
Submitted 5 September 2018
Accepted 7 December 2018
Published 15 January 2019

Corresponding author
Jonas S. Almeida,
jonas.almeida@stonybrookmedicine.edu

Academic editor
Harry Hochheiser

Additional Information and
Declarations can be found on
page 10

DOI 10.7717/peerj.6230

Copyright
2019 Almeida et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Serverless OpenHealth at data commons
scale—traversing the 20 million patient
records of New York’s SPARCS dataset in
real-time
Jonas S. Almeida1, Janos Hajagos1, Joel Saltz1 and Mary Saltz2

1Biomedical Informatics, State University of New York at Stony Brook, Stony Brook, NY,
United States of America

2Radiology, State University of New York at Stony Brook, Stony Brook, NY, United States of America

ABSTRACT
In a previous report, we explored the serverless OpenHealth approach to the Web
as a Global Compute space. That approach relies on the modern browser full stack,
and, in particular, its configuration for application assembly by code injection.
The opportunity, and need, to expand this approach has since increased markedly,
reflecting a wider adoption of Open Data policies by Public Health Agencies. Here,
we describe how the serverless scaling challenge can be achieved by the isomorphic
mapping between the remote data layer API and a local (client-side, in-browser)
operator. This solution is validated with an accompanying interactive web application
(bit.ly/loadsparcs) capable of real-time traversal of New York’s 20 million patient
records of the Statewide Planning and Research Cooperative System (SPARCS), and is
compared with alternative approaches. The results obtained strengthen the argument
that the FAIR reproducibility needed for Population Science applications in the age of
P4 Medicine is particularly well served by the Web platform.

Subjects Bioinformatics, Epidemiology, Public Health, Computational Science, Data Science
Keywords Serverless computing, Openhealth, Sparcs, Public health, Epidemiology data commons

INTRODUCTION
Three years ago we approached the feasibility of distributing interactive applications
delivered entirely as in-browser constructs (Almeida et al., 2015). That software ecosystem
was then described as ‘‘OpenHealth’’ with reference to the OpenData policy (Burwell et
al., 2013). A multitude of BigData health-related resources has since become available,
from the National Institutes of Health such as NCI’s Genome Data Commons (Wilson et
al., 2017), to Population Health outcomes data collected by the health departments of a
number of US states such as New York (NY. State of New York-Open Data Health-Health
Data NY, 2018). Specifically, ‘‘OpenHealth applications’’ are assembled by code injection
(JavaScript) and hosted with version control as github pages (gh-pages), which decouples
the presentation layer from the logistics of data analysis and its governance (Almeida et
al., 2015). That is, there are no servers to be maintained or applications to be downloaded
and installed, which greatly extends the lifespan of the computational artifact. If the data

How to cite this article Almeida JS, Hajagos J, Saltz J, Saltz M. 2019. Serverless OpenHealth at data commons scale—traversing the 20
million patient records of New York’s SPARCS dataset in real-time. PeerJ 7:e6230 http://doi.org/10.7717/peerj.6230

https://peerj.com
mailto:jonas.almeida@stonybrookmedicine.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.6230
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.6230

sources are provided with regular updates, this lifespan is extended beyond the reported
application to include the new data. The real-time deployment of OpenHealth applications
can be confirmed by inspecting one of the original applications (bit.ly/pqiSuffolk) and
verifying how the interactive analysis was updated with data made available years after the
last update in the open source code.

The merits of the serverless approach have been well understood, and have been applied
to biomedical data for a number of years, from genomics (Wilkinson & Almeida, 2014) to
image analysis in pathology (Almeida et al., 2012). However, until recently it came with
the suspicion that either the analytical challenge was computationally too intensive to be
trackable as a client-side application, or that a dedicated server-side indexing resource
would have to help carry the load. Interestingly, this perception that the performance of
the ‘‘cloudification’’ (Bremer et al., 2016) of large data assets is challenged persists even
when confronted with the favorable tabulation of execution times, as with did in that
report at AMIA 2016. Instead, this architectural argument appears to be one that requires
the development of ‘‘believe it when I see it’’ proof of concept applications that rely
exclusively on the API of the data resource along the lines recently detailed for GDC, NCI
Genomic Data Commons (Wilson et al., 2017). This argument, and the development of a
validating application, were approached here by targeting Open Health Data resources of
the Department of Health of New York State (NY. State of New York-Open Data Health-
Health Data NY, 2018). In that data-intensive infrastructure, the core Data Commons
argument that APIs with the ability to consume functionalized query languages are needed
is addressed by SoQL (Socrata, 2018). On the one hand, this still falls short of the full
Backend-as-a-Service (BaaS) model pursued by Data Commons (Grossman et al., 2016).
On the other, because of the real-world shortcomings of public health data discussed
later in this report, the Open Health Data offers the clearest practical assessment of the
argument that the BaaS model is viable for any Data resource with a REST API able to
consume query languages. This argument is currently the subject of a number of novel
BaaS implementations, as detailed in the Discussion section.

Although the tool described in this report is being used at Stony Brook University
Academic Medical Center to track signs as diverse as opioid overprescription or child
obesity in Clinical Informatics bootcamps (Clinical Informatics Bootcamp, 2018), the
purpose of this report is solely to describe the implementation methodology. Accordingly,
only data in the public domain will be used and all code is provided with open source.
Success in achieving this goal will be measured by the ability to deploy the interactive
analytics application without requiring the direct management or hosting of servers. This
approach to cloud computing where the web services are managed, and are assembled, as
part of the cloud provision, is designated as ‘‘serverless’’ (Kanso & Youssef, 2017), in the
sense that neither the application developer nor the user have to sustain them.

METHODS
Architecture
The architecture design for this application starts with OpenHealth (Almeida et al., 2015),
which is about in-browser constructs assembled on-the-fly by code injection, with the

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 2/12

https://peerj.com
https://bit.ly/pqiSuffolk
http://dx.doi.org/10.7717/peerj.6230

 Figure 1 EvolvingWeb Computing Architectures. Evolution of the API economy from its pre-REST
stage (A) to stateless transfer via HTTP (B), recently abstracted by constructs like GraphQL that combine
an API language with a query engine (C). The prototype accompanying this report uses SoQL (see ‘Meth-
ods’) to illustrate the viability of the latter design, where the traversal of the Data Layer is abstracted as a
stateless backend. The Cloud instantiation of this model approaches the description of BaaS (Backend-as-
a-service).

Full-size DOI: 10.7717/peerj.6230/fig-1

primary source of data served by remote HTTP-REST Application Programming Interfaces
(API). That original implementation, recalled in Fig. 1B, followed the straightforward API
Economy model (Brown, Fishenden & Thompson, 2014) of stateless integration by bringing
together data from different sources via REST (Representational State Transfer) APIs.
This is also the architecture where the ability to handle large amounts of heterogeneous
data comes into question. Recalling from the introductory section, addressing this scaling
challenge is best pursued with real-world health data sources, with real-world problems
such as the lack of referential integrity that is often encountered inOpenData systems. Those
practical challenges, the argument goes, would not be accurately assessed by applications
targeting synthetic datasets or targetting heavily engineered BigData.

Data
The data used for this study is that of New York state Statewide Planning and Research
Cooperative System (SPARCS) (NY. State of New York-Open Data Health-Health Data NY,
2018), made publicly available by the state’s Department of Health via SoQL APIs (Socrata,
2018). As detailed in the program’s web page at www.health.ny.gov/statistics/sparcs at the
time of this writing, ‘‘SPARCS is a comprehensive all-payer data reporting system established
in 1979 as a result of cooperation between the healthcare industry and government. The
system was initially created to collect information on discharges from hospitals. SPARCS

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 3/12

https://peerj.com
https://doi.org/10.7717/peerj.6230/fig-1
www.health.ny.gov/statistics/sparcs
http://dx.doi.org/10.7717/peerj.6230

{
 "abortion_edit_indicator" : "N" ,
 "age_group" : "70 or Older" ,
 "apr_drg_code" : "139" ,
 "apr_drg_description" : "Other pneumonia" ,
 "apr_mdc_code" : "4" ,
 "apr_mdc_description" : "Diseases and Disorders of the Respiratory System" ,
 "apr_medical_surgical_description" : "Medical" ,
 "apr_risk_of_mortality" : "Moderate" ,
 "apr_severity_of_illness_code" : "2" ,
 "apr_severity_of_illness_description" : "Moderate" ,
 "attending_provider_license_number" : "90335341" ,
 "birth_weight" : "0" ,
 "ccs_diagnosis_code" : "122" ,
 "ccs_diagnosis_description" : "Pneumonia (except that caused by tuberculosis or sexually
transmitted disease)" ,
 "ccs_procedure_code" : "0" ,
 "ccs_procedure_description" : "NO PROC" ,
 "discharge_year" : "2016" ,
 "emergency_department_indicator" : "N" ,
 "ethnicity" : "Not Span/Hispanic" ,
 "facility_id" : "37" ,
 "facility_name" : "Cuba Memorial Hospital Inc" ,
 "gender" : "F" ,
 "health_service_area" : "Western NY" ,
 "hospital_county" : "Allegany" ,
 "length_of_stay" : "3" ,
 "operating_certificate_number" : "0226700" ,
 "patient_disposition" : "Home or Self Care" ,
 "payment_typology_1" : "Medicare" ,
 "payment_typology_2" : "Private Health Insurance" ,
 "race" : "White" ,
 "total_charges" : "3913.23" ,
 "total_costs" : "3466.83" ,
 "type_of_admission" : "Urgent" ,
 "zip_code_3_digits" : "147"
}

Figure 2 Snapshot of first of the 2,343,429 public records for 2016. See Table 1 for the full count. See
also API section below for more information about why this exact public record can be programmatically
retrieved from NY state Dept of Health: https://health.data.ny.gov/resource/gnzp-ekau.json?$limit=1.

Full-size DOI: 10.7717/peerj.6230/fig-2

currently collects patient level detail on patient characteristics, diagnoses and treatments,
services, and charges for each hospital inpatient stay and outpatient (ambulatory surgery,
emergency department, and outpatient services) visit; and each ambulatory surgery and
outpatient services visit to a hospital extension clinic and diagnostic and treatment center
licensed to provide ambulatory surgery services.’’

The public tier of the SPARCS dataset accessed by accompanying application documents
34 variables covering a range of parameters, from demographic and geographic to clinical,
including payment information and identification of caregiver. Figure 2 provides a snapshot
of the first entry of the over 2 million records for 2016. As the API section below details,
this report and the accompanying application do not make any data available : it simply
distributes a in-browser computational artifact that engages the application programming
interfaces of the Department of Health on behalf of the user (not the application developer).
The flat file export of the SPARCS data alone (Table 1) is about 15 GB. Indexing its 34
fields to satisfy joint parameter constraints could have produced a far larger volume. The
combination of size and combinatorial indexing are far in excess of what would have been
possible to handle through client-side processing alone, the approach followed by the
original OpenHealth model (Fig. 1B).

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 4/12

https://peerj.com
https://health.data.ny.gov/resource/gnzp-ekau.json?$limit=1
https://doi.org/10.7717/peerj.6230/fig-2
http://dx.doi.org/10.7717/peerj.6230

Table 1 Year, record count and public SPARCS data source traversed by the accompanying applica-
tion. As the use of the application will make clear, these records come from all 58 counties of the state of
New York.

Year # records URL

2009 2,665,414 https://health.data.ny.gov/resource/s8d9-z734
2010 2,622,133 https://health.data.ny.gov/resource/dpew-wqcg
2011 2,589,121 https://health.data.ny.gov/resource/n5y9-zanf
2012 2,544,543 https://health.data.ny.gov/resource/rv8x-4fm3
2013 2,428,500 https://health.data.ny.gov/resource/tdf6-7fpk
2014 2,367,283 https://health.data.ny.gov/resource/pzzw-8zdv
2015 2,346,760 https://health.data.ny.gov/resource/82xm-y6g8
2016 2,343,429 https://health.data.ny.gov/resource/gnzp-ekau
total: 19,907,183 https://www.health.ny.gov/statistics/sparcs/

API (application programming interface)
Table 1 lists all of the SoDA (Socrata, 2018) endpoints used by the accompanying
application (see Availability). The document in reference details the API specification
and the way in which Socrata provides interoperable Open Data infrastructure. For
example, the record displayed in Fig. 2 can be obtained by dereferencing the address
https://health.data.ny.gov/resource/gnzp-ekau.json?$limit=1.

Availability of serverless application
The web application validating the serverless model (Fig. 1C) is available at bit.ly/loadsparcs
(short link to https://mathbiol.github.io/#load%20sparcs). All code is available with open
source and version control, both the base application at https://github.com/mathbiol/
mathbiol.github.com and the sparcs module, at https://github.com/mathbiol/sparcs.
All dependencies of this software are themselves also open source and, similarly to the
accompanying application, only use JavaScript (EcmaScript) to ensure that no downloads
or installations are needed. The latter is critical to explore the model and, specifically,
how the code is able to travel to the computational scope of a user engaging a data
source (Bell, Hey & Szalay, 2009). As discussed below, the unimpeded portability of the
application signifies that it explores the scalability of controlled usage. Although the use
of the application is what validates the results described in this report, a webcast video
demo of traversing the SPARCS data is also available at mathbiol.github.io/sparcs/youtube.
The inability to achieve real-time analytical interoperability at the SPARCS scale with
the original OpenHealth architecture (Fig. 1B), and specifically what other constructs
are emerging to support serverless (Fig. 1C) Data Commons, is further considered in the
Discussion.

RESULTS
At an architectural level, the SPARCS application was built on the foundations of the
OpenHealth serverless model (Almeida et al., 2015). That architecture corresponds to a
cached version of the Web 2.0 AJAX model described in Fig. 1B. As overviewed in the
‘Background’ section, the feasibility of that model is typically limited to applications that

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 5/12

https://peerj.com
https://health.data.ny.gov/resource/s8d9-z734
https://health.data.ny.gov/resource/dpew-wqcg
https://health.data.ny.gov/resource/n5y9-zanf
https://health.data.ny.gov/resource/rv8x-4fm3
https://health.data.ny.gov/resource/tdf6-7fpk
https://health.data.ny.gov/resource/pzzw-8zdv
https://health.data.ny.gov/resource/82xm-y6g8
https://health.data.ny.gov/resource/gnzp-ekau
https://www.health.ny.gov/statistics/sparcs/
https://health.data.ny.gov/resource/gnzp-ekau.json?$limit=1
bit.ly/loadsparcs
https://mathbiol.github.io/#load%20sparcs
https://github.com/mathbiol/mathbiol.github.com
https://github.com/mathbiol/mathbiol.github.com
https://github.com/mathbiol/sparcs
mathbiol.github.io/sparcs/youtube
http://dx.doi.org/10.7717/peerj.6230

Figure 3 Snapshot of the SPARCSmodule loaded in Google ChromeWeb browser with the devel-
oper tools open.Detail with developer tools open, on inspecting client-side methods operating a SoQL
Socrata Query across all eight API endpoints (2009–2016) at NY’s Dept of Health. (A) shows the execution
in the MathBiol console; (B) shows the same operator used to generate a list in HTML and the resulting
table; (C) shows the code behind the count command, which migrated to the user’s browser from math-
biol.github.io/sparcs/sparcs.js (see Availability in ‘Methods’); Finally, (D) shows the same command be-
ing recognized after negotiating variations in the syntax (‘‘TypeError’’) used to call it. For clarity, the pro-
grammatic count call resulting from ‘‘assuming sparcs.count()’’ is also executed manually at the end of
that negotiation. That is, the imprecise syntax of the command in the console (A) was caught (see error
message in D) and an alternative syntax was found. This error catching approach allows for looser syn-
taxes in the user-interface (A), illustrating the opportunity to devise Domain Specific Languages (DSL).

Full-size DOI: 10.7717/peerj.6230/fig-3

integrate moderate data volumes by operating the Data Layer API in a narrowly prescribed
manner. This architecture was changed by creating a client-side object with attributes that
map to the query language consumed by SoQL API, as explained in Fig. 1C. The key role
of the isomorphic mapping of client-side methods to data-intensive server-side operations
is illustrated in Fig. 3 for the count method used to generate the data in Table 1.

The snapshots in Figs. 3 and 4 illustrate the wide versatility of complex query constraints
defined by the operation of the user interface, which is itself assembled in the user’s web
browser without download or installation. That development versatility is the functionality
that enables the BaaS model associated with the architecture described in Fig. 1C. However,
the full measure of the BaaSmodel will be the operation of the APIs of remote data-intensive
resources, as if they were local to the user’s own machine. That confirmation of scalability
without loss of real-time interaction can only be verified by operating the application.

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 6/12

https://peerj.com
https://doi.org/10.7717/peerj.6230/fig-3
http://dx.doi.org/10.7717/peerj.6230

Figure 4 Snapshot of the SPARCSmodule in portrait mode in a mobile device, illustrating the ability
to quickly resolve complex queries in moderately powered devices.Note how the graphic type responds
to the data type: for example, the 3-digit zip code is matched by a geographic map display instead of a bar
graph as in Fig. 3. The choice of variables can be compounded with additional constraints (additional fil-
ter), in order to, in this example, obtain the age groups and place of residence for patients seen at Stony
Brook University Hospital. Each of the count numbers, underlined in blue, is a live link to the correspond-
ing patient cohort. For example, clicking on ‘‘ 7054 ’’ either on the table (B) or in the map (A) will auto-
matically retrieve the full data subset, with the values of all 33 parameters (Fig. 2) for each the 7,054 pa-
tients that satisfy the time, place and demographic constraints.

Full-size DOI: 10.7717/peerj.6230/fig-4

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 7/12

https://peerj.com
https://doi.org/10.7717/peerj.6230/fig-4
http://dx.doi.org/10.7717/peerj.6230

See Availability in the ‘Methods’ section for the live web-based serverless application
and demonstrative webcast video. The key role of the asynchronous NoSQL caching in
the browser, IndexedDB, for web-based biomedical informatics has been noted by other
researchers (Shi et al., 2015).

Comparison with existing software tools
The development of mobile-first software to traverse open health data is still relatively
new. As detailed in our original report on OpenHealth applications (Almeida et al., 2015),
this reflects the early stage of development of consumer-facing software for outcomes-
driven assessment of Health Care services. The key change is the public availability of
large volumes of data-intensive resources that would have been considered too sensitive
for publication just 2 years ago when the original OpenHealth tools were developed.
Accordingly, two comparisons to existing tools are in order, speed and interactivity,
while engaging the same SoQL API exposed by the Department of Health of the state of
New York (health.data.ny.gov). The first comparison is straightforward: dereferencing a
standard stateless application such as bit.ly/pqiSuffolk has a much longer assembly time,
in the order to tens of seconds to a minute, than the approach presented here (Fig. 1C),
bit.ly/loadsparcs, which takes less than 10 s and traverses a dataset over 100 times larger.
The interactivity comparison is not as quantitatively straightforward because it requires
the use of the analytical tools published with the data. That exercise can be approached
by dereferencing, for example, health.data.ny.gov/Health/All-Payer-Hospital-Inpatient-
Discharges-by-Facilit/srur-4jdu, and noting that the numerical results are not themselves
linked to additional analysis where they are used as independent variables.

In summary, the proposed engagement of the data-intensive data-intensive SPARCS
dataset has a clear advantage over approaches that do not use the cached BaaS model. That
advantage is proposed here as a definite argument to approach data-intensive software
Commons for research applications by using this model. That is, by mapping server-side
to client-side abstractions as a generic backend that goes beyond the conventional stateless
architecture of REST APIs. That conclusion, discussed at length in the next section, is
particularly well aligned with recent developments in funding agencies promoting the
use of interoperable cloud-hosted Research Commons infrastructure (Grossman, 2018b).
Putting it plainly, the conventional ‘‘API economy’’model (Figs. 1A–1B) simply doesn’t
work as a client-side application at the SPARCS scale, regardless of the resources available
to the machine used to run the web application. On the contrary, the new implementation
(Fig. 1C) will work regardless of the machine, from high-end desktops to underpowered
smartphones.

DISCUSSION
The objective of this coding exercise was to assess the viability of real-time traversal
of real-world large health data resources. Lack of referential integrity caused by loose
controlled vocabularies is amongst the most common and most challenging. Solving this
problem ex-post (Hoekstra, 2010) in the presentation layer (in this case in the browser) is
often considered an hopeless exercise because of a large number of records that would have

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 8/12

https://peerj.com
health.data.ny.gov
https://bit.ly/pqiSuffolk
https://bit.ly/loadsparcs
health.data.ny.gov/Health/All-Payer-Hospital-Inpatient-Discharges-by-Facilit/srur-4jdu
health.data.ny.gov/Health/All-Payer-Hospital-Inpatient-Discharges-by-Facilit/srur-4jdu
http://dx.doi.org/10.7717/peerj.6230

to be fixed on-the-fly. Instead, mending referential integrity is typically addressed with
ETL processes running in the data center. However, that objection may no longer be as
relevant, because JavaScript engines have improved to the point of measuring themselves
favorably with compilers in more conventional Data Science platforms. Case in point, close
inspection of the SPARCSmodule reveals the use of MapReduce functional patterns, which
may be executed in the machine’s Graphic Processing Units (GPU). It is noteworthy that
modern browser includes nativeGPUAPIs as part of its DocumentObjectModel (DOM). It
should also be noted that referential integrity in the SPARCS dataset is, as feared, broken by
both loose variable naming conventions and value binning. To fix it, extensive corrections
via Map operations are embedded in the sparcs.getJSON read operator, as detailed in the
source code at https://github.com/mathbiol/sparcs/blob/master/sparcs.js#L34. In spite
of the on-the-fly computation, there is no noticeable loss of interactivity of the SPARCS
user-interface. Althoughnot attempted here, this programmatic approach could be replaced
by a more formal, declarative, approach to ‘‘sloppy data integration’’ (Almeida et al., 2006).

The Backend-as-a-Service (BaaS) model advanced by recent Data Commons
infrastructure (Grossman et al., 2016) are recognized as the scalable route towards Precision
Medicine (Jensen et al., 2017). Therefore, what combination of API language and query
engine would best serve that goal in a FAIR manner (Wilkinson et al., 2016) is a critical
design goal. In this study, SoQL (see Methods) was found to provide the necessary read-
only interoperability. Naturally, the full BaaS model would require a more comprehensive
approach to schema definition and data presentation. While this discussion is beyond the
scope of the present report, it may be informative to note that data submission to NCI
Genomic Data commons, at the time of this writing (as per GDC v1.13.0, Feb 18, 2018),
requires the use of GraphQL as the interoperability model of choice for 3rd generation
Data Commons infrastructure (Grossman, 2018a). In any case, new longitudinal Population
Studies such as the NIH All of Us Research Program (National Institutes of Health, NIH),
are bound to require a new approach to interactive analytics able to tackle the scale, diverse
data models, and wide institutional distribution of associated cloud-based infrastructure
for data-intensive science.

CONCLUSION
The use of in-browser serverless applications (WebApps calling data layer APIs directly) was
tested with the real-world challenge of assembling web applications capable of traversing
20 million patient records of the public SPARCS dataset served by New York’s Department
of Health. The portability and security of the web app model is a good match to the
principles of FAIR Data Commons. The real-world test was that of interactive and open-
ended constraint satisfaction on this large data space of well over half a billion individual
measurements (34× 19,907,183= 676,844,222), convoluted by a significant lack of
referential integrity. In spite of these obstacles, the isomorphic mapping of client-side
operators to remote APIs supporting a full-fledged query language, combined with the
native support for vectorized operators of the modern Web browser, was shown to achieve
the performance levels required for real-time interactivity. It is therefore concluded that

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 9/12

https://peerj.com
https://github.com/mathbiol/sparcs/blob/master/sparcs.js#L34
http://dx.doi.org/10.7717/peerj.6230

the emerging Data Commons frameworks are particularly well suited for ecosystems of
Web applications. This BaaS behavior suggests a solution that overcomes the need for local,
or even on-premise, implementations of Biomedical Informatics applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received support from Suffolk Care Collaborative Delivery System Reform
Incentive Payment Program (https://suffolkcare.org/AboutDSRIP). The funders had no
role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Suffolk Care Collaborative Delivery System Reform Incentive Payment Program.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jonas S. Almeida conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.
• Janos Hajagos conceived and designed the experiments, analyzed the data, contributed
reagents/materials/analysis tools, approved the final draft.
• Joel Saltz conceived and designed the experiments, approved the final draft.
• Mary Saltz conceived and designed the experiments, analyzed the data, approved the
final draft.

Data Availability
The following information was supplied regarding data availability:

GitHub: https://mathbiol.github.io/#load%20sparcs.

REFERENCES
Almeida JS, Chen C, Gorlitsky R, Stanislaus R, Aires-de-SousaM, Eleutério P, Carriço

J, Maretzek A, Bohn A, Chang A, Zhang F, Mitra R, Mills GB,Wang X, Deus
HF. 2006. Data integration gets ‘Sloppy’. Nature Biotechnology 24:1070–1071
DOI 10.1038/nbt0906-1070.

Almeida JS, Hajagos J, Crnosija I, Kurc T, Saltz M, Saltz J. 2015. OpenHealth platform
for interactive contextualization of population health open data. AMIA Annual
Symposium Proceedings 2015:297–305.

Almeida JS, Iriabho EE, Gorrepati VL,Wilkinson SR, Grüneberg A, Robbins DE,
Hackney JR. 2012. ImageJS: personalized, participated, pervasive, and reproducible

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 10/12

https://peerj.com
https://suffolkcare.org/AboutDSRIP
https://mathbiol.github.io/#load%20sparcs
http://dx.doi.org/10.1038/nbt0906-1070
http://dx.doi.org/10.7717/peerj.6230

image bioinformatics in the web browser. Jounal of Pathology Informatics 3:Article
98813 DOI 10.4103/2153-3539.98813.

Bell G, Hey T, Szalay A. 2009. Computer science. Beyond the data deluge. Science
323:1297–1298 DOI 10.1126/science.1170411.

Bremer E, Kurc T, Gao Y, Saltz J, Almeida JS. 2016. Safe ‘cloudification’ of large images
through picker APIs. AMIA Annual Symposium Proceedings 2016:342–351.

Brown A, Fishenden J, ThompsonM. 2014.Digitizing Government: understanding and
implementing new digital business models. Washington, D.C.: Palgrave Macmillan
UK.

Burwell SM, VanRoekel S, Park T, Mancini DJ. 2013.Memorandum for the Heads of
Executive Departments and Agencies—managing Information as an asset. Available
at https:// obamawhitehouse.archives.gov/ sites/default/ files/ omb/memoranda/2013/m-
13-13.pdf (accessed on 6 March 2018).

Clinical Informatics Bootcamp. 2018. Stony Brook Dept of Biomedical Informatics.
Available at https:// bmi.stonybrookmedicine.edu/bootcamp (accessed on 2 November
2018).

Grossman R. 2018a. Gen3 software. Center for Data Intensive Science. Available at
https:// cdis.uchicago.edu/ gen3/ (accessed on 8 March 2018).

National Institutes of Health (NIH). 2018. All of us. Available at https:// allofus.nih.gov
(accessed on 2 November 2018).

Grossman RL. 2018b. Progress toward cancer data ecosystems. Cancer Journal
24:126–130 DOI 10.1097/PPO.0000000000000318.

Grossman RL, Heath A, MurphyM, PattersonM,Wells WA. 2016. Case for data
commons: toward data science as a service. Computing in Science & Engineering
18:10–20 DOI 10.1109/MCSE.2016.92.

Hoekstra R. 2010. The knowledge reengineering bottleneck. Semantic Web 1:111–115.
JensenMA, Ferretti V, Grossman RL, Staudt LM. 2017. The NCI genomic data com-

mons as an engine for precision medicine. Blood 130:453–459
DOI 10.1182/blood-2017-03-735654.

Kanso A, Youssef A. 2017. Serverless. In: Proceedings of the 2nd international workshop on
serverless computing—WoSC ’17. DOI 10.1145/3154847.3154854.

NY. State of New York-Open Data Health-Health Data NY. 2018. New York State
Department of Health—Health Data NY. Available at https://health.data.ny.gov/
(accessed on 5 March 2018).

Shi X, Peng J, Yu X, Zhang X, Li D, Liu B, Kong F, Yuan X. 2015. PopGeV: a web-
based large-scale population genome browser. Bioinformatics 31:3048–3050
DOI 10.1093/bioinformatics/btv324.

Socrata. 2018. API endpoints to Socrata open data infrastructure. Available at https:
//dev.socrata.com/docs/ endpoints.html (accessed on 8 March 2018).

WilkinsonMD, Dumontier M, Aalbersberg IJ, Appleton G, AxtonM, Baak A,
Blomberg N, Boiten J-W, Da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ,
Clark T, Crosas M, Dillo I, DumonO, Edmunds S, Evelo CT, Finkers R, Gonzalez-
Beltran A, Gray AJG, Groth P, Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 11/12

https://peerj.com
http://dx.doi.org/10.4103/2153-3539.98813
http://dx.doi.org/10.1126/science.1170411
https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2013/m-13-13.pdf
https://obamawhitehouse.archives.gov/sites/default/files/omb/memoranda/2013/m-13-13.pdf
https://bmi.stonybrookmedicine.edu/bootcamp
https://cdis.uchicago.edu/gen3/
https://allofus.nih.gov
http://dx.doi.org/10.1097/PPO.0000000000000318
http://dx.doi.org/10.1109/MCSE.2016.92
http://dx.doi.org/10.1182/blood-2017-03-735654
http://dx.doi.org/10.1145/3154847.3154854
https://health.data.ny.gov/
http://dx.doi.org/10.1093/bioinformatics/btv324
https://dev.socrata.com/docs/endpoints.html
https://dev.socrata.com/docs/endpoints.html
http://dx.doi.org/10.7717/peerj.6230

R, Kuhn T, Kok R, Kok J, Lusher SJ, MartoneME, Mons A, Packer AL, Persson B,
Rocca-Serra P, Roos M, Van Schaik R, Sansone S-A, Schultes E, Sengstag T, Slater
T, Strawn G, Swertz MA, ThompsonM, Van der Lei J, VanMulligen E, Velterop J,
Waagmeester A,Wittenburg P,Wolstencroft K, Zhao J, Mons B. 2016. The FAIR
guiding principles for scientific data management and stewardship. Scientific Data
3:Article 201618 DOI 10.1038/sdata.2016.18.

Wilkinson SR, Almeida JS. 2014. QMachine: commodity supercomputing in web
browsers. BMC Bioinformatics 15:176 DOI 10.1186/1471-2105-15-176.

Wilson S, FitzsimonsM, FergusonM, Heath A, JensenM,Miller J, Murphy
MW, Porter J, Sahni H, Staudt L, Tang Y,Wang Z, Yu C, Zhang J, Ferretti
V, Grossman RL. 2017. Developing cancer informatics applications and tools
using the NCI genomic data commons API. Cancer Research 77:e15–e18
DOI 10.1158/0008-5472.CAN-17-0598.

Almeida et al. (2019), PeerJ, DOI 10.7717/peerj.6230 12/12

https://peerj.com
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1186/1471-2105-15-176
http://dx.doi.org/10.1158/0008-5472.CAN-17-0598
http://dx.doi.org/10.7717/peerj.6230

