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ABSTRACT
Tropical landscapes are changing rapidly due to changes in land use and land
management. Being able to predict and monitor land use change impacts on species
for conservation or food security concerns requires the use of habitat quality metrics,
that are consistent, can be mapped using above-ground sensor data and are relevant for
species performance. Here, we focus on ground surface temperature (Thermalground)
and ground vegetation greenness (NDVIdown) as potentially suitable metrics of habitat
quality. Both have been linked to species demography and community structure in
the literature. We test whether they can be measured consistently from the ground and
whether they can be up-scaled indirectly using canopy structure maps (Leaf Area Index,
LAI, and Fractional vegetation cover, FCover) developed from Landsat remote sensing
data. We measured Thermalground andNDVIdown across habitats differing in tree cover
(natural grassland to forest edges to forests and tree plantations) in the human-modified
coastal forested landscapes of Kwa-Zulua Natal, South Africa. We show that both
metrics decline significantly with increasing canopy closure and leaf area, implying a
potential pathway for upscaling bothmetrics using canopy structuremaps derived using
earth observation. Specifically, our findings suggest that opening forest canopies by 20%
or decreasing forest canopy LAI by one unit would result in increases of Thermalground
by 1.2 ◦C across the range of observations studied. NDVIdown appears to decline by 0.1
in response to an increase in canopy LAI by 1 unit and declines nonlinearly with canopy
closure. Accounting for micro-scale variation in temperature and resources is seen as
essential to improve biodiversity impact predictions. Our study suggests that mapping
ground surface temperature and ground vegetation greenness utilising remotely sensed
canopy cover maps could provide a useful tool for mapping habitat quality metrics that
matter to species. However, this approach will be constrained by the predictive capacity
of models used to map field-derived forest canopy attributes. Furthermore, sampling
efforts are needed to capture spatial and temporal variation inThermalground within and
across days and seasons to validate the transferability of our findings. Finally, whilst our
approach shows that surface temperature and ground vegetation greenness might be
suitable habitat quality metric used in biodiversity monitoring, the next step requires
that we map demographic traits of species of different threat status onto maps of these
metrics in landscapes differing in disturbance and management histories. The derived
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understanding could then be exploited for targeted landscape restoration that benefits
biodiversity conservation at the landscape scale.

Subjects Ecosystem Science, Climate Change Biology, Forestry, Spatial and Geographic
Information Science
Keywords Coastal forests, Forest edges, Eucalyptus plantations, Ground surface temperature,
NDVI, Habitat microclimate, Fragmented landscapes, South Africa, Remote sensing, Thermal
mapping

INTRODUCTION
In increasing parts of the tropics, landscapes are experiencing anthropogenic loss and
degradation of natural habitats, including primary forests, woodlands, and grasslands. The
outcomes are landscape mosaics that comprise patches of natural habitat and regrowth,
tree plantations and croplands of differing extents and management intensities. The
subsequent erosion of biodiversity in these landscapes (Gibson et al., 2011) is an important
global challenge for biodiversity conservation as well as climate change mitigation and
food security (Godfray et al., 2010). Natural habitats deliver carbon storage, hydrology
and microclimate regulation services and supply resources used in construction, energy
generation and trade. They typically harbour more species (Gibson et al., 2011) and more
threatened species (Pfeifer et al., 2017) compared to plantations or croplands.

However, the fate of individual species following land use and management changes are
difficult to predict for at least three key reasons. First, we lack detailed knowledge on habitat
and resource needs at landscape scales for many species, in particular in the tropics. Second,
many models ignore that species perceive landscapes as continuous gradients in habitat
quality and resource availability rather than as discrete categories of usable and unusable
habitat (but seePfeifer et al., 2017). Third,we lack common indicators characterising habitat
quality, which so far has beenmeasured through various structural attributes characterising
habitats or impacts on species’ demographic traits (Chaplin-Kramer et al., 2015). Calls for
standardised landscape metrics describing continuous variations in habitat quality to
improve our ability to predict species responses to land use changes at the landscape
scale are increasing (Mortelliti, Amori & Boitani, 2010; Pfeifer et al., 2017). Remote sensing
has been advocated in the biodiversity literature as an ideal tool to obtain such metrics
(Pettorelli et al., 2016), providing land surface data that are consistent, borderless, global
and can be repeated across time. However, existing remote sensing derived metrics tend to
focus on biomass or canopy vegetation productivity, which show inconclusive relationships
with habitat attributes that matter to species.

In contrast, temperature variation within forest stands and vegetation growth on
the forest floor have been linked to species performance and community structure.
Temperature is a key driver for the growth, survival, and abundance of species, and in
particular insects (Bale et al., 2002). Temperature can control species interactions (Rae
et al., 2006; Hemmings & Andrew, 2017), community composition and diversity with
reports of shifts in the abundance of insect species tracking fluctuations in ground surface

Pfeifer et al. (2019), PeerJ, DOI 10.7717/peerj.6190 2/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.6190


temperature (Thermalground) (Retana & Cerdá, 2000). Climate effects on physiology and
survival are also among the key hypothesised drivers of altitudinal migration among
tropical bird (Barçante, Vale & Maria, 2017) and bat (Mcguire & Boyle, 2013) communities.
The productivity of the ground vegetation, which in forested stands constitutes the
herbaceous layer, is also likely to play an important ecological role for species (Gilliam,
2007). Ground vegetation growth, here measured as the normalised difference vegetation
index of the ground vegetation (NDVIdown), mediates nutrient fluxes, produces short-lived
aboveground biomass and provides resources to ground-dwelling organisms (Bromham et
al., 1999; Stork & Grimbacher, 2006).

Forest canopy structure can be up-scaled from plots and mapped using remote sensing
data (Hadi et al., 2017; Pfeifer et al., 2012; Pfeifer et al., 2016). For example, forest leaf area
index, LAI, and fractional vegetation cover, FCover, measured in a forest landscape in
Borneo showed mathematical relationships with satellite-derived spectral and texture
information, which allowed mapping LAI and FCover for each pixel in the landscape
(Pfeifer et al., 2016). Forest canopies are also mechanistically linked to both temperature
and ground vegetation productivity through their effects on radiation fluxes within forest
stands (Deardorff, 1978). Forest canopy structure modulates air temperature within forests
(Hardwick et al., 2015; Von Arx, Dobbertin & Rebetez, 2012) and growth of the herbaceous
layer (Royo et al., 2010; Shirima et al., 2015). Canopy cover insulates against temperature
extremes and macroclimatic changes (Suggitt et al., 2011), while changes in canopy cover
are expected to underlie temperature changes along gradients of forest degradation (Blonder
et al., 2018), along forest edges (Didham & Lawton, 1999; Ewers & Banks-Leite, 2013), and
with forest conversion to other land uses (Hardwick et al., 2015;Meijide et al., 2018). Using
canopy structure maps with statistical models describing relationships between canopy
structure and NDVIdown and Thermalground should hence provide an indirect way to
upscale and map NDVIdown and Thermalground at landscape scale.

A key challenge for upscaling NDVIdown and Thermalground using canopy structure
maps is to test whether general rules exist linking vegetation canopy structure to changes in
Thermalground andNDVIdown. Here, we focus onThermalground andNDVIdown as indicators
of habitat quality in coastal human-modified landscapes of Kwa-Zulu Natal, South Africa.
We test for habitat quality variation along gradients of tree cover from 0 (grassland) to
>50% (natural coastal forests and Eucalyptus timber plantations) and measure across
edges separating forests from other habitats. We test the following three main hypotheses:
Thermalground increases with NDVIdown based on the mechanistic understanding that
vegetation acts as heat and water reservoir (Matthews, 2005). NDVIdown declines with
increasing canopy closure, leaf area and canopy greenness (NDVIup) due to decreases in
light availability on the forest floor hampering ground vegetation growth. Thermalground
declines with increasing FCover and LAI, as both not only act to filter out sun light but also
prevent vertical mixing of air below the vegetation canopy (Hardwick et al., 2015). If our
expectations on relationships between vegetation canopy structure and Thermalground as
well as NDVIdown hold, this would provide a suitable way to develop upscaling algorithms
forThermalground andNDVIdown in tropical landscapes based onmapping canopy structure.
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MATERIAL AND METHODS
Study area
Fieldwork was implemented in the KwaZulu-Natal province of South Africa between
April 7th and April 22nd 2018 (Fig. 1). We concentrated our field campaigns on the coastal
landscapes, which comprise fragments of coastal forests remaining after long-termhistorical
and recent forest loss (Olivier, Van Aarde & Lombard, 2013), large tree plantations, small
patches of natural grasslands and croplands. The forests represent the southernmost
end of East African Tropical Coastal Forest which extends from tropical central Africa
along the east African coast (Burgess, Clarke & Rodgers, 1998). They occur within the
Maputaland-Pondoland-Albany biodiversity hotspot and the Maputaland Centre of Plant
Endemism (Wyk & Smith, 2001), which support high levels of floristic endemism as well
as a number of narrowly endemic species, including relict species. The climate of the study
region is humid and sub-tropical with annual rainfall averaging 977 ± 149 mm year−1

and annual air temperature averaging 21.6 ± 1.0 ◦C (Worldclim data published by Fick &
Hijmans, 2017).

Data collection and processing
We sampled 35 plots for habitat quality attributes, i.e., measuring Thermalground using an
Optris PI450 Thermal Imaging Camera (382 × 288 Pixels, 29◦ lens angle, 0.04 K thermal
resolution, 7.5–13 µm spectral range) and NDVIdown as normalised difference vegetation
index (NDVI) using a MAPIR camera (MAPIR; Peau Productions Inc., San Diego CA, US)
with filters for the Red (660 nm) and Near-Infrared (850 nm) parts of the electromagnetic
spectrum (16 MP sensor: 4,608 × 3,456 Pixels, 82◦ HFOV (23 mm) f/2.8 Aperture. We
measured LAI and FCover using hemispherical photography using a Canon 5D Mark II
with a Sigma f2.8 fisheye lens and NDVIup using the MAPIR camera facing upwards.

The thermal camera used in this study has an internal sensor that delivers ambient
temperature values by default and takes them into account during measurements. The
camera also implements offset calibrations accounting for thermal drift in the thermal
detector. This is implemented by a motor driven motion of a blackened metal piece (so
called flag) in the front of the image sensor, so each image element is referenced with
the same temperature. Weather did not change considerably over the field period (sunny
with occasional clouds). We aimed to minimise the impact of time of day as confounding
factor by acquiring most data between 10 am and 2 pm. This corresponds to peak day time
temperatures and solar gain, as indicated by temperature recordings from nearby weather
stations provided by National Climate Centre, South African Weather Service (Table S1).
We also measured air temperature at 1 m height in the plots to test for its potential effects
on Thermalground measurements (Senior et al., 2018). Whilst appropriate for the purpose
of this study, our data can only be understood as temporal snapshots of ground surface
temperature variations.

Sampling design
Approximate locations of transects were chosen prior to fieldwork based on our knowledge
of the landscape and ease of accessibility. The final transect placement within the landscape
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Figure 1 Location of fieldwork in Kwa Zulu-Natal province, South Africa. In April 2018, plots were
set up in five main habitat types (i.e., natural grassland, open bushland, natural forests, edges of natural
forests and timber plantations comprising Eucalytpus species) located along 11 linear transects: six tran-
sects across forest –edge –grassland (T01, T02, T07-T10), four transects across forest –edge –plantation
(T03-T06) and one transect across forest-edge-grassland-bush (T11). Each transect comprised three plots
(one per habitat type) except for T11, which comprised five plots. (A–C) A typical transect encompass-
ing natural grassland (A), the forest edge (B) and the forest (C). (D) Zoom into the transects sampled at
the northern boundary of Ngoye forest. The dense forest (C) is shown in dark red and is clearly delineated
from the natural grassland (A). The map is a false colour composite using RapidEye imagery at 5 m pixel
resolution. (E) Location of sample sites within the study region. In the 2018 plots, we sampled NDVI down
and Thermalground as well as and canopy LAI and FCover (the latter was not measured in grassland plots,
as they did not feature trees). We increased sampling effort for the development of canopy structure maps
from Landsat data (see Fig. 6). Canopy structure was measured at an additional 17 forest plots and 7 tree
plantation plots in 2018. We also included an additional 52 forest plots and 11 needle leaved plantation
plots measured in 2015 (E).

Full-size DOI: 10.7717/peerj.6190/fig-1
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Figure 2 Sampling design for habitat attributes measured during fieldwork. (A) Plot sampling . We
acquired NDVI up, NDVI down and Thermalground images at five sample points (S1–S5) located within a
5 m× 5 m subplot (pink shade) in the centre of each plot (20 m× 20 m). We acquired fisheye images at
12 sample points (S1–S12) per plot. FCover is estimated from the fisheye images for each sample point,
while LAI is estimated at plot level (one per plot). (B) Plot location. Plots were located along linear tran-
sects stretching from natural forests across the forest edge to other habitats. Darker shades indicate core
areas of respective habitats.

Full-size DOI: 10.7717/peerj.6190/fig-2

was implemented using stratified random sampling. Plots were set up in five main habitat
types (i.e., natural grassland, open bushland, natural forests, edges of natural forests and
timber plantations comprising Eucalytpus species) located along linear transects (Fig. 2).
We sampled a total of 11 transects (Table S1 ): six transects across natural forest—edge—
natural grassland habitats (T01, T02, T07–T10), four transects stretching across natural
forest—edge—Eucalyptus plantation habitats (T03–T06) and one transect stretching across
natural forest—edge—natural grassland—bush habitats (T11). Forests comprised three
different forest types: coastal lowland forest, scarp forest and peatland forest. Each transect
comprised three plots (one per habitat type) except for T11, which comprised five plots
(two bushland plots).

We increased sampling effort for measurements of canopy structure, which were used to
develop upscaling algorithms for predicting andmapping canopy structure in the landscape
using remote sensing data: we sampled an additional 17 forest (including woodlands) and
seven plantation (one: needle-leaved trees, six: fruit trees) plots during this field study.
We additionally used hemispherical images acquired from 52 forests between 22/06/2015
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and 05/07/2015 (Rolo et al., 2017) and from 11 needle-leaved tree plantations between
11/08/2015 and 13/08/2015 across the coastal landscape (Fig. 1).

Collection of habitat quality data
We acquired fisheye images in habitat quality plots of 20 m × 20 m dimensions following
standard protocols (Pfeifer, 2015). In brief, at each plot, we took on average 12 high-
resolution images through a digital camera and equipped with a hemispherical (fish-eye)
lens with sampling points distributed within the plot (Fig. 2A) following the VALERI design
(VAlidation of Land European Remote Sensing Instruments) and hence standard protocols
developed for the Global LAI Project (Pfeifer, 2015). The camera was held at 1 m above
ground, looking vertically upward from beneath the canopy. The levelled hemispherical
photographs were acquired normal to a local horizontal datum, orienting the optical axis
of the lens to local zenith.

We acquired NDVI images of the ground vegetation greenness (pointing the NDVI
camera downward, NDVIdown) and of canopy greenness (pointing the NDVI camera
upwards, NDVIup). We also acquired an image of the MAPIR ground target (i.e., targets
of known reflectance values) at the start of each survey and we repeated this throughout
the day if sky conditions changed. We acquired NDVIdown and NDVIup images at five
sample points for each plot. Ground images were acquired using a 50× 50 cm square made
of metal rulers to delineate boundaries around each point (Fig. 2A). At each sampling
point, we measured Thermalground as radiometric corrected values (saved as snapshots in
*csv matrix format) pointing the thermal camera downwards, again using the 50 × 50
cm grids made from metal rulers to indicate boundaries around each sampling point.
Thermalground data acquisition failed for the grassland plot at T02, which was excluded in
relevant analyses.

Processing of habitat quality data
Leaf area index (sensu Plant Area Index, LAI, corrected for foliage clumping) was estimated
from the fisheye images at plot level. Fractional vegetation cover (sensu canopy closure,
FCover, in %) was estimated for each image and hence sampling point. Fisheye images were
first processed using ‘in-house’ algorithms (available for download from the Global LAI
Project website: https://globallai.wordpress.com/publications/) and the freeware CAN-EYE
v 6.3.8 (Weiss & Baret, 2010), following standard steps (Pfeifer et al., 2012). In brief, the ‘in-
house’ algorithms extracted the blue band from each fisheye image as the blue band achieves
maximum contrast between leaf and sky. This is because absorption of leafy materials is
maximal and sky scattering tends to be highest in that band (Jonckheere, Muys & Coppin,
2005a). The algorithm then applied the global Ridler & Calvard method (Ridler & Calvard,
1978) to the blue band extracted from each image for identifying the optimal brightness
threshold that distinguishes vegetation from sky (Jonckheere, Muys & Coppin, 2005b). The
algorithm then used the threshold derived for each image to create binary images of
vegetation and sky from the blue band images, which were subsequently processed in the
canopy analysis software CAN-EYE V6.3.8 (Weiss & Baret, 2010) limiting the field of view
of the lens to values between 0 and 60◦ to avoid mixed pixels and thus misclassifications.
Our approach thus estimates LAI as plant area index (PAI), which includes materials
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Table 1 Processing steps involved when analysing NDVI and thermal imagery.

Metric Processing steps

NDVI up 1. Read *jpg image, which consists of three bands
2. Extract band 1 (RED) and band 3 (NIR)
3. Compute NDVI as (NIR-RED)/(NIR+RED)
4. Compute statistics: mean, median, minimum, maximum
and standard deviation

NDVI down 1. Read *jpg image, which consists of three bands
2. Extract band 1 (RED) and band 3 (NIR)
3. Compute NDVI as (NIR-RED)/(NIR+RED)
4. Delineate region of interest in image (subset) using the
clearly visible boundary
5. Compute statistics for subset: mean, median, minimum,
maximum, number of pixels, and standard deviation

Thermalground 1. Read *csv file and plot as matrix
2. Delineate region of interest on the displayed file using the
clearly visible boundary using the same extent of 150×150
cells
3. Compute statistics for subset: mean, median, minimum,
maximum, number of values and standard deviation

Notes.
RED, Red reflectance values; NIR, Near-Infrared reflectance values.

such as stems, trunks, branches, twigs, and plant reproductive parts (Breda, 2003). This
approach is used in other indirect measurements of LAI and acknowledges that masking
some parts of the plants to keep only the visible leaves is not correct and could lead to
large underestimation of the actual LAI value as some leaves are present behind the stems,
branches or trunk (Hardwick et al., 2015).

Each NDVI image was calibrated using the MAPIR Plugin (https://github.com/
mapircamera/QGIS) within the spatial analysis software Quantum GIS v2.14.3. The
plugin first loads the ground target image to find the calibration values. It then calibrates
all survey images using those values. We subsequently processed calibrated NDVI images
and thermal images to summary statistics using R statistical software (R Core Team, 2018)
following steps outlined in Table 1. For some samples and plots, calibration produced
non-sensible results for NDVIdown and those samples and plots were excluded from the
relevant analyses (the forest plots in T02–T05 and T07 and the plantation plot in T03). The
errors resulted from missing at-plot ground target images preventing us from calibrating
images accurately.

Statistical analyses of habitat quality data
We used the R statistical software package version 3.5.1 for all statistical analyses (R
Core Team, 2018). Statistics of quality data for habitats were summarised using boxplots
generated on plot level data (LAI) and sample points (NDVIup, NDVIdown, FCover,
Thermalground) (Fig. 3). We used pairwise Wilcoxon tests with Bonferroni adjustments to
test for significant differences in in the summary statistics between habitat types sampled.
We expected higher values of NDVIdown and Thermalground corresponding with lower
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Figure 3 Habitat attributes and their variation within and across habitat types. Sample size differed be-
tween habitats. (A) NDVI down: 144 points sampled across 29 plots (Grassland: 35 points from seven plots,
Bush: five points in 1 plots Edge: 54 points in 11 plots, Forest: 35 points in seven plots and Plantation: 15
points from three plots). (B) Thermalground: 169 points sampled across 34 plots (Grassland: 30 points from
six plots, Bush: five points in one plot, Edge: 54 points in 11 plots, Forest: 60 points in 12 plots and Plan-
tation: 20 points from four plots). (C) NDVI up 139 points sampled across 28 plots (Bush: five points in
one plots, Edge: 54 points in 11 plots, Forest: 60 points in 12 plots and Plantation: 20 points from 4 plots).
(D) LAI : data are only estimated at plot level and hence shown for one bush plot, 11 edge plots, seven
woodland plots, 17 forest plots, and four plantation plots. (E) FCover : 528 points sampled across 40 plots
(Bush: 15 points in one plots, Edge: 155 points in 11 plots, Woodland: 68 points in seven plots, Forest: 230
points in 17 plots and Plantation: 60 points from four plots).

Full-size DOI: 10.7717/peerj.6190/fig-3
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values of FCover and LAI in open habitat types such as bushland and edges compared to
forest interior and Eucalyptus plantations.

We aggregated FCover, NDVIdown, NDVIup, and Thermalground at plot level (LAI
estimates were estimated at plot level only). Subsequently, grassland plots (no trees present)
were assigned values of ‘0’ for forest canopy LAI and FCover and values of ‘−1’ forNDVIup.
We developed linear and general additive models, the latter using the gam function in the
mgcv package (Wood, 2017), to test for single predictor relationships between NDVIdown
or Thermalground and NDVIup, FCover or LAI. We selected the final models based on
explained variance (i.e., higher adjusted R-squared). If both models produced the same
estimates of adjusted R-squared, we subsequently discuss findings from the simpler, linear
model. Specifically, we tested for changes in mean, minimum and maximum of NDVIdown
or Thermalground as a function of mean, minimum and maximum of NDVIup and FCover.
We also tested for relationships between mean, minimum and maximum of NDVIdown
and mean, minimum and maximum of Thermalground. We tested for changes in mean
of NDVIdown or Thermalground as a function of LAI. To visualise key relationships, we
used the ggplot2 package (Wickham, 2016) using the smoothing function and specifying
the linear or general additive model dependencies. Finally, we modelled the effects of air
temperature (Tair) measured at plot level on the relationship between canopy structure
and Thermalground (Thermalground ∼ FCover * Tair).

Upscaling habitat quality data using Landsat imagery
We focused on Landsat Surface Reflectance Satellite Level-2 satellite product, i.e., satellite
images that are freely available online, of high geospatial accuracy, and can be downloaded
as surface reflectance data for comparisons over time and space (and hence are already
corrected for atmospheric noise). We used two Landsat scenes acquired over the study
landscape on June 4th in 2014. We used those images to upscale canopy structure data,
specifically canopy leaf area index and fractional vegetation cover derived from the
hemispherical images. We assumed that canopy structure did not change significantly
since 2014 for the plots sampled, which is reasonable given the plots were located in woody
ecosystems from little utilised shrubs to coastal forests, the majority being located within
protected areas.

All raster analyses were implemented using the ‘raster’ package’ (Hijmans, 2017). We
downloaded the Landsat 8 surface reflectance product (LASRC), derived from the Landsat
8 Operational Land Imagery data in each Landsat scene, from the USGS Earth Explorer
after screening for clouds aiming to minimise cloud coverage over the landscape. We
processed those reflectance data by setting pixels covered with clouds or haze to NA and
only using pixels for which the pixel quality attributes indicated clear conditions (i.e., pixel
quality attributes coded as 322, 386, 834, 898, or 1346) and excluding water bodies (i.e.,
pixel quality attributes coded as 324, 388, 836, 900, or 1348). We used QuantumGIS spatial
software (QGIS Development Team, 2009) to mosaic the four scenes and cropped the extent
of the raster mosaic to the study area using the ‘raster’ package (Hijmans, 2017). Reflectance
(spectral intensity) measured in the red and near-infrared bands of the electromagnetic
spectrum were used to compute three maps of vegetation greenness (i.e., the normalised
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difference vegetation index, NDVI (Tucker, 1979), the modified soil-adjusted vegetation
index, MSAVI2 (Qi et al., 1994), and the two-band enhanced vegetation index, EVI2 (Jiang
et al., 2008). We used the ‘glcm’ (Zvoleff, 2016) package in R statistical software to obtain
indices of image textures for the red, near-infrared and shortwave infrared 1 bands in
the Landsat imagery. We computed two indices to obtain texture information for a given
pixel and its neighbourhood for each of these three bands: MEAN and DISSIMILARITY.
This was implemented on a grey-level co-occurrence matrix with a 90 degree shift and 64
grey-levels and a window size of 3×3 pixels for each band (Pfeifer et al., 2016). We also
computed mean and standard deviation maps of NDVI using the focal function in the
‘raster’ package specifying a moving window size of 8 pixels (Hijmans, 2017).

To map canopy structure, we combined canopy structure data acquired in 2015
with canopy structure data acquired during the fieldwork described here. We extracted
reflectance, texture and vegetation greenness data onto each plot. The final dataset yielded
a total of 109 plots measured for canopy LAI and FCover (with N = 79 forest plots, 7
woodland plots, 2 bush plots, and 21 plantation plots (including broad-leaved and needle
leaved plantations). We developed Random Forest models linking spectral, texture and
vegetation greenness data to canopy structure data after excluding predictor variables from
the model that were highly inter-correlated (P > 0.6). We computed the models using
the ‘randomForest’ package (Liaw &Wiener, 2002) in R (Table 2: final predictor variables
included in predictive model). We subsequently used the final models to upscale plot
measured canopy attributes to landscape scale excluding water bodies and any other NA
regions from the resulting maps.

RESULTS
Habitat quality variation between habitat types
Habitats differed significantly in habitat quality metrics measured in this study (Fig. 3). As
expected, Thermalground decreased from grassland and bush plots to edge plots (pairwise
Wilcoxon tests with Bonferroni adjustment, P < 0.05) and then to forest plots (P < 0.001).
Thermalground for plantation plots was higher than for forest plots and lower than for
grassland and bush plots (P < 0.01). NDVIdown showed different trends with habitat
types compared to Thermalground and was higher in grassland, bush and plantation plots
compared to edge and forest plots (P < 0.05). FCover was higher for edge, forest and
woodland plots compared to plantation plots and lower in woodland versus forest plots
(P < 0.05). NDVIup was lower in plantation plots compared to forest plots (P < 0.05) and
was marginally higher in bush compared to edge plots (P = 0.052). Canopy LAI did not
differ significantly between habitats.

Habitat quality attributes and their inter-relationships
Thermalground showed significant linear dependencies on canopy attributes (Tables 2 and 3,
Figs. 4 and 5). Specifically, for each increase in FCover by 10%, Thermalground declined by
0.6 ◦C starting from 27.6 ◦C (Fig. 4B) and for each increase in LAI by 1 unit, Thermal ground
declined by 1.2 ◦C decrease starting from 27.4 ◦C (Fig. 5B). The predictive capacity of the
models improved when taking into account air temperature effects (Table 4). Furthermore,
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Table 2 Interrelationships between habitat attributes at plot level.We compared general additive models (GAM) to linear models (LM) and re-
ported on the variance explained by the model (adjusted R-squared, R2

adjust), the Intercept and the estimate for the smoothing term (ST) or coeffi-
cients. Models were fit to data aggregated at the level of plots using the ‘average’ function. Model details are shown with ∗∗∗ indicating P < 0.001, ∗∗

indicating P < 0.01 and ∗ indicating P < 0.05. Canopy LAI and FCover were set to 0 for grassland plots and NDVI up was set to−1 acknowledg-
ing that there were no trees present. We tested whether including grassland plots in the modelling would significantly affect model outcomes (With
grass; Without grass). Models chosen for reporting are highlighted by grey shaded cells.

With grass Without grass

GAM LM N GAM LM N

Thermalground ∼NDVI dow R2
adjust 0.21∗∗ 0.21∗∗ 28 0.30∗∗ 0.31∗∗ 22

Intercept 24.3∗∗∗ 23.02∗∗∗ 23.4∗∗∗ 22.6∗∗∗

ST/Coefficient 1 3.97∗∗∗ 1 3.06∗∗

Thermalground∼FCover R2
adjust 0.51∗∗∗ 0.51∗∗∗ 34 0.31∗∗ 0.30∗∗ 28

Intercept 23.7∗∗∗ 27.6∗∗∗ 22.9∗∗∗ 27.2∗∗∗

ST/Coefficient 1 −0.06∗∗∗ 1.4 −0.06∗∗

Thermalground∼LAI R2
adjust 0.52∗∗∗ 0.52∗∗∗ 34 0.35∗∗∗ 0.35∗∗∗ 28

Intercept 23.7∗∗∗ 27.4∗∗∗ 22.9∗∗∗ 26.6∗∗∗

ST/Coefficient 1 −1.19∗∗∗ 1 −1.0∗∗∗

Thermalground∼NDVI up R2
adjust 0.38∗∗∗ 0.30∗∗∗ 34 28

Intercept 23.7∗∗∗ 23.6∗∗∗ not significant
ST/Coefficient 1.98 −3.20∗∗∗

NDVI down∼FCover R2
adjust 0.28∗∗ 0.24∗∗ 29 0.33∗∗ 0.33∗∗ 22

Intercept 0.33∗∗∗ 0.60∗∗∗ 0.26∗∗∗ 0.98∗∗∗

ST/Coefficient 1.61 −0.01∗∗ 1 −0.01∗∗

NDVI down ∼LAI R2
adjust 0.20∗∗ 0.20∗∗ 29 0.18∗ 0.18∗ 22

Intercept 0.33∗∗∗ 0.57∗∗∗ 0.26∗∗∗ 0.76∗∗

ST/Coefficient 1 −0.09∗∗ 1 −0.14∗

NDVI down ∼NDVI up R2
adjust 0.39∗∗ 29 0.51∗∗ 0.36∗∗ 22

Intercept 0.33∗∗ not significant 0.26∗∗∗ 0.15∗

ST/Coefficient 2.38 2.84 0.75∗∗

predicted effects indicate stronger buffering impacts of canopy closure under higher levels
of air temperature (Table 4).

NDVIdown showed significant nonlinear declines with increasing canopy closure and
linear declines with increasing canopy leaf area (Tables 2 and 3, Figs. 4A and 5A).
Specifically, for each increase in LAI by 1 unit, NDVIdown declined by 0.09 starting
from 0.57 (Fig. 5A). NDVIdown showed non-linear convex relationships with NDVIup
increasing with rising canopy greenness above an approximate threshold of NDVIup= 0.0
and increasing with declining canopy greenness (towards no trees) below that threshold
(Fig. 4C).

Thermalground was significantly increased in grassland plots, which feature no trees.
However, any clear relationship between Thermalground and NDVIup disappeared when
excluding grasslands (Table 2). Finally, Thermalground and NDVIdown correlate with each
other (Fig. 4D) and data suggest that for each increase in NDVIdown by 0.1, ground
surface temperature increased by approximate 0.4 ◦C. This pattern held despite an
expected influence of measurements acquired during different times of the day (i.e.,
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Table 3 Interrelationships between habitat attributes at plot level.Model details shown with ∗∗∗ indi-
cating P < 0.001, ∗∗ indicating P < 0.01 and ∗ indicating P < 0.05. Canopy LAI and FCover were set to
0 for grassland plots and NDVI up was set to−1 acknowledging that there were no trees present. Models
were fit to data aggregated at the level of plots using the ‘min’ , ‘max’ and ‘mean’ functions respectively.
LAI estimates were only derived at plot level. Bold numbers indicate that general additive models were the
better fit compared to linear models. Response variables respectively were minimum, maximum and mean
values of NDVI down and Thermal ground. Numbers are adjusted R-squared estimates for the statistical
models fitted to the data. The type of the relationship (positive, negative, concave) did not change in com-
parison to models based on averages (see Table 2).

NDVI down Thermalground

Min Max Mean Min Max Mean

NDVI up Min 0.37∗∗ 0.29∗ 0.33∗∗ 0.42∗∗∗ 0.32∗∗ 0.38∗∗∗

Max 0.39∗∗ 0.45∗∗∗ 0.47∗∗∗ 0.44∗∗∗ 0.34∗∗ 0.40∗∗∗

Mean 0.40∗∗ 0.35∗∗ 0.39∗∗ 0.43∗∗∗ 0.32∗∗ 0.38∗∗∗

FCover Min ns ns ns 0.22∗∗ 0.25∗∗ 0.25∗∗

Max 0.24∗ 0.26∗ 0.28∗ 0.50∗∗∗ 0.39∗∗∗ 0.46∗∗∗

Mean 0.28∗∗ 0.24∗ 0.28∗∗ 0.50∗∗∗ 0.47∗∗∗ 0.51∗∗∗

LAI Mean 0.20∗∗ 0.52∗∗∗

measurement bias through sampling effect). The statistical model fitted to the relationship
between Thermalground and NDVIdown underestimated Thermalground for five plots and
overestimated it for eight plots. Plots whose Thermalground was higher than expected based
on their NDVIdown include grassland plots measured around midday (a, c, d). Plots whose
Thermalground was lower than expected from theirNDVIdown include a grassland plot from
Ngoye (b) and a forest plot from Enseleni (e), both measured earlier in the day (10 am,
slightly cooler time of the day).

Mapping habitat quality using upscaling algorithms
The predictive capacity of the habitat quality mapping using Landsat reflectance data and
derived indices was limited. Random Forest models explained 35% of the variability on
the LAI data and 31% in the variability of FCover data (Table 5). We used the resulting
LAI maps to map ground surface temperature and ground NDVI (Fig. 6) using models as
detailed in the legends for Fig. 5.

DISCUSSION
Ground surface temperature and ground NDVI, both habitat attributes that have been
linked to diversity, abundance and behaviour of animal species in different studies, are
positively correlated. These habitat attributes are strongly linked to canopy structure
attributes commonly mapped using remote sensing data. Specifically, opening canopies by
about 20% or reducing canopy leaf area by 1 unit, would result in an increase of average
temperatures on the ground by more than 1 ◦C. Ground vegetation greenness would
decline nonlinearly as a function of increasing canopy closure.

These findings are not surprising based on the mechanistic understanding of radiation
fluxes within vegetation layers (Deardorff, 1978; Best, 1998). They are likely to have
important implications for microclimate within forests stands though, as tropical forests
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Figure 4 Habitat attributes aggregated at plot scale and their inter-relationships.We plotted habitat
attributes for each sample point (grey dots) and aggregated at plot level for each habitat type. We used
general additive and linear modelling (GAM and LM) to test whether Thermalground increases with
NDVI down, and for each whether they decline with attributes indicating increasing canopy closure. The
graphs show the better fitting model for each relationship visualised as smoothed conditional means
(grey line) with a 95 % confidence interval (grey shaded band). Model fits shown with ∗∗∗ indicating
P < 0.001,∗∗ indicating P < 0.01 and ∗ indicating P < 0.05. Model details are shown in Table 2. (A)
The decline of NDVI down with increasing FCover followed a nonlinear pattern with the rate of decline
increasing once canopy closure increases to more than 40–50% (GAM, N = 29, R2

adj = 0.28**). (B)
Thermalground declined linearly with increasing canopy closure (LM, N = 34, R2

adj = 0.51∗∗∗). The model
suggests that for each increase in canopy closure by 20%, Thermalground would decline by 1.2 ◦C. (C)
NDVI down displayed a non-linear convex dependency on canopy greenness (GAM, N = 29, R2

adj = 0.39∗∗.
For values of NDVI up above 0.0, NDVI down increased with increasing NDVI up, for values of NDVI up
below 0.0, NDVI down increased with declining canopy greenness. (D) Thermalground increased significantly
with increasing NDVI down (LM, N = 28, R2

adj = 0.21∗∗). We highlighted plots for which predictions of
Thermalground were either much higher (plots c, d, e) or lower (plots b, e) than expected from the models.
Grassland plots (red letters): Plot a was measured at midday during a hot and sunny day, whilst plot b was
measured at Ngoye but a couple of hours earlier than plot a. Plot c measured at Enseleni Nature Reserve,
featuring patches of high grass and bare soil, and plot d was located in an area with high grazing pressure
at Sodwana Bay. Forest plot (green letter): Plot e was measured at Enseleni before midday.

Full-size DOI: 10.7717/peerj.6190/fig-4
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Figure 5 Canopy LAI dependencies of Thermalground andNDVI down. We plotted habitat attributes
for each plot and habitat type. We used general additive and linear modelling (GAM and LM) to test
for significant relationships. The graphs show the better fitting model for each relationship visualised as
smoothed conditional means (grey line) with a 95% confidence interval (grey shaded band). Model fits
shown with ∗∗∗ indicating P < 0.001, ∗∗ indicating P < 0.01 and ∗ indicating P < 0.05. Model details are
shown in Table 2. (A) NDVI down declined significantly with increasing canopy leaf area (LM, N = 29,
R2
adj = 0.20∗∗). (B) Thermalground declined significantly with increasing canopy leaf area (LM, N = 34,

R2
adj = 0.52∗∗∗).

Full-size DOI: 10.7717/peerj.6190/fig-5

Table 4 Effects of air temperature onmodelled relationships between canopy structure attributes and
Thermalground. We expanded the linear models, identified as best fit predicting the response of Thermal
ground to either FCover or Thermalground (see Table 2) by including additional and interactive effects of
air temperature (Tair). The predictive capacity of the models improved significantly as indicated by the ad-
justed R-squared (R2

adj). We estimated intercept and slope based on the derived models for selected values
of Tair (21, 23, 25, 27, and 29 ◦C. Model details are shown with ∗∗∗ indicating P < 0.001, ∗∗ indicating P <

0.01, ∗ indicating P < 0.05 and a indicating P < 0.10.

Thermalground∼FCover*T air Thermalground∼LAI*T air

Intercept 2.074357 3.2155
FCover or LAI 0.155010a 3.0012∗

T air 0.887836∗∗∗ 0.8054∗∗∗

FCover*T air −0.007211∗ −0.1424∗∗

R2
adj 0.73∗∗∗ 0.78∗∗∗

T air= 21 ◦C Intercept= 20.7, Slope= 0.00358 Intercept= 21.1, Slope= 0.0108
T air=23 ◦C Intercept= 22.4, Slope=−0.01084 Intercept= 22.8, Slope=−0.274
T air = 25 ◦C Intercept= 24.3, Slope=−0.02527 Intercept= 24.5, Slope=−0.5588
T air = 27 ◦C Intercept= 26.0, Slope=−0.03969 Intercept= 26.2, Slope=−0.8436
T air = 29 ◦C Intercept= 27.8, Slope=−0.05411 Intercept= 27.9, Slope=−1.1284
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Table 5 Final models used to predict canopy attributes from Landsat spectral reflectance data and derived spectral and texture indices based
onN = 109 data points. Random Forest models were computed with importance computation set to true and specifying 2,000 trees (models
converged after 238 trees for predicting LAI and 36 trees for FCover). Predictor variables include: mean of shortwave- infrared (SWIRM) and
near-infrared (NIRM) reflectances, dissimilarity of near-infrared (NIRD) and of shortwave- infrared reflectances (SWIRD), and the mean and sd
of NDVI within a focal moving window of 8 pixels (NDVIMFocal and NDVISD). Predictor variables and their importance (with standard error in
brackets) to the model predictions were ranked using the mean decrease in accuracy (%IncMSE) estimated based on random permutations using
out-of-bag-Cross-Validation.

LAI FCover

Final random forest model predictors SWIRM+NIRM+NIRD+ SWIRD+NDVIMFocal SWIRM+NDVIMFocal+NDVISD
Variance explained 35.3% 30.5%

NIRD 0.3064 (0.008) NDVIMFocal 106.531 (2.083)
NDVIMFocal 0.2816 (0.011) NDVISD 63.572 (1.744)
NIRM 0.2290 (0.009) SWIRM 43.209 (1.648)
SWIRD 0.1370 (0.008)

Importance

SWIRM 0.1335 (0.007)

are changing rapidly with current global change drivers. Forest canopies are showing
stress and die-back responses to repeated droughts, the latter acting in concert with other
disturbance drivers to open forest canopies (Malhi et al., 2009). Disturbance has been
shown to decrease canopy cover in the Amazon rainforests by 13% to 60% depending on
disturbance intensity (FCover = 98% in intact forests, 85% in logged and lightly burned
forests, 63% in heavily logged forests and 39% in heavily logged and burned forests)
(Gerwing, 2002). Based on relationships derived in this study, such canopy cover declines
would translate to increases in ground surface temperature of at least 3 ◦C in severely
disturbed forests. Our results are thus in line with findings from a review on the thermal
buffering capacity of forests, in which warming effects caused by land use change ranged
from +1.1 ◦C in degraded forests to +2.7 ◦C in plantations, +6.2 ◦ C in pasture and
+7.6 ◦C in cropland (Senior et al., 2017). Taking into account expectations on temperature
extremes during the day (Blonder et al., 2018) may paint an even bleaker picture as stronger
responses of temperature extremes to canopy structure changes would be expected (Ewers
& Banks-Leite, 2013; Hardwick et al., 2015).

However, canopy cover has also been shown to recover more rapidly than forest biomass
after logging (Pfeifer et al., 2016). And while remotely sensed canopy structure maps from
rainforests inMalaysian Borneo suggest decreased canopy cover even ten years after logging
and conversion to palm stands (i.e., FCover was 6 to 10% lower in logged forests and 25%
lower in oil palms compared to primary forests (Pfeifer et al., 2016), these declines were not
detectable at plot level in the field. These rapid recoveries may underlie recent observations
of logged forests being able to retain the thermal buffering capacities of undisturbed
forests (Senior et al., 2018) and further studies are warranted to investigate the spatial and
temporal feedbacks between forest canopy degradation, forest canopy recovery and thermal
environments on the forest floor over time.

Thermal cameras calculate the surface temperature on the basis of the emitted infrared
radiation from an object, which itself depends on the temperature of the environment as
well as on the radiation features of the surface material of the measuring object (Kastberger
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Figure 6 Zoom into maps of LAI and Thermalground produced for the study region. The zoom shows
Ngoye forest, an ancient scarp forest fragment located around 10 km away from the coast. (A) We mapped
LAI based on texture and spectral indices derived from Landsat 8 reflectance data (see Table 5 for model
details). (B) We used the LAI maps with the statistical models described in Fig. 5 and Table 2 to map
Thermalground. (C) The ancient forests are directly bordered by natural grasslands along large parts of
the northern and southern edge of the forest (E, G). However, the landscape changes dramatically in
the surroundings, with homesteads scattered in hilly areas (D) and sugarcane growing on small-holder
farms and in lowland industrial plantations (H). Timber plantations (F) can be found along the coast and
slightly further inland.

Full-size DOI: 10.7717/peerj.6190/fig-6

& Stachl, 2003). Adjusting emissivity values for each material encompassed in the field of
view of the camera might increase accuracy of our temperature measurements. However,
accounting for this emissivity is unlikely to significant alter the relationships we found due
to the camera’s internal calibration. Furthermore, the surfaces we scanned are relatively
similar and composites of soil, leaf litter, green herbaceous vegetation and grass in varying
proportions. Whilst emissivity values for these materials vary with values of 0.93 (barren
sandy soil), 0.96 (partial grass cover), and 0.98 (short grass and grassland) over the
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wavelength ranges our sensor is working in, composites of effective surface emissivity for
soil–grass like vegetation surfaces was evaluated and estimated as mean of 0.98 (Humes
et al., 1994).

Temperature changes induced by changes in forest canopies may increase or decrease
growth rate or other fitness traits of species depending on the species’ optimum
temperature, the temperature it currently experiences in its environment and the
temperature it would experience after canopy changes. For example, herbivores and
their growth rates respond more strongly to temperature than the growth rate of plants,
while aboveground ectotherms show stronger thermal response of life-history traits than
belowground ectotherms (Berg et al., 2010). The variability in responses is likely to result
in changes in the network relationships between species (Berg et al., 2010) and thus species’
ecological roles within forest ecosystem processes (Ewers et al., 2015). Temperature effects
are likely to be stronger for species in the tropics and in particular tropical ectotherms
in forests (Deutsch et al., 2008; Potter, Arthur Woods & Pincebourde, 2013; Kaspari et al.,
2015). Tropical insects are suggested to have narrow thermal tolerances and to track air
temperatures close to their optimal temperature; they experience near-lethal temperatures
faster than temperate insects and warming is expected to reduce their population fitness by
up to 20% (Deutsch et al., 2008). Ground surface temperature increases are likely to act in
concert with heat stress as the operational temperature of ectotherms is determined by both
convection (the exchange of energy between body and air) and conductance (the direct
transfer of energy between objects and surfaces) (Potter, Arthur Woods & Pincebourde,
2013).However, direct empirical evidence is rare and we suggest four steps following on
from this pilot study:

First, to account for time of day and hence ambient temperature effects on ground
surface temperature measures and to analyse interlinkages between both, ground surface
temperature should be sampled together with air temperature throughout the course of
the day and over several days, and if necessary seasons (e.g., dry versus wet seasons in the
Afrotropics), which could be achieved using mini meteorological dataloggers and radiation
sensors. This will allow us to capture variation in average temperature and temperature
extremes as experienced by species in the forest understorey.

Second, studies could test and account for potential effects of emissivity variability.
Assuming that the object’s temperature differs from ambient temperature this could be
achieved by using a black flat object of known emissivity (0.98) as calibration target with
three steps: (1) adjusting the emissivity of the infrared thermometer to 0.98, (2) acquisition
of the temperature of the calibration target, (3) scanning the temperature of a directly
adjacent area and modify the emissivity until the measured value corresponds to the
temperature of the black surface.

Third, the tropical forest floor harbours a set of insect taxa believed to be distinct
from the forest canopy (Stork & Grimbacher, 2006). Their abundance and distribution on
the ground is probably linked to leaf litter (Rodgers & Kitching, 1998), ground vegetation ,
availability of host plants (Novotny et al., 2002) as well as microclimate (Schulze, Linsenmair
& Fiedler, 2001). Thus, detailed species community and species behavioural studies looking
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at a gradient of surface temperatures along a gradient of canopy openness should be
implemented for a range of taxonomic groups.

Fourth, habitat quality can have different meanings to species depending on the
ecological scales they operate on and their interlinkages in trophic networks (Schulze,
Linsenmair & Fiedler, 2001). For example, ground-dwelling insects feeding on detritus
may be more affected by fine scale variation in temperature (Levesque, Fortin & Mauffette,
2002); (Lessard, Dunn & Sanders, 2009). In contrast, larger body-sized mobile bird species
acquiring resources across larger spatial scales may be more affected by the availability of
nesting places and the distribution of prey items in the landscape (Sekercioglu et al., 2007).
Network analyses are rare, in particular for the tropics, but would allow us to determine
whether changes in insects and ground vegetation due to microclimate changes are likely
to propagate into changes in larger-body sized animal groups.

CONCLUSIONS
Accounting for micro-scale variation in temperature is seen as essential to improve
biodiversity impact predictions using species distribution models (Suggitt et al., 2011).
Thermal imaging of land surfaces can be implemented using unmanned aerial vehicles
(Bellvert et al., 2014) and to some extent satellite sensors (Lee et al., 2015). However there
are technical challenges in flying UAVs across many regions and changes in temperature
below vegetation canopies (‘buffer effect’) would be difficult to detect. Our ground-based
analyses show that canopy structure and below canopy ground surface temperatures show
clear significant relationships, which could be exploited for mapping habitat quality metrics
that matter to species. However, more work is needed to (1) reduce uncertainties in these
relationships and (2) to improve canopy structure mapping (and hence subsequent ground
surface temperature mapping) using remote sensing data. Our data seem to suggest that
increasing sampling effort to capture spatial (along gradients of canopy cover and leaf area)
and temporal (as function of day light, climate seasonality and climate extremes) variation
in ground surface temperature would be beneficial to address the first point. The second
point could be addressed by using data acquired at higher spatial resolution, as we have
shown for forest degradation gradients in Borneo (Pfeifer et al., 2016) and by sampling
canopy structure variation for a wide range of habitat types on the ground resolution.
Either way, linking ground surface temperature (maps) to species demographic traits and
abundance distributions in predictive biodiversity modelling (Pfeifer et al., 2017) would
be the next essential step to truly determine the choice of ground surface temperatures
as suitable habitat quality metric. This could then be exploited to design landscapes that
maximise benefits from habitat restoration and management for biodiversity conservation
and other ecosystem services.
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