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ABSTRACT
An international data science challenge, called National Ecological Observatory
Network—National Institute of Standards and Technology data science evaluation,
was set up in autumn 2017 with the goal to improve the use of remote sensing data in
ecological applications. The competition was divided into three tasks: (1) individual
tree crown (ITC) delineation, for identifying the location and size of individual
trees; (2) alignment between field surveyed trees and ITCs delineated on remote
sensing data; and (3) tree species classification. In this paper, the methods and results
of team Fondazione Edmund Mach (FEM) are presented. The ITC delineation
(Task 1 of the challenge) was done using a region growing method applied to a
near-infrared band of the hyperspectral images. The optimization of the parameters
of the delineation algorithm was done in a supervised way on the basis of the Jaccard
score using the training set provided by the organizers. The alignment (Task 2)
between the delineated ITCs and the field surveyed trees was done using the
Euclidean distance among the position, the height, and the crown radius of the ITCs
and the field surveyed trees. The classification (Task 3) was performed using a
support vector machine classifier applied to a selection of the hyperspectral bands
and the canopy height model. The selection of the bands was done using the
sequential forward floating selection method and the Jeffries Matusita distance.
The results of the three tasks were very promising: team FEM ranked first in the data
science competition in Task 1 and 2, and second in Task 3. The Jaccard score of
the delineated crowns was 0.3402, and the results showed that the proposed approach
delineated both small and large crowns. The alignment was correctly done for all
the test samples. The classification results were good (overall accuracy of 88.1%,
kappa accuracy of 75.7%, and mean class accuracy of 61.5%), although the accuracy
was biased toward the most represented species.

Subjects Ecology, Forestry, Spatial and Geographic Information Science
Keywords Ecology, Forestry, Remote sensing, Crown delineation, Image classification

INTRODUCTION
The National Ecological Observatory Network—National Institute of Standards and
Technology (NEON-NIST) data science evaluation challenge (Marconi et al., 2018) was a
competition with the goal to challenge scientists on three tasks that are central in
converting remote sensing images into vegetation diversity and structure information
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traditionally collected by ecologists: (1) individual tree crown (ITC) delineation, for
identifying the location and size of individual trees; (2) alignment between field surveyed
trees and ITCs delineated on remote sensing data; and (3) tree species classification.

Individual tree crowns delineation is an automatic procedure that allows the detection
of the position, the size, and the shape of ITCs in a remote sensing scene. This procedure is
extremely useful in ecological studies as it allows researchers to analyse a forest in its
primary element, the tree. Indeed, from the delineated ITCs it is possible to have estimates
of the height, the diameter at breast height, the biomass, and the species of a tree
(Coomes et al., 2017; Dalponte et al., 2018). At the current status of the research, the main
drawback of ITCs delineation algorithms is that they rarely detect all the trees in a scene,
as very small trees or trees that are not in a dominant canopy position are normally
not visible in a remote sensing image. There is a large amount of literature about ITC
delineation (Popescu, Wynne & Nelson, 2003; Lee & Lucas, 2007; Ke & Quackenbush, 2011;
Ene, Næsset & Gobakken, 2012; Hung, Bryson & Sukkarieh, 2012; Ferraz et al., 2012;
Duncanson et al., 2015; Lindberg & Holmgren, 2017; Gomes, Maillard & Deng, 2018),
and there have been many studies comparing delineation methods on different data types
(Ke & Quackenbush, 2011; Vauhkonen et al., 2012; Eysn et al., 2015; Dalponte et al., 2015).
The choice of the data to use is usually driven by data availability, but also by the
characteristics of the analyzed forest. Many previous studies focus on light detection
and ranging (LiDAR) data as these remote sensing data are very common in the forestry
and ecology domains. LiDAR data showed to be a very powerful source of information
for the detection of trees in conifer dominated forests (Vauhkonen et al., 2012), while
they showed to be weaker in mature broadleaves ones. Indeed, in a mature broadleaved
forest the top of the canopy is quite uniform and flat, thus the height information provided
by LiDAR data is not so useful in distinguishing different tree crowns. In contrast, it
could be expected that the spectral information provided by hyperspectral data could allow
us to separate crowns belonging to different species. Few works exist on the use of
hyperspectral data for ITC delineation (Dalponte et al., 2014, 2015), and surely this topic
should be explored more in the future literature, especially given that the use of snapshots
hyperspectral cameras on UAVs provide both hyperspectral information and a 3D
point cloud derived using a structure from motion approach (Aasen et al., 2015).

Alignment between the delineated ITCs and the field surveyed trees is a very important
step to both validate the ITC delineation results and to use the delineated ITCs in
further analyses, like tree species classification and aboveground biomass prediction. It is
important to verify if the ITCs that are detected on the remote sensing data are also
present in the field, and also to assign the field information associated with the field trees to
the ITCs in order to use them to build up prediction models of tree attributes (e.g., species
and biomass prediction). The alignment procedure is usually explored in every paper
dealing with ITC delineation (Eysn et al., 2015; Kandare et al., 2017). To the best of our
knowledge, a standardized method to deal with this problem does not exist. This results
in the use of different alignment methods for several ITC delineation paper, mostly
chosen subjectively and adapted to the data used for that specific work (Ene, Næsset &
Gobakken, 2012; Eysn et al., 2015; Kandare et al., 2017). In this context the idea of the
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NEON-NIST challenge to validate different alignment strategies on a common dataset is
very important in order to arrive to a standardized method.

Tree species classification with remote sensing data is a widely covered topic in the
scientific literature (Fassnacht et al., 2016). The rationale of this procedure is to use the
information provided by remote sensing data to map tree species in an area. Usually this
procedure is done in a supervised way, having some field data and relating them to
the information provided by remote sensing data (Richards & Jia, 2006). The data used for
this procedure are mainly spectral data, as different tree species are characterized by
different spectral signatures. The first studies on this topic were focused on species groups,
like conifer and broadleaves, as they were done using satellite multispectral data (e.g.,
Landsat data) that have a limited number of spectral bands and a low spatial resolution
(Franklin et al., 1986; Foody & Hill, 1996). Since the 2000s, with the availability of airborne
hyperspectral data, characterized by hundreds of spectral bands and a high spatial
resolution, the separation of tree species become possible, and many studies focused on
this topic (Fassnacht et al., 2016). Indeed, airborne hyperspectral data, due to their
dense sampling of the electromagnetic spectrum, are able to characterize very small
differences in the spectral signatures of trees. Moreover, the high spatial resolution, in the
order of tens of centimeters, of airborne data also allows for the detection of individual
trees in an image.

Here, the methods and results of team Fondazione Edmund Mach (FEM) in the
NEON-NIST data science evaluation challenge are presented. The FEM team belongs to
the forest ecology and bio-geochemical cycles unit of the Research and Innovation
Centre of the Edmund Mach Foundation (FEM) in Italy. As presented in Marconi et al.
(2018), team FEM ranked first place in Task 1 (ITC delineation) and Task 2
(data alignment), and second in Task 3 (tree species classification), thus the methods
described in this paper could be considered effective methods for all the three tasks
considered. The methods presented are mainly standard methods with some small
adjustments to adapt to the data used. The main output of this paper and of the
challenge itself is that standard methods already tested in many scenarios can lead to
very good results.

MATERIALS AND METHODS
Datasets used
The study area is the Ordway-Swisher Biological Station (OSBS) (http://ordway-swisher.
ufl.edu/) that is operated by the University of Florida. OSBS comprises over 37 km2, has a
mean elevation of 45 m.a.s.l., and is located approximately 32 km east of Gainesville in
Melrose (Putnam County, FL, USA). The vegetation of the upland forests is dominated
by pines and turkey oak (Quercus laevis) with a grass and forb groundcover. Pines are
primarily longleaf pines (Pinus palustris) and loblolly pines (P. taeda). The mean canopy
height is approximately 23 m.

The data, both field and remote sensing, were provided by NEON and include
the following data products: (1) woody plant vegetation structure (NEON.DP1.10098);
(2) spectrometer orthorectified surface directional reflectance—flightline
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(NEON.DP1.30008); (3) ecosystem structure (NEON.DP3.30015); and (4) high-resolution
orthorectified camera imagery (NEON.DP1.30010). In greater detail, the hyperspectral
data (NEON.DP1.30008) were acquired with the NEON imaging spectrometer,
that is, the next generation version of the airborne visible/imaging infrared spectrometer
hyperspectral imager. The data are radiometrically calibrated and characterized by
426 bands ranging from 383 to 2,512 nm with a spectral resolution of five nm.
The spatial resolution is one m. The LiDAR data were acquired with the Optech
Incorporated Airborne Laser Terrain Mapper Gemini. From the raw LiDAR data,
a canopy height model (CHM) with one m spatial resolution was derived
(NEON.DP3.30015).

The following tree attributes were collected in the field: the stem ID, the location of
the stem, the diameter of the stem, and for some of the trees the maximum crown
radius and the radius perpendicular to the axis of the maximum radius. A total of 613
ITCs were also manually delineated in the field on airborne camera images using a
tablet (Marconi et al., 2018). The field data were collected in 43 plots (see Fig. 1), among
which 30 were used for training and 13 for testing. For more details see section
“Task 1: ITCs delineation” and “Task 2: alignment” of Marconi et al. (2018).

For each task of the NEON-NIST challenge different datasets were used, and in
particular team FEM used the following data: (i) Task 1: airborne hyperspectral data
and the manually delineated ITCs (452 as training set and 161 as test set); (ii) Task 2: 89
field surveyed trees (64 as training set and 25 as test set), and the CHM data; and
(iii) Task 3: hyperspectral data, CHM data, and 431 manually delineated ITCs for which
species were recorded in the field (305 as training set and 126 as test set). The total number of
species considered in Task 3 was nine: Acer robrum (ACRU; six training samples),

Figure 1 Google Maps image of the study area with the location of the 43 field plots (red dots). Image
data: DigitalGlobe, Landsat/Copernicus, U.S. Geological Survey. Full-size DOI: 10.7717/peerj.6227/fig-1
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Liquidambar styraciflua (LIST; four training samples), P. elliottii (PIEL; five training samples),
P. palustris (PIPA; 197 training samples), P. taeda (PITA; 14 training samples), Q. geminata
(QUGE; 12 training samples), Q. laevis (QULA; 54 training samples), Q. nigra (QUNI;
five training samples), and unidentifiable species (OTHER; eight training samples).

Task 1: ITCs delineation
The ITCs delineation was performed on the hyperspectral data using the algorithm
presented in (Dalponte et al., 2015). The steps of the delineation method were:

1. The normalized difference vegetation index (NDVI) was computed for each pixel,
and all pixels having NDVI below 0.6 were masked. In this way pixels belonging to
non-vegetated areas were removed.

2. The hyperspectral band closest to 810 nm was selected for the delineation. The choice of
this band was due to successful results obtained in previous studies (Clark, Roberts &
Clark, 2005; Dalponte et al., 2014).

3. Seed points S ¼ s1; . . . ; sNf g were defined using a moving window. The main idea of
this method is that the pixels with the highest values of radiance (or reflectance
depending on the data) are on the highest part of the trees. If the central pixel H(i, j)
of the moving window is the pixel with the highest value of radiance, it is considered
a tree top, and thus a seed:

H i; jð Þ 2 S if H i; jð Þ ¼ max moving windowð Þ (1)

4. Initial regions were defined starting from the seed points. A label map L was defined:

Li;j ¼ k if Hði; jÞ 2 S
Li;j ¼ 0 if Hði; jÞ =2 S

�
(2)

5. Starting from L, regions grew according to the following procedure:

a. A label map point Li;j 6¼ 0 was considered and its neighbor pixels (NP) in the image
were taken:

NP ¼ H i; j� 1ð Þ;H i� 1; jð Þ;H i; jþ 1ð Þ;H iþ 1; jð Þf g (3)

b. A neighbor pixel NP i0; j0ð Þ was added to the region n if:

NP i0; j0ð Þ 2
dist NP i0; j0ð Þ; snð Þ,DistMax
NP i0; j0ð Þ > sn � PercThreshð Þ
Li0;j0 6¼ 0

8<
: (4)

where PercThresh 2 0; 1ð Þ, and DistMax > 0;

c. This procedure was iterated over all pixels that have Li;j 6¼ 0, and was repeated until
no pixels were added to any region.

6. From each region in L the central coordinates of each pixel were extracted, and a 2D
convex hull was applied to these points.

7. The resulting polygons were the final ITCs.
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The parameters of the delineation (i.e., the size of the moving window,
PercThresh, and DistMax) were optimized in a supervised way using a training set
made available by the organizers of the challenge: the set of parameters that provided
the highest average Jaccard score (Real & Vargas, 1996) on the training set was
chosen. The Jaccard score between the field ITC A and the delineated ITC B is
computed as follows:

J A;Bð Þ ¼ A\Bj j
Aj j þ Bj j � A\Bj j (5)

A value equal to 1 means perfect overlap between the two delineated ITCs, while a value
equal to 0 means no overlap. For each field ITCs the Jaccard score with any overlapping
ITCs was computed, but only the best one was considered. The score on the training
set was computed as the average of the plot level scores, which are themselves the average
scores of the ITCs within each plot. The parameters used for the delineation on the test
set were: a moving window size of 3 � 3 pixels, a PercThresh of 0.4, and a DistMax
of 4. The implementation used is the one inside the R (R Development Core Team, 2008)
package itcSegment (Dalponte, 2018). The results on the test set were also evaluated
using the Jaccard score, and the overall confusion matrix (OCM). The OCM measures the
area in square meters that is correctly or incorrectly classified as crown or not, and it
accumulates the counts of area over all testing plots.

Task 2: alignment
Alignment between the field surveyed trees and the delineated ITCs was done using a four
step procedure: (1) prediction of the crown radius for the field surveyed trees for which it
was not measured in the field; (2) prediction of the height for the ITCs for which this
information was missing; (3) linking ITCs and field surveyed trees using an Euclidean
distance based on X and Y coordinates, and height and crown radius; and (4) visual
inspection of the results.

The crown radius of the field surveyed trees, for which this attribute was not measured
in the field, was predicted using a relationship linking the field measured crown radius
(RFIELD) with the tree height (HFIELD) and the stem diameter (DFIELD):

RFIELD ¼ a� HFIELD � DFIELDð Þb (6)

Equation (6) was fitted using a non-linear least squares with the function nls of the
package stats (R Development Core Team, 2008) of the R software.

The height of the ITCs, for which this attribute was missing, was predicted using a
relationship linking the ITCs height (HITC) and the ITCs crown radius (RITC):

HITC ¼ a� RITC
b (7)

Equation (7) was fitted using a non-linear least squares with the function nls of the
package stats of the R software (R Development Core Team, 2008).
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Each ITC was linked to the closest field surveyed tree according to the sum of the
Euclidean distance between their position (Eq. (8)) and the Euclidean distance between
their attributes (Eq. (9); height, and crown radius):

D ¼ DPOS þ DATTR (8)

DPOS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XITC � XFIELDð Þ2 þ YITC � YFIELDð Þ2

q
(9)

DATTR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
HITC � HFIELDð Þ2 þ RITC � RFIELDð Þ2

q
(10)

After the linking, a visual inspection of the results on a GIS software was done to visually
verify the results and to readjust some of the links.

Task 3: tree species classification
The classification of the tree species was done with a four step procedure: (1) data
normalization; (2) feature selection; (3) classification; and (4) aggregation. Data
normalization was done to ensure that the pixel values were uniformly distributed across
all the crowns. Each pixel value was divided by the sum of the values of that pixel in all the
bands (Yu et al., 1999). In this way, the difference in radiance due to the fact that the
samples are distributed on multiple images was reduced. The feature selection step is
used to select the most significant features (in this case hyperspectral bands) for the
considered classification problem (in this case tree species classification). A feature
selection method includes a searching strategy and a separability criterion. In this study,
the search strategy used was the sequential forward floating selection (SFFS)
(Pudil, Novovičová & Kittler, 1994), and the separability criterion was the Jeffries Matusita
distance (Bruzzone, Roli & Serpico, 1995). These methods were used successfully in
previous studies (Gómez-Chova et al., 2003; Dalponte, Bruzzone & Gianelle, 2008, 2012;
Dalponte et al., 2009, 2013, 2014; Dabboor et al., 2014; Padma & Sanjeevi, 2014; Tuominen
& Lipping, 2016). The feature selection was applied on the hyperspectral bands of the
training data using the function varSelSFFS in the R package varSel (Dalponte & Ørka,
2016). The classification was performed using a support vector machine (SVM) classifier,
having as inputs the features selected at step 2 and the value of the CHM corresponding to
each ITC. The SVM implemented in the R package kernlab (Karatzoglou et al., 2004)
was used. The predicted species labels of each pixel were aggregated at crown level
with a majority rule.

RESULTS
Task 1: delineation
The average Jaccard score for the delineated ITCs of the test set was 0.3402. This means
that on average 34% of the area of the delineated ITCs overlapped the area of the
field/manually delineated ITCs. Among the total area of the manually delineated ITCs
(3,315.9 m2) 61% was correctly delineated (2,022.8 m2) (TruePositive in Fig. 2), while 39%
was not detected (1,293.1 m2) (FalsePositive in Fig. 2). A total of 2,416.6 m2 of the
delineated ITC area was wrongly delineated (FalseNegative in Fig. 2), meaning that
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in general all the ITCs automatically delineated were larger than the manually delineated
ones. The OCM for each test plot is visualized as a bar chart in Fig. 2. The delineated area
varies significantly in each plot, as well as the proportions among TruePositive,
FalsePositive, and FalseNegative. The Jaccard score by crown area is shown in Fig. 3.
Variability in the crown size influenced the Jaccard score, especially below 40 m2.
The detection of small crowns (below 10 m2) had a lower accuracy compared to larger ones

Figure 2 Task 1: plot level overall confusion matrix as a bar chart. TruePositive represent the amount
of manually delineated ITCs area that was correctly delineated by the automatic delineation method used;
FalsePositive is the amount of manually deli. Full-size DOI: 10.7717/peerj.6227/fig-2

Figure 3 Task 1: average Jaccard score aggregated by ITCs area groups in m2.
Full-size DOI: 10.7717/peerj.6227/fig-3
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(above 40 m2). In particular, the proposed method showed the best results with crowns
of size around 25 m2.

Task 2: alignment
All the test ITCs were aligned with the respective field surveyed trees. In Fig. 4, the
distribution of the test samples according to the two components of the Euclidean distance
is shown. As it can be seen on the attributes part of the distance (DATTR), there is high
variability (between two and eight m), while for the positional part (DPOS) the value is
varying mainly between zero and four m.

Task 3: tree species classification
The overall results for the considered classification task were 88.1% for overall accuracy,
75.7% for kappa accuracy, and 61.5% for mean class accuracy. From the overall
performances, it is clear that the classification method used was effective, as all the
performance metrics are quite good, even if the large difference existing among the overall
accuracy and the mean class accuracy tells us that the classifier gave priority to the
dominant species. Looking at Table 1 this is clearly visible. PIPA and QULA classes that
represent the majority of the training samples have a producer’s accuracy of 91.1% and
95.5%, respectively, while classes for which the number training samples was low have
a low accuracy (i.e., ACRU, PIEL).

Figure 4 Task 2: distribution of the test set samples for the matching part according to the two
components of the distance considered in the matching algorithm.

Full-size DOI: 10.7717/peerj.6227/fig-4
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DISCUSSION
Team FEM ranked first for ITC delineation (Task 1) of the NEON-NIST challenge.
The ITC delineation was carried out on a band of the hyperspectral images, using an
approach that was already used in a previous work (Dalponte et al., 2015). The reason
for this choice was that, from an initial analysis, the training ITCs provided by the
organizers of the NEON-NIST challenge had a poor alignment with the LiDAR data, while
they were properly aligned to the hyperspectral data. This fact was confirmed after the end
of the challenge, when the organizers revealed that the training and test ITCs were
manually delineated on some airborne camera images using a tablet (Marconi et al., 2018).
The methods used by the other two teams participating to the challenge (teams Conor
and Shawn) and the baseline method were based on LiDAR data (Marconi et al., 2018;
Taylor, 2018; McMahon, 2018), which can explain their poor performances (Jaccard
score of 0.184, 0.0555, and 0.0863). The comparison of the results across teams also
showed that the FEM approach outperformed the other approaches in the delineation
of the small trees, while it was less efficient for the large trees (Marconi et al., 2018).
This is due to the fact that we decided to use a small moving window (3 � 3 pixels).
Hengl (2006) suggested that in order to detect a circular object on an image (like a tree
crown) it is necessary to have at least four pixels representing that object. According to
this theory, in our case, using the hyperspectral images at one m resolution allowed
us to detect trees with at least four m2 of crown size. To this constraint, it should be
added that if we used a window size larger than 3 � 3 pixels, small trees could have been
detected only if they were isolated from other trees. The use of a variable size moving
window, like the one that is implemented for LiDAR data in the itcSegment library and
used in (Dalponte et al., 2018), would have probably improved the final results. In a
previous study (Dalponte et al., 2015), the delineation method used in the NEON-NIST
competition was compared with three delineation methods based on LiDAR data.
The hyperspectral delineation method outperformed the LiDAR based methods on
the delineation of broadleaf tree canopies. This fact can also explain the very good
performances of team FEM in the NEON NIST data science evaluation challenge

Table 1 Task 3: confusion matrix of the tree species classification over the test set, and producer’s and user’s accuracies.

ACRU LIST OTHER PIEL PIPA PITA QUGE QULA QUNI User’s accuracy

ACRU 1 0 1 0 0 0 0 0 0 50

LIST 0 1 0 0 0 0 0 0 0 100

OTHER 1 1 0 0 0 0 1 0 0 0

PIEL 0 0 0 0 2 0 0 0 0 0

PIPA 0 0 0 1 82 0 0 1 0 97.6

PITA 0 0 0 0 4 1 1 0 0 16.7

QUGE 0 0 0 0 0 0 4 0 0 100

QULA 0 0 0 0 2 0 0 21 0 91.4

QUNI 0 0 0 0 0 0 0 0 1 100

Producer’s accuracy 50 50 0 0 91.1 100 66.7 95.5 100
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because the study area had many broadleaf trees. Considering these results in the domain
of ITC delineation literature it can be said that in general the results are on the average, as it
is quite standard to detect 30–40% of the trees in broadleaf forests (Eysn et al., 2015).
Comparing the results with others on conifer forests, especially in North Europe, the
results appears quite poor, as in spruce forests the accuracy can be over 90% (Vauhkonen
et al., 2012).

In the alignment task (Task 2) of the NEON-NIST challenge FEM team ranked in
the first place, with all the trees correctly matched (score 1). The other participating
groups, and the baseline method had a score of 0.48. The baseline prediction was the
application of a naive Euclidean distance from the field tree location to the centroid of the
delineated ITC. Team Conor used an approach similar to the one that we used, with a
difference in the way the missing data were predicted, and the distance computed
(McMahon, 2018). From the results, it seems that a great improvement was made by
calculating the missing parameters. Moreover, a visual inspection of the results was
essential in correctly aligning all ITC, as two trees were reassigned after this inspection.
Such visual inspection is not doable over large datasets, even if, in our experience, it is
always suggested as it helps in finding macroscopic errors. As mentioned in the
Introduction, a correct choice of the alignment strategy depends on the type of data that
can be used for this purpose. The fact that most of the works in the field of crown
delineation use a different arbitrary method is not ideal. Building an alignment strategy
common to everyone would simplify methods inter-comparison. In analyzing the
literature, it is possible to see that the majority of methods are based either on the
overlapping of the field tree positions with the delineated ITCs (Ene, Næsset & Gobakken,
2012), or on the distance both horizontal (i.e., X and Y) and vertical (e.g., height) (Eysn
et al., 2015; Kandare et al., 2017). In many studies a distance constraint, both vertical
and horizontal is also applied, meaning that a field surveyed tree and an ITC could be
matched only if the distance is lower than a certain value (Kandare et al., 2017). This
constraint is usually applied in studies where the matched information is then used for the
prediction of stem attributes.

The classification task (Task 3) had the most participants and team FEM ranked in
the second place. All the teams properly detected the two-dominant species (PIPA
and QULA) while almost all had problems in detecting minority species (i.e., species with a
low number of training samples). This is a limitation of many other methods proposed
in the literature as many classifiers tend to give priority to highly represented species.
Team StanfordCCB that ranked first place outperformed team FEM in the detection of
PITA and OTHER species while they got the same results for the other species (Marconi
et al., 2018). The fact that the first three teams in the ranking used an approach of data
pre-filtering for either cleaning the training set from noise pixels or to select the most
informative features, tells us that this step is quite important, and it should not be avoided.
It is worth noting that this dataset is a typical example of an imbalanced dataset, where
the ratio between the number of samples of the most frequent class and the number
of samples of the least frequent class is very high (PIPA has 49 times samples more than
LIST class). Many studies have been done on this problem, especially in the machine
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learning community (He & Ma, 2013; Salunkhe & Mali, 2016), and the existing studies
can be classified into four groups: (i) data level approaches: these methods aim to rebalance
the distribution of classes by applying resampling techniques (e.g., under-sampling or
over-sampling) (Chawla et al., 2002); (ii) algorithm level approaches: these methods
modify the existing algorithms in order to handle the imbalanced data (Imam, Ting &
Kamruzzaman, 2006); (iii) cost sensitive learning approaches: these methods
combines the data and algorithm level approaches to gain benefits of both (Peng, Chan &
Fang, 2006); and (iv) classifier Ensemble techniques: these methods combine multiple
diverse classifiers which disagree with each other (Salunkhe & Mali, 2016). All these
approaches should be considered in the future in the ecology community as the imbalance
of the datasets is quite typical in species classification where it is normal to have a forest
with some dominant species and some rare ones.

CONCLUSIONS
In this paper, the results of team FEM of the NEONNIST data science evaluation challenge
were presented. The methods applied were effective as team FEM ranked first in ITC
delineation task (Task 1) and the alignment task (Task 2), and second in the classification
task (Task 3). The delineation method proposed was based on hyperspectral images,
showing that LiDAR data are not always the best data source for ITC delineation.
Importantly, pre-analysis of the available data helped significantly in the choice of the data
to use. Alignment was based on both location and tree characteristics, but what probably
made the big difference was the way this information was used, and the way the
missing information was predicted. Indeed, another team used the same information
obtaining very different results. The classification architecture adopted was quite standard,
and it failed to classify rare species. As a future development, it may be interesting to
combine both hyperspectral and LiDAR information in the crown delineation, and to
consider classifiers especially developed for imbalanced data problems that can improve
the classification of rare species.
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