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ABSTRACT
Comparative genomics based on whole genome sequencing (WGS) is increasingly
being applied to investigate questions within evolutionary and molecular biology,
as well as questions concerning public health (e.g., pathogen outbreaks). Given the
impact that conclusions derived from such analyses may have, we have evaluated
the robustness of clustering individuals based on WGS data to three key factors: (1)
next-generation sequencing (NGS) platform (HiSeq, MiSeq, IonTorrent, 454, and
SOLiD), (2) algorithms used to construct a SNP (single nucleotide polymorphism)
matrix (reference-based and reference-free), and (3) phylogenetic inference method
(FastTreeMP, GARLI, and RAxML). We carried out these analyses on 194 whole
genome sequences representing 107 unique Salmonella enterica subsp. enterica ser.
Montevideo strains. Reference-based approaches for identifying SNPs produced trees
that were significantly more similar to one another than those produced under the
reference-free approach. Topologies inferred using a core matrix (i.e., no missing
data) were significantly more discordant than those inferred using a non-core matrix
that allows for some missing data. However, allowing for too much missing data likely
results in a high false discovery rate of SNPs. When analyzing the same SNP matrix,
we observed that the more thorough inference methods implemented in GARLI and
RAxML produced more similar topologies than FastTreeMP. Our results also confirm
that reproducibility varies among NGS platforms where the MiSeq had the lowest
number of pairwise differences among replicate runs. Our investigation into the ro-
bustness of clustering patterns illustrates the importance of carefully considering how
data from different platforms are combined and analyzed. We found clear differences
in the topologies inferred, and certain methods performed significantly better than
others for discriminating between the highly clonal organisms investigated here. The
methods supported by our results represent a preliminary set of guidelines and a
step towards developing validated standards for clustering based on whole genome
sequence data.

Subjects Bioinformatics, Evolutionary Studies, Food Science and Technology, Microbiology,
Public Health
Keywords Salmonella, Outbreak, Congruence, Phylogenetics, Next generation sequencing,
Single nucleotide polymorphism

How to cite this article Pettengill et al. (2014), An evaluation of alternative methods for constructing phylogenies from whole genome
sequence data: a case study with Salmonella. PeerJ 2:e620; DOI 10.7717/peerj.620

mailto:Errol.Strain@fda.hhs.gov
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.620
http://dx.doi.org/10.7717/peerj.620
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://peerj.com
http://dx.doi.org/10.7717/peerj.620


BACKGROUND
The increasing availability and decreasing costs of next-generation sequencing (NGS)

has made it possible to apply this technique to investigate non-model organisms and

myriad questions within evolutionary and molecular biology. Next-generation sequencing

as a means to acquire whole genome sequences (WGS) has also revolutionized applied

research, where it is now, for example, being employed to investigate issues related

to public health such as pathogenic outbreaks (Lienau et al., 2011; Parkhill & Wren,

2011; Roetzer et al., 2013; Underwood et al., 2013). In this situation, the vastly increased

information content in WGS data provides a genome perspective of differences among

isolates, which can be used to identify gene specific differences associated with virulence

and pathogenicity. The information content within WGS data also provides superior

discriminatory power with which the evolutionary relationships among highly clonal

strains can be inferred. This phylogeny can then be used to identify clinical cases properly

belonging to outbreaks and establish links between clinical and environmental isolates.

Outbreaks have been studied with NGS both retrospectively, as a means to better

understand a past outbreak, and during an outbreak, to aid in real time decision-making.

A well known example illustrating the utility of NGS to investigate a food-borne disease

outbreak is that of the virulent Shiga toxin (Stx)-producing Escherichia coli O104:H4

associated with contaminated sprouts in Germany; NGS data has been used to better

understand differences in virulence (Bielaszewska et al., 2011) and evolutionary relation-

ships (Mellmann et al., 2011) among outbreak and non-outbreak isolates. A number of

recent cases of salmonellosis also have been investigated by clustering isolates based on

SNP (single nucleotide polymorphism) differences identified by WGS data. For example,

two studies, which used data produced on different NGS platforms and using different

bioinformatic methods, unequivocally identified the source of a multistate outbreak

of Salmonella enterica subsp. enterica serovar Montevideo associated with spiced-meat

(Allard et al., 2012; den Bakker et al., 2011). With regards to human diseases, phylogenetic

reconstruction based on WGS data proved useful in the investigation and determination

of the source of Vibrio cholerae associated with an outbreak that occurred in Haiti in 2010

(Chin et al., 2011; Hendriksen et al., 2011; Keim et al., 2011).

Recent studies in the hospital setting illustrate how NGS can contribute to the real-time

management of disease outbreaks. Koser et al. (2012) utilized WGS data to rapidly

investigate an outbreak of methicillin-resistant Staphylococcus aureus (MRSA) within a

neonatal intensive care unit. Such an approach was able to distinguish among isolates that

belonged to a single lineage, which was likely impossible using traditional typing methods.

As a result, NGS data was shown to rapidly (i.e., within a timeframe that could influence

patient health) provide clinically important data (Koser et al., 2012). Health officials

investigating a hospital outbreak of Klebsiella pneumoniae found that using whole-genome

sequencing yielded “actionable insights” by discerning among alternative transmission

routes and, thus, containment of the infection (Snitkin et al., 2012).

The recent publication dates of the studies discussed above illustrate just how new

the use of NGS data within public health is. Given the potential impact of public health

Pettengill et al. (2014), PeerJ, DOI 10.7717/peerj.620 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.620


decisions based on NGS data, the robustness of NGS-based results must be evaluated.

Three factors that may differ within or among studies are (1) the NGS platform on which

the sequences were generated, (2) the method used to detect variant sites and create a SNP

matrix, and (3) the phylogenetic inference method used to cluster samples. With regards

to NGS platform, it is well documented that performance (e.g., error rates and error

structure) differs among them (Harismendy et al., 2009; Loman et al., 2012; Mardis, 2013;

Shendure & Ji, 2008). Although some may argue this is not a significant issue as certain

platforms are no longer maintained or less likely to be used in the future (e.g., SOLiD and

Roche 454), the fact that large amounts of data have been produced under such platforms

means that NGS platform artifacts will need to be accounted for within analyses that

incorporate historical data. The rapid incorporation of NGS data within many disciplines

has produced many bioinformatic tools, all of which may produce different results when

trying to accomplish the same task. For example, comparative studies have shown that

not all de novo assemblers are equal (Bradnam et al., 2013; Magoc et al., 2013; Salzberg

et al., 2012; Zhang et al., 2011) nor are mapping algorithms (Hatem et al., 2013; Ruffalo,

LaFramboise & Koyuturk, 2011) or variant detection algorithms (Cheng, Teo & Ong, 2014).

As for phylogenetic inference, performance comparisons of recently developed maximum-

likelihood methods to handle the large matrices often associated with WGS data show that

those methods do not always produce the same topology (Liu, Linder & Warnow, 2011).

In this study, our objective was to advance the use of WGS data within the public

health realm, and in general, by investigating the robustness of the inferred phylogenetic

relationships to several key factors that can vary among analyses. Here, we define

robustness as the sensitivity of results to differences in the acquisition and analysis of

data. In our case, data acquisition and analysis represent the combination of different

sequencing platforms, SNP detection methods, and phylogenetic inference algorithms; the

results are the inferred topology. We first present the reference-based approach we have

developed to identify SNPs among the WGS data we are routinely producing. We then

quantified the congruence among our method and three other SNP detection methods

(one reference-based and two reference-free) by comparing the topologies produced

with the same phylogenetic inference package. We evaluated the influence of sequencing

platform by determining the degree to which replicate runs of the same strain clustered

together and the number of differences among replicate runs of the same strain on the

same platform. We also assessed the influence of three different phylogenetic inference

methods by comparing topologies created using the same data matrix. These analyses

were performed on a set of Salmonella enterica subsp. enterica Serovar Montevideo isolates

sequenced on five different NGS platforms. Many of the isolates were implicated in an

outbreak of salmonellosis and the evolutionary relationships of a subset of isolates were

investigated within two previous studies (Allard et al., 2012; den Bakker et al., 2011).
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Table 1 Distribution of samples by platform. The number of samples run on both platforms; diagonal
elements contain the number of sequencing runs per platform.

454 HiSeq IonTorrent MiSeq Solid

454 68 0 17 17 0

HiSeq 1 0 0 0

IonTorrent 30 24 6

MiSeq 47 5

Solid 48

MATERIALS AND METHODS
Sequence data
All 194 samples included in this study were downloaded from the SRA archive (Table S1)

from which fastqs or sff files were extracted using the SRA Toolkit v2.1.6. SOLiD SRA

files were converted to colorspace fastq (csfastq). The 194 samples represent 107 unique

strains, 3 of which are Salmonella enterica ssp. enterica serovar Pomona that served as

an outgroup and the others are Montevideo (Table 1). Samples were from one of five

platforms: Illumina MiSeq and HiSeq, Life Technologies IonTorrent, Roche 454 FLX

Titanium, and Applied Biosystems SOLiD. Thirty-two strains were sequenced on more

than one sequencing technology (Table 1 and Table S1). All but the 454 runs for strain

IA 2009159199 are replicates from independent passages (overnight cultures) and, thus,

from different library preparations for sequencing.

In addition to the full dataset of 194 samples, we constructed a dataset containing

only those samples present in Allard et al. (2012). With the Allard dataset (116 runs, 47

strains) our primary focus was on how the conclusions within a traceback investigation

(i.e., linking clinical isolates that sickened people to environmental sources) would differ

under the three factors being considered (i.e., NGS platform, SNP detection method, and

phylogenetic inference method). The conclusions based on NGS data within that study are

also supported by epidemiological data.

Given that we analyzed empirical data, we do not know the true evolutionary relation-

ships among the individuals. However, we do have replication of a number of isolates and,

therefore, have expectations for how those isolates should cluster (i.e., be monophyletic)

and the number of SNP differences that should exist among them (i.e., zero). For analyses

comparing topologies (see below), we were not able to determine the accuracy of the

methods but rather focused on the variance among methods where we were working under

the assumption that methods that produced more similar trees are superior to methods

that result in different topologies.

Variant detection methods
We investigated the performance of four different SNP detection methods, which can

be broadly separated into reference-based and reference-free. The primary difference

between the two types is that reference-based methods use a genome, either a closed or
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Figure 1 Workflow describing the analyses conducted in this study. Dotted boxes highlight the four
effects (sequencing platform, SNP detection method, and phylogenetic inference) that are accounted for
at that step in the process. The platforms and methods we currently use in our investigations are in bold
italic font.

draft assembly, to which reads are mapped and variant positions are called. In contrast, the

reference-free approach determines variant sites in the absence of a reference genome by

comparing portions (e.g., k-mers) among all samples.

Reference-based methods
For the reference-based methods we used the closed genome of strain 507440-20 that was

sequenced on the PacBioRS II (Pacific Biosciences, Menlo Park, CA, USA) and assembled

using SMRT Analysis v2.0.1 (Genbank ID CP007530.1). We chose this as the reference

genome as it represented the closest Montevideo environmental strain to the outbreak

(Allard et al., 2012). Raw reads from each sample were mapped to the reference genome

using default settings within Bowtie2 v2.1.0 (Fig. 1) (Langmead & Salzberg, 2012). SOLiD

data was mapped using Bowtie v1.0.0 (Langmead et al., 2009), which has the ability to

handle colorspace data. There are many other mappers that could be used but we chose not

to evaluate mappers as their performance has been evaluated elsewhere (Hatem et al., 2013;

Ruffalo, LaFramboise & Koyuturk, 2011). We then used samtools v0.1.18 (Li et al., 2009) to

sort the BAM file from Bowtie and produce a pileup file for each sample.

Under our method, the resulting pileup files from samtools are processed using

VarScan2 v2.3 (Koboldt et al., 2012) to identify high quality variant sites using the
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mpileup2snp option, which are stored in individual .vcf files. We used the default values for

variant detection except the minimum variant allele frequency was set to 0.90. As a result,

we refer to this method as VarScan. We used a custom python script to parse the .vcf files

and construct a SNP matrix, which included two steps. First, a ‘snplist’ file is generated by

identifying all variant sites across the individual .vcf files, which represents all the positions

that will make up the SNP matrix. Second, for each sample an additional pileup file is

generated that contains only those positions found in the ‘snplist’ file. It is from these

second pileup files that we determine the nucleotide state for each position in SNP matrix.

Determining the state of each position in the snplist file is based on the following rules:

(a) if different nucleotides were called at the position, the one with frequency larger than

50% was the consensus call for that position but this threshold can be altered to match

a different user defined value; and (b) if different nucleotides were called at a position

but none had a frequency larger than 50%, that position for that individual was coded as

missing data. Positions identified as indels in the .vcf file were ignored in the construction

of the SNP matrix. Additional information (e.g., our code and instructions) is at https://

github.com/CFSAN-Biostatistics/snp-pipeline.

To evaluate the sensitivity of our reference-based method, we also constructed SNP

matrices using the variant detection algorithm implemented in SolSNP v1.11 (Fig. 1)

(Robbins et al., 2011). Like our own method, reads were mapped to a closed reference using

Bowtie1 or Bowtie2. However, in contrast to our method that uses VarScan, the resulting

bam files were then processed with SolSNP, which uses a Kolmogorov–Smirnov statistic as

a distance measure to call the most likely nucleotide state with respect to the reference. The

resulting .vcf files were parsed using our python script to construct the SNP matrices for

downstream phylogenetic analyses. All SolSNP analyses were conducted using the default

parameters.

For the reference-based methods, in addition to the all matrix that consists of all SNPs

discovered in the analysis that had 0.7%–0.8% missing data (Table 2), we constructed

a core matrix that consisted of only those SNP positions for which every sample had a

nucleotide called (Fig. 1).

Reference-free methods
We used the program kSNP v2.0 (Gardner & Hall, 2013) to produce SNP matrices without

using a reference sequence. kSNP uses a k-mer approach to identify homologous single

nucleotide polymorphisms among a group of individuals. Briefly, the program uses

jellyfish (Marcais & Kingsford, 2011) to index all draft genomes into k-mers and SNPs

are identified using MUMmer (Kurtz et al., 2004). Although we are aware of at least one

other k-mer based approach, it requires paired-end data (Schwartz et al., 2013).

We used kSNP on two different treatments of the sequence data. Under the first we

used filtered fastq files; reads were filtered using seqtk (https://github.com/lh3/seqtk),

which masked bases with Q-scores <20. Under the second treatment, we performed

de novo assemblies that were then used as the input for kSNP. We chose an assembler

that was well suited for the sequencing platform from which the reads came, which was

CLC Genomics Workbench 6.0.5 (CLC Bio, Cambridge, MA, USA) for the Illumina,
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Table 2 SNP matrix characteristics. Summary of the differences across the SNP detection methods by
matrix (Core, All, 50%) in terms of the number of SNPs, percent missing data, and number of identical
sequences.

SNP detection Method Matrix Number of SNPs Missing Nidentical
b

Reference-based VarScan Core 8,056 na 114

All 49,307 0.7% 1

SolSNP Core 7,179 na 123

All 45,388 0.8% 2

Reference-free kSNP de novo Corea 0 na na

50% 51,261 11% 0

All 73,236 37% 0

kSNP raw Core 749 na 135

50% 54,157 11% 1

Alla 2,990,475 96% 0

Notes.
na, not applicable.

a Not analyzed.
b Number of identical sequences within the matrix.

SOLiD, and IonTorrent data and Newbler v2.6 for the 454 data. As was the case with the

mapping software under the reference-based approach, our objective here was not to

evaluate multiple de novo assemblers as that has been done elsewhere (Magoc et al., 2013;

Salzberg et al., 2012; Zhang et al., 2011). In both kSNP analyses, the k-mer size was set to 25.

For both the de novo and raw read approaches, three SNP matrices were produced,

an “all” matrix, a “majority” matrix, and a “core” matrix. The all and core matrices are

as defined for the reference-based methods. The majority matrix contained only those

positions in the all matrix for which at least 50% of samples had a nucleotide base called.

With the de novo approach, the core matrix had 0 nucleotides present (likely due to

missing data associated with the poorer assemblies; Fig. 2) so we only analyzed the all

and majority matrix under that approach. The all matrix constructed with the raw reads

had 96% missing data and contained 2,990,475 positions (Table 2), which does not seem

biologically reasonable as it suggests that nearly 66% of the genome contains variable

positions. As a result, we do not perform any of the subsequent analyses on this matrix.

Analyses of replicate runs
Within each matrix, we calculated the proportional pairwise number of SNP differences

among replicates of a strain run on the same NGS platform. Analyses were conducted using

the dist.dna function within the ape package (Paradis, Claude & Strimmer, 2004) in R (R

Development Core Team, 2011)

We used the genealogical sorting index (gsi) (Cummings, Neel & Shaw, 2008) to quantify

the degree to which replicate runs of the same strain clustered together, which provides

insight into the robustness of the phylogenetic relationships to differences in sequencing

platform and bioinformatic approaches. The gsi varies from 0 (a completely random

assortment of individuals from the same group (e.g., strain) on the tree) to 1 (replicates
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Figure 2 Characteristics of sample reads by platform. (A) Average number of reads produced, (B)
percent of reads mapped to the reference sample, (C) the number of contigs within the assembly,
(D) total number of basepairs assembled; dashed red line represent the bps in the reference, and (E)
the N50 of the assembly. Boxes depict the interquartile (IQR) range and whiskers indicate 1.5 IQR;
the horizontal black line represents the mean. The IonTorrent platform is abbreviated as IonT. Points
represent observed values; points were also offset from one another (‘jittered’) to reduce overlap. See
Table 1 for sample sizes per NGS platform.
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are reciprocally monophyletic). Generally speaking, the gsi is based on the number of

nodes uniting all individuals from the same group divide by the observed number of

nodes uniting those members. We calculated the gsi statistic for two different cases: (1) all

replicates of a given strain comprise a single group and (2) replicates run on the same

platform comprise a group. We chose these two groupings because they allowed us to

characterize, as best we could given the dataset, the influence of within and between

platform variation. To account for phylogenetic uncertainty, we estimated the weighted

gsi value under which 100 bootstrap replicates for each matrix (e.g., VarScan, kSNP de

novo) by phylogenetic inference comparison were analyzed.

Phylogenetic analysis
Topologies based on each of the matrices created under the different SNP detection

methods were created using three phylogenetic inference methods (FastTreeMP (Price,

Dehal & Arkin, 2010), GARLI (Zwickl, 2006), and RaxML (Stamatakis, 2006)). Each of

the three methods uses a different approach to increase computational feasibility when

analyzing large matrices. When evaluating the robustness of the results to different SNP

detection methods or NGS platforms, we only compared topologies produced using the

same phylogenetic inference method. To assess the robustness of results to differences in

phylogenetic inference method, we only compared topologies constructed with the same

SNP matrix.

For the FastTreeMP v2.1.7 analyses, we used the -gtr -nt -cat 4 flags; analyses were

run on a single desktop machine with dual 2.93 GHz 6-Core Intel Xeon processors and

48 GB of shared RAM. We used phylip’s seqboot (Felsenstein, 1989) option to produce 100

bootstrap replicates of the dataset, each of which were then analyzed with FastTreeMP

as was done with the non-bootstrapped dataset. Given that the other two methods

were carried out conducting traditional non-parametric bootstrapping we thought it

appropriate to do the same with FastTreeMP rather than rely on the SH-like local support

values that program can also produce. We used the default parameter setting for the GARLI

v2.0 analyses including the GTR + I + Γ. We ran 100 replicate GARLI analyses for each

of the observed matrices, and present the topology with the best likelihood score to which

support values based on 1,000 bootstrap replicates were added. GARLI analyses were

performed on a high performance computer within the FDA’s Scientific Computing Lab;

batches of up to 20 runs were performed simultaneously on this resource where compute

nodes contain 8 Intel Xeon 2.67 GHz processors and 24 GB of shared RAM. For RAxML

v7.9.1, we used raxmlHPC-PTHREADS-AVX, the -m GTRCAT flag, and -b flag to perform

1,000 non-parametric standard bootstrap replicates; analyses were run on a Linux machine

with 32 Intel Xeon 2.00 GHz processors and 64 GB of shared RAM.

Topological congruence
We quantified the congruence among topologies using the symmetric difference statistic

(Steel & Penny, 1993) (i.e., the Robinson–Foulds distance, Robinson & Foulds, 1981)

implemented in the phangorn package (Schliep, 2011) in R. The symmetric difference

statistic is twice the number of internal nodes that differ in their branching between two
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trees. Our interpretations of the symmetric difference statistic are based on the assumption

that methods or matrix types that result in similar topologies are superior to those that

do not. As was the case with the gsi analyses, to account for phylogenetic uncertainty, we

calculated the symmetric difference between all pairwise comparisons of 100 bootstrap

replicates (e.g., pairwise comparisons between 100 GARLI bootstrap replicates of the

VarScan and kSNP de novo matrices).

RESULTS
Mapping and de novo assembly summary statistics
Although the number and lengths of reads varied greatly among the platforms, at least 50%

of the reads could be mapped for all but a few samples (Fig. 2). The number of contigs and

N50 values varied among platforms but for the majority of the samples, except perhaps the

SOLiD runs, the length of the assemblies were close to the expected 4.5 Mbp genome size of

an S. Montevideo (Fig. 2). These mapping and assembly summary statistics are promising

in that they suggest that similar amounts of data can be extracted from runs on different

platforms.

Platform effects
To characterize platform variability, we examined replicate runs of the same sample se-

quenced on the same platform (Fig. 3). Ideally these replicates would have no proportional

pairwise differences and be identical. In reality we found that the 454 platform had the

greatest number of differences, followed by Ion Torrent, and then by MiSeq. This pattern

was generally consistent across the different variant detection methods except for the kSNP

de novo datasets where IonTorrent replicates were more different from one another than

on the 454 platform. (The SOLiD platform had no replicate runs and was not assessed.)

We note that many of the replicate samples are not pure platform replicates, but were

from independent cultures often performed at different labs, which means our observed

differences are not just due to platform variability.

To examine the effect of platform on clustering, we computed the weigthed gsi with

classes assigned by strain and with classes assigned by the combination of strain and

platform. Regardless of matrix type and SNP detection method, the strain replicates did

not cluster together and, thus, gsi values for many strain classes were <1 (Fig. 4). When

classes were defined by the combination of strain and platform, there was a much higher

average gsi score. This implies that replicates do cluster together more reliably when run

on the same platform. However, despite the differences in reproducibility and gsi values

between the classes, we did not find evidence to suggest that there is a strong platform effect

when clustering (e.g., clades were not found consisting of only samples run on a single

platform; Fig. S1).

Matrix size effects
Our results indicate that a matrix that accepts some level of missing data, while not

including all sites for which only a few samples have nucleotides states, is optimal for

phylogenetic inference. For example, topologies created using core matrices within which
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Figure 3 Proportional number of SNP differences between replicate runs of the same strain on the
same platform across the different matrices investigated. Boxes depict the interquartile (IQR) range
and whiskers indicate 1.5 IQR; the horizontal black line represents the mean.

Pettengill et al. (2014), PeerJ, DOI 10.7717/peerj.620 11/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.620


Figure 4 Boxplots of gsi values for the different topologies inferred and different groupings. Boxes
depict the interquartile (IQR) range and whiskers indicate 1.5 IQR; the horizontal black line represents
the mean. Points represent observed values; points were also offset from one another (‘jittered’) to reduce
overlap. See Table S2 for the number of representatives under each grouping.
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Figure 5 Violin plots of changes in the symmetric differences statistics across SNP matrices. Figures
show the kernel density estimate of the symmetric differences, broken down by three factors (1. phy-
logenetic inference package, 2. type of comparison, and 3. type of matrix). Individual observations are
omitted due to the large number of them.

there is no missing data had a greater degree of topological incongruence (Fig. 5), greater

number of identical sequences (Table 2), and poorer phylogenetic resolution (Fig. 6) when

compared to topologies inferred with non-core matrices. However, the all SNP matrix

created using the reference-free method with de novo assemblies had approximately 20,000

more SNPs compared to the majority matrices under the reference-free approaches and

the all matrices under the reference-based methods, which is an increase in matrix size

of approximately 30%. Although some of these additional SNPs may be due to mobile

elements/gene presence–absence, it is also likely that many of them are erroneous, which

may explain the decrease in bootstrap support despite the larger matrix when compared to

the de novo majority matrix (Fig. 6). An additional explanation for the decreased support

is that the larger matrices also have more missing data that may increase phylogenetic

uncertainty (Roure, Baurain & Philippe, 2013). The higher proportional differences

among replicates observed in this matrix also suggests that the additional SNPs may be

erroneous and, thus, such matrices should be avoided (Fig. 3). In conclusion, within a

reference-based approach, it is probably optimal to use all SNP sites detected rather than

cull positions with missing data; for a reference-free approach the threshold of missing data

that results in optimal information content is more complicated and depends, in part, on

the evolutionary breadth of the samples being investigated.
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Figure 6 Phylograms inferred with RAxML under each of the different matrices created either using a reference-free or reference-based
approach. Red circles represent bootstrap support values greater than 0.85.
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Differences due to SNP detection method
The proportion of SNP differences among replicate samples run on the same platform var-

ied, although not substantially, across the matrices created under either the reference-free

or reference-based approach (Fig. 3). Given that all methods are (1) working with the same

raw reads and (2) either the same assemblies or bam files for kSNP de novo and reference

based approaches, respectively, these differences are predominantly due to the differences

in algorithms used to identify variant sites.

The method used to construct the SNP matrix had a significant effect on the degree

of congruence among trees (Figs. 5 and 7). For example, trees constructed using a

reference-based method were more similar to one another (i.e., had a lower symmetric

difference score) than those produced under a reference-free approach or when comparing

trees created under the different methods.

Phylogenetic inference method
For both the reference-free and reference-based approaches there was greater topological

congruence when comparing a tree produced under RAxML and GARLI than when

either of the trees produced under those methods were compared to one inferred with

FastTreeMP. For example, more topological rearrangements are required to reconcile

FastTreeMP trees with either GARLI or RAxML (Fig. 7). As we do not know the true

topology, we note that when comparing the different inference methods we are working

under the assumption that methods that result in similar topologies are optimal. This also

means that we cannot assess the accuracy of the methods but, rather, we are estimating the

variance among the topological differences they produce.

Allard et al. (2012) samples
To explore the consequences of differences observed among topologies as a result

of a combination of NGS platform and SNP detection method within an outbreak

scenario, we pared down the dataset to include the 116 runs that represented only the

47 strains present in Allard et al. (2012). Here, we refer to outbreak isolates as those

whose phylogenetic placement clusters them with the clinical samples from infected

individuals and non-outbreak samples are those whose topological placement is outside

of the cluster containing the focal clinical samples. We focused on whether outbreak

runs clustered together; if they did, that would provide support that significant patterns

related to outbreak investigations are robust to combining runs across different sequencing

platforms and using different SNP detection and/or phylogenetic inference packages.

When using RAxML or GARLI to infer a topology, the VarScan, SolSNP, kSNP de novo

and kSNP raw matrices constructed with the Allard et al. (2012) dataset resulted in strong

support (100 to 81 BP (bootstrap probability); Table 3) differentiating non-outbreak

from outbreak isolates that were consistent with the results of that study (Fig. 8). The

de novo reference-free approach had the lowest level of bootstrap support among both

the GARLI (BP = 81) and RAxML (BP = 91) trees. The results using FastTreeMP were

only congruent with the previous results when analyzing the kSNP de novo, kSNP all

and VarScan core matrices, the latter two had low support (≤65 BP) (Table 3; Fig. S2).
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Figure 7 Violin plots illustrating the differences among inference programs. Figures show the kernel
density estimate of the symmetric differences and topologies are based on the same matrix but different
inference methods for both the full 194 sample dataset and for the pared down Allard dataset.

Interestingly, we found that both reference-based all matrices had six fixed SNP differences

that differentiated the outbreak and non-outbreak clades; there was only a single fixed

SNP difference within the reference-free majority matrices. The difference between the two

methods is due to the exclusion under the reference-free approach of SNPs that are within

the k-mer distance of one another (i.e., 25 bp).

DISCUSSION
Although the performance of NGS platforms and the requisite analysis software has been

evaluated, those evaluations were often done focusing on a single step in the process
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Figure 8 Topologies inferred with RAxML on matrices that had been pruned to only include strains
present in Allard et al. (2012). Tips are color-coded based on whether the strain was called as part of the
outbreak (red circles) or not part of the outbreak (gray circles).
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Table 3 Bootstrap support values under each phylogentic inference method and SNP matrix for the
bifurcation differentiating outbreak from non-outbreak samples in the Allard et al. (2012) dataset.

Matrix RAxML GARLI FastTree

VarScan 93 99 na

VarScan core na na 55

SolSNP 98 97 na

SolSNP core na na na

kSNP de novo 91 81 83

kSNP de novo all na na 65

kSNP raw 100 94 na

kSNP raw core na na na

Notes.
na, not applicable.

(e.g., mapping, de novo assembly, or phylogenetic inference). Here, we have considered

the entire process from the sequence platform to phylogenetic clustering. Examination of

the full process is important in elucidating best practices to increase the consistency and

accuracy of such analyses. We found that within each of the three factors we evaluated there

were differences in the results produced and, thus, were able to identify some guidelines for

how NGS data should be analyzed for the purpose of clustering.

Variability among NGS platforms
Ideally, different next-generation sequencers would produce identical nucleotide sequences

when provided with the same sample. Unsurprisingly however, differences in the chemistry

and engineering of different platforms mean they do not agree exactly, but have different

error rates and error structure. For example, studies of “benchtop” NGS platforms have

repeatedly found that the MiSeq has the lowest single-base error rate followed by Roche’s

454 GS Junior followed by the Ion Torrent PGM (Junemann et al., 2013; Loman et al., 2012;

Quail et al., 2012); unlike the MiSeq, homopolymer-associated indel errors were an artifact

of the latter two platforms (Loman et al., 2012). SOLiD, with much smaller read lengths

than the other platforms investigated, had the lowest sequencing accuracy, lowest coverage

rate, and highest false-positive rate when compared to Roche 454 and Illumina GA data

(Harismendy et al., 2009).

Given the differences between NGS platforms, we must ask if the differences are

significant enough to obscure the relationships among individuals. From our analysis

of sequencing runs of the same strain carried out on different platforms and labs, it is

clear that replicate runs were not identical (Fig. 3) and, consequently, replicates did not

always result in a monophyletic clade (Fig. 4). However, replicates of a strain sequenced

on the same platform were more likely to represent such a clade (Fig. 4). And although

replicates did not always cluster together they were not likely to be found in different

strongly supported clades. These results suggest that it would be ideal to analyze samples

sequenced on a single NGS platform but that platform variation is unlikely to result in

strongly supported erroneous relationships.
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Reference-free vs. reference-based approaches
The analysis of WGS is non-trivial, and there are a number of possible approaches that

exist. Here we focused on one possible way that such data could be used: to identify

variant sites to construct a SNP matrix from which a phylogeny could be inferred. Some

of the approaches (e.g., Mauve; Darling, Mau & Perna, 2010) that can accomplish this

are applicable for smaller data sets as they are based on whole genome alignments and

were not considered here as we wish to construct a SNP matrix and a resulting phylogeny

for 100 s–1000 s of runs. We considered a number of methods that are suitable for large

datasets (i.e., reference-free and reference-based) and, therefore, likely represent those

most likely to be employed in future studies.

We use a reference-based method in our outbreak investigations because it was assumed

to have lower false-discovery rate and naturally excludes variants within the mobilome

(e.g., prophages and plasmids), which the results presented here support. However, the

primary drawback of a reference-based method is that it will fail to detect SNPs within a

region shared among non-reference samples but that is absent in the reference genome

either due to using a reference whose genome has not been closed (e.g., an incomplete draft

assembly) or the genomic region actually being absent in the reference. In contrast, the

reference-free approach will detect SNPs within regions missing from a subset of the runs

(depending on the percent presence threshold). This additional detection ability comes at

the cost of having to decide what threshold of missing data one should use; we used the

50% majority but other values could include the percent of the dataset that represents the

ingroup samples. Without a threshold on the percent of missing data, the reference-free

approach may have a much higher false-discovery rate most likely due to sequencing error

(e.g., jackpot mutations; (Kraytsberg & Khrapko, 2005)), which is well illustrated by the

all matrix using raw reads having approximately three million basepairs. However, even

when minimizing the number of false positive SNPs in the matrix through a threshold, the

reference-free method still produced more incongruent trees than the matrices constructed

with the reference-based methods (Fig. 5).

Phylogenetic inference
The three phylogenetic inference methods we evaluated did not produce the same

topology when analyzing the same SNP matrix (Fig. 7). However, many of the topological

differences were likely among poorly supported clades (Fig. 5). The topologies produced

with RAxML and GARLI did recover the general clustering pattern that differentiates

outbreak from non-outbreak isolates more frequently than FastTreeMP. This result is

consistent with previous work (Liu, Linder & Warnow, 2011) indicating that RAxML

has higher accuracy than FastTreeMP. (This does come with a speed trade-off. For the

194 sample dataset with approximately 50,000 bp per sample analyzed here, a phylogeny

could be inferred with FastTreeMP in a matter of minutes and for RAxML and GARLI

it was on the order of hours and days, respectively, to obtain a topology and bootstrap

replicates.) RAxML and GARLI topologies were fairly congruent with one another for
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strongly supported branch-points. As a result, for closely related organisms like those

studied here there may be a real cost in using faster but less thorough search algorithms.

An important aspect of our phylogenetic analyses is that the substitution models we

employed may not be optimal for the types of matrices we were analyzing within which

every site is variable. To our knowledge there have been few studies investigating the effects

of applying traditional nucleotide substitution models to such matrices. One such study

found that under the GTR + Γ model, phylogenetic accuracy decreased when invariant

sites were excluded (Bertels et al., 2014). Although these SNP matrices may be better

modeled as binary data to which the Mk or Mkv models (Lewis, 2001) could be applied.

However, that model is computationally demanding and may not be well suited for the

large matrices associated with WGS data; it also has a number of assumptions that SNP

matrices likely violate (e.g., an infinite sites model and equal substitution rates between

states). Within the RAxML package, the ASC GTRGAMMA option which models no

invariant sites and, thus, may be appropriate but that model also corrects for ascertainment

bias, which is not appropriate for the matrices we constructed. Given this potential for

model misspecification, an avenue of future research that would strengthen the robustness

of inferring phylogenies from SNP matrices would be to determine the consequences of

model violations and the development of more appropriate nucleotide substitution models

for such matrices

Signal vs. noise
We have evaluated the robustness of topologies to a number of factors that may differ

among analyses on a particularly vexing group of samples that are highly clonal and very

closely related. Within the original analyses describing the relationships among 47 of the

strains, there were only five unique SNP differences between outbreak and non-outbreak

isolates (Allard et al., 2012). Within this study the reference-based non-core matrices had

six fixed SNP differences while the reference-free approaches had only one. This raises the

question of whether there is the possibility that within the current study noise, either due

to sequencing errors, variation in SNP detection method, and/or phylogenetic inference,

would render impossible our ability to recover the outbreak/non-outbreak structure. Such

issues are less likely to arise when investigating a greater degree of evolutionary divergence

assuming that a sufficient number of homologous sites can be identified since there will

be many more real SNP differences and, thus, a single topology is likely to emerge from

different methods. However, due to a number of issues (e.g., lack of a suitable reference

genome and difficulties detecting k-mers present in all samples) there will also be an

upper bound to the evolutionary breadth of relationships that can be investigated with the

methods we have evaluated.

The results presented here indicate it is possible to recover the outbreak structure

in a dataset of this type, but care should be taken when deciding on the methods to

employ. Methodological choices include: (1) deciding to combine data from different

NGS platforms, (2) choosing a method to use for identifying variants, and (3) choosing

what phylogenetic inference method should be used. Our results suggest good options
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for each of these choices and indicate that they allow detection of the biological outbreak

signal even among these closely related samples. For example, we found strong bootstrap

support for the differentiation of outbreak and non-outbreak samples results when

using the non-core matrices constructed using a reference-based method and inferring

a phylogeny with either RAxML or GARLI (Table 3). Although we did not evaluate it here,

we note that care should also be taken regarding the choice of a reference, as there are a

number of studies that have found that topological accuracy and the number of erroneous

SNPs detected depends on the reference chosen (Bertels et al., 2014; Pightling, Petronella &

Pagotto, 2014).

CONCLUSIONS
The robustness of phylogenetic inference to data acquisition and analysis methodology

is critically important in many studies (e.g., traceback investigations, systematics,

and phylogeography). Our results illustrate how topologies may differ depending on

methodological approaches employed—a particularly important issue when investigating

closely related samples. Our results also show that good methods do exist that provide

robust results when attempting to differentiate between outbreak and non-outbreak

samples. For example, the best choice appears to be the use of a reference-based approach

allowing for some missing data in the matrix and constructing trees using a thorough

inference program. We believe that these general conclusions are likely to be observed

across different datasets (e.g., within other taxonomic groups and across a range of genome

complexity) than the one investigated here and future studies will reveal whether that

assumption is correct.

This work represents our ongoing efforts to build, characterize, and validate our

WGS methodology and pipeline for food-borne outbreak investigations. The questions

we address are applicable to many in the WGS analysis community, and we hope that

the results presented here will contribute to the establishment, through additional

investigations, of well-defined pipelines for clustering based on WGS data.
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