly was unrelated to object size, but the odds of 

228 observing zygodactyly in single-foot grasps were 4.1 times greater with fish compared to other 

229 objects. This suggests a functional association between predatory behavior and zygodactyly, and 
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230 ultimately has implications for the selective role of predatory performance in the evolution of 

231 zygodactyly.

232
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Table 1(on next page)

List of variables included in the analyses, along with descriptions of each category.

Statistical analyses were designed in such a way as to model the probability of zygodactyly

(dependent variable) with each condition.
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Variable/categories Description Additional notes/justification

Toe configuration Treated as an ordinal logistic 

response variable

1 (3×1) Anisodactyl (digits II-IV directed 

cranially, digit I directed 

caudally)

2 (2.5×1) Transitional; digit IV mid-way 

between digits III and I

3 (2×2) Zygodactyl (digits II and III 

directed cranially, digits I and IV 

directed caudally)

Grasping scenario To test how overall grasping 

behavior effects toe configuration

Free-footed (0) Foot was empty; Osprey may 

have been landing, taking off, or 

diving

Grasping object (G) Object visibly clutched by foot; 

usually during mid-flight

Perching (P) Osprey was apparently 

motionless, with foot open 

against substrate

Contact condition Effect nested within grasping 

scenario, to determine whether the 

type of object/structure contacted 

within each scenario (G or P, 

above) affected toe configuration. 

Fish (F) Foot enclosed a fish; usually 

upon leaving the water or in mid-

flight or landing

Other object (O) Foot enclosed something other 

than a fish; usually nesting 

material, occasionally the talons 

of other Ospreys 
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Tree (T) Foot was enclosed around a tree 

branch while Osprey was 

perched

Other substrate (S) Foot was in contact with 

perching substrates other than a 

tree branch; usually a post, rock, 

or ground

Trees were distinguished from 

other perching substrates to account 

for Ospreys’ tendencies to wrap 

their toes around branches, as 

opposed to standing flat-footed

Object size Assessed visually, relative to the 

extent to which toes encircled the 

object

0 No object in foot

1 Small/very small: foot encircled 

between 67 and ≥100% of object 

"diameter".

2 Medium: foot encircled between 34-

66% of object "diameter".

3 Large: foot encircled 33% of object or 

less of object "diameter".

By “diameter” we refer roughly to 

the cross-sectional dimension of the 

grasped object

          4 Extra-large: foot did not really "wrap" 

around the object at all (e.g. ground, 

nest surface).

Foot identity Left or right foot scored Included as a within-subjects 

variable to account for covariation in 

the responses between feet

Footing Whether object was grasped with one 

(1) or both (2) feet

Included specifically to test whether 

single-foot grasps were more apt to 

exhibit zygodactyly, perhaps to 

enhance purchase on objects when 

unaided by the other foot

1
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Table 2(on next page)

Parameter estimates and test statistics from a generalized estimating equation (GEE)

model.

Toe configuration (toe code; 1 = 3×1, 2 = 2.5×1.5, 3 = 2×2) was modeled as a function of

grasping scenario (graspscen; free-footed, grasping, perched), object size (objsize; no object

[0] – extra-large [4]), and their interaction (graspscen × objsize), for the complete data set (n

= 1882 feet [of 1123 Osprey images]).
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1

2

Hypothesis Test 95% CI Exp(B)

Parameter* B

Std. 

Error

Type III 

Wald χ2 df P

Odds ratio 

Exp(B) Lower Upper

Threshold toecode=1 .172 .2226 .595 1 .440 1.187 .768 1.837

toecode=2 .173 .2236 11.942 1 .001 2.166 1.397 3.357

graspscen=0 .963 .2517 14.629 1 .0001 2.619 1.599 4.289

graspscen=G 1.739 .3139 30.678 1 <.0001 5.690 3.075 10.527

objsize=1 .308 .2472 1.550 1 .213 1.360 .838 2.208

objsize=2 .046 .2533 .033 1 .856 1.047 .637 1.720

objsize=3 .116 .2719 .181 1 .671 1.123 .659 1.913

graspscen=G × 

objsize=1
-.415 .3548 1.367 1 .242 .660 .330 1.324

graspscen=G × 

objsize=2
.078 .3661 .045 1 .831 1.081 .528 2.216

(Scale) 1

3
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Table 3(on next page)

Test of model effects from generalized estimating equation (GEE) models restricted to

cases in which feet were observed contacting objects or substrates (n = 1503).

Toe configuration (toe code; 1 = 3×1, 2 = 2.5×1.5, 3 = 2×2) was modeled as a function of

grasping scenario (graspscen; free-footed, grasping, perched), contact condition (contcond; F

= fish, O = other object, T = tree, S = other substrate) within grasping scenario, object size

(objsize; small [1] – extra-large [4]), and footing (dual- or single-foot grasps). The reduced

model shows results after excluding an interaction term with marginally non-significant

parameter estimates; this model was further decomposed into separate models for each

single (n = 541) and dual (n = 962) footing condition.
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1

Source Type III Wald χ2 df P

graspscen 23.68 1 <.0001

objsize 8.33 3 .040

footing 5.20 1 .023

graspcond(graspscen) 18.68 2 <.0001

footing × graspcond(graspscen) 18.58 3 .0003

objsize × graspcond(graspscen) 18.27 7 .011

Reduced model

graspscen 98.86 1 <.0001

objsize 0.464 3 .927

footing 5.25 1 .022

graspcond(graspscen) 15.29 2 <.0001

footing × graspcond(graspscen) 16.38 3 .001

Footing = single-footed

graspscen 27.95 1 <.0001

objsize .339 3 .952

graspcond(graspscen) 18.30 2 <.0001

Footing = dual-footed

graspscen 86.66 1 <.0001

objsize .791 3 .852

graspcond(graspscen) 1.92 2 .383

2

3

4
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Table 4(on next page)

Parameter estimates and test statistics from generalized estimating equation (GEE)

models for single-footed (n = 541) and dual-footed (bi-axial; n = 962) contact cases.

Toe configuration (toe code; 1 = 3×1, 2 = 2.5×1.5, 3 = 2×2) was modeled as a function of

grasping scenario (graspscen; free-footed, grasping, perched), contact condition (contcond; F

= fish, O = other object, T = tree, S = other substrate) within grasping scenario, and object

size (objsize; small [1] – extra-large [4]).
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Hypothesis Test

95% CI 

Exp(B)

Parameter B

Std. 

Error

Type III 

Wald χ2 df P

Odds ratio 

Exp(B) Lower Upper

Single-footed grasps

toecode=1 .093 .3531 .070 1 .792 1.098 .549 2.193Threshold

toecode=2 .731 .3549 4.245 1 .039 2.077 1.036 4.165

graspscen=G       1.025 .4664 4.826 1 .028 2.786 1.117 6.950

graspscen=P       0 1

objsize=1 -.064 .4638 .019 1 .890 .938 .378 2.327

objsize=2 -.085 .4461 .036 1 .850 .919 .383 2.203

objsize=3 -.193 .4261 .204 1 .651 .825 .358 1.902

objsize=4 0a 1

contcond=F(graspscen=G) 1.400 .3793 13.619 1 .0002 4.054 1.928 8.527

contcond=O(graspscen=G) 0a 1

contcond=T(graspscen=P) .666 .3270 4.145 1 .042 1.946 1.025 3.694

contcond=S(graspscen=P) 0 1

(Scale) 1

Dual-footed grasps

toecode=1 .373 .3168 1.389 1 .239 1.453 .781 2.703Threshold

toecode=2 1.208 .3208 14.188 1 .0002 3.347 1.785 6.277

graspscen=G 1.849 .3149 34.456 1 <.0001 6.352 3.426 11.775

graspscen=P       0 1

objsize=1 .091 .3589 .064 1 .800 1.095 .542 2.213

objsize=2 -.031 .3538 .007 1 .931 .970 .485 1.940

objsize=3 .122 .3735 .107 1 .744 1.130 .543 2.349

objsize=4 0 1

contcond=F(graspscen=G)   -.142 .2706 .276 1 .599 .867 .510 1.474

contcond=O(graspscen=G) 0 1

contcond=T(graspscen=P) .296 .2257 1.722 1 .189 1.345 .864 2.093

contcond=S(graspscen=P) 0 1

(Scale) 1

1
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Figure 1

Examples of pedal digit (DI-DIV) configurations of avian feet.

(A) “Raptorial” foot of a Wedge-tailed Eagle (Aquila audax), (B) Anisodactyl foot of an

Australian Raven (Corvus coronoides), (C) a zygodactyl foot of a Galah (Eolophus

roseicapilla), and (D) a facultative zygodactyl foot of an Eastern Barn Owl (Tyto javanica).
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Figure 2

Photos of Osprey showing grasping scenarios and representative object types and sizes.

(A) Perched, grasping a tree branch (small) with a 2×2 configuration in the left foot and a

3×1 configuration in the right foot. (B) Perched, grasping a tree branch (small) with a

2.5×1.5 configuration in the left and right foot. (C) Perched, grasping a tree branch (medium)

with a 3×1 configuration in the left foot and a 2.5×1.5 configuration in the right foot. (D)

Perched, grasping (single-footed) a fish (large), with a 2×2 configuration in the left foot. (E)

Flying, grasping (dual-footed) a twig (small) using a 2×2 configuration in the left and right

foot. (F) Schematic diagrams of a left foot showing foot types scored in A-E.
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Figure 3

Raw proportional distributions of toe configurations with respect to grasping scenario

and object size, scored from 1123 web images of Ospreys.

Toe configurations were classified as: 2×2 = zygodactyl, 3×1 = anisodactyl, and 2.5×1.5 =

intermediate condition. The proportions of observations for each toe configuration across

each grasping scenario (A), and relative object size class (B), were based on n = 1882 feet

(left and right combined). When these variables were considered in the analysis

simultaneously, the probability of zygodactyly (2×2) was significantly greater when Ospreys

were photographed grasping objects, or nothing, than when perched, and there was no

significant effect of object size.
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Figure 4

Raw proportional distributions of each toe configuration scored from 995 web images of

Ospreys for single- and dual-foot grasps.

Toe configurations were classified as: 2×2 = zygodactyl, 3×1 = anisodactyl, and 2.5×1.5 =

intermediate condition. Single-foot (A) and dual-foot (B) cross-tabulations with respect to

grasping scenario and contact condition were based on n = 1503 feet. When these variables

were considered in the analysis simultaneously, the probability of zygodactyly (2×2) was

significantly greater, overall, when Ospreys were photographed grasping compared to

perching, and specifically for single-foot grasps of fish compared to other objects, and trees

compared to other substrates.
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