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ABSTRACT
The demand for exotic non-domesticated animals kept as pets in the United States of
America (USA) is increasing the exportation rates of these species from their native
ranges. Often, illegal harvesting of these species is used to boost captive-bred numbers
and meet this demand. One such species, the sugar glider (Petaurus breviceps), endemic
to Australia and New Guinea is a popular domestic pet due to its small size and ‘‘cute’’
demeanour. Despite a legal avenue for trade existing in Indonesia, concerns have been
raised that sugar gliders may be entering the USA from other parts of their native
range where exportation is prohibited such as Australia, Papua New Guinea and the
surrounding Indonesian islands. We compared previously published DNA sequences
from across the native range of sugar gliders with samples collected from domestically
kept sugar gliders within the USA to determine provenance and gene flow between
source and introduced populations. Here we show that as predicted, the USA sugar
glider population originates from West Papua, Indonesia with no illegal harvesting
from other native areas such as Papua New Guinea or Australia evident in the samples
tested within this study.

Subjects Biodiversity, Conservation Biology, Ecology, Genetics, Population Biology
Keywords Exotic pets, Sugar glider, Marsupials, Introduced species, Petaurus breviceps, Wildlife
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INTRODUCTION
The importation of wild animals into the United States of America (USA) has been
occurring for many decades. This arises from the popularity and desire for unusual
specimens, traditional medicines, the entertainment industry and companion animals
(Nekaris et al., 2010; Nijman, 2010; Bush, Baker & Macdonald, 2014). In the USA it is
common for non-domesticated animals to be kept as small companion pets, examples
include North American black-tailed prairie dogs (Cynomys ludovicianus), African pygmy
hedgehogs (Atelerix albiventris), reptiles and the focus of this manuscript, sugar gliders
(Petaurus breviceps) (Johnson-Delaney, 2006). It is generally assumed that commercial pet
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breeders within the USA stock animals through legal channels, however illegal animal
exportation continues to occur from both developed and developing countries (Alacs &
Georges, 2008; Wyler & Sheikh, 2008). A common source of illegal wildlife trade in the
pet market is the false classification of illegally harvested wild-caught animals as ‘farmed’
or ‘captive-bred’ animals (Bulte & Damania, 2005; Mockrin, Bennett & Labruna, 2005).
This means that despite adhering to legal importation channels, USA pet breeders could
unwittingly be supporting illegal wildlife trade. Illegal wildlife trade is a significant ethical
and economic issue and is an industry worth between $5 billion and $23 billion US dollars
per year (Wyler & Sheikh, 2008; World Economic Forum, 2017).

The sugar glider (Petaurus breviceps) is a small arboreal and nocturnal marsupial
whose native distribution includes continental Australia and the island of New Guinea
(Smith, 1973; Malekian et al., 2010) as well as an introduced population in Tasmania,
Australia (Campbell et al., 2018). Currently, seven morphologically defined subspecies
are recognized across the species’ range. Four occur on the island of New Guinea (P. b.
flavidus, P. b. papuanus, P. b. taxa, P. b. biacensis) and three are in Australia (P. b. ariel, P.
b. longicaudatus, P. b. breviceps). This taxonomy, however, is not supported by a previous
mitochondrial study (Malekian et al., 2010). Sugar gliders usually nest in social groups of
between two and seven but are known to nest alone on occasion (Suckling, 1984). They
occur in rainforests and wet and dry sclerophyll forests and are hollow-dependent (Koch,
Munks & Woehler, 2008). Home range varies between seasons and fluctuates between 0.3
and 2.8 hectares (Suckling, 1984). Diet consists of the sap of Eucalyptus spp., Acacia spp.
gum, leaves of host trees, invertebrates and honeydew produced by insects (Smith, 1982;
Suckling, 1984). An introduced population of sugar gliders on Australia’s island state of
Tasmania also has carnivorous dietary preferences, including hollow-nesting birds, their
eggs and young (Stojanovic et al., 2014).

The sugar glider was brought to the USA for the exotic pet trade in the 1990s (Brust,
2009). The current size of the USA sugar glider population is unknown, but it makes up a
proportion of the 3.5 million exotic mammalian pets kept in private households (excluding
ferrets, rabbits and livestock) (American Veterinary Medical Association, 2018). This
established USA population may have been founded by a small number of individuals and
possibly from only a small part of the native range. The prevailing view from active breeders
and sugar glider enthusiast websites is that the USA population of sugar gliders originates
from West Papua, Indonesia, on the island of New Guinea (Table S1). There is, however,
little to no documentation to substantiate this anecdotal view. Additionally, there is the
possibility that Australian sugar gliders were imported into the USA before exportation
was banned in 1982 with the implementation of the Wildlife Protection Act (Regulation of
Exports and Imports) 1982, or that undocumented or illegal trade of Australian populations
may have occurred and/or be on going (C Johnson-Delaney, pers. comm., 2010). Thus,
the provenance of the USA population of sugar gliders is essentially unknown and no data
are available on its genetic diversity.

Sugar gliders can be legally traded internationally from breeding facilities based in
Jakarta, which are known to supply the pet trades in Malaysia, Thailand and USA (Lyons
& Natusch, 2012). These animals are thought to be wild trapped from the Sorong area
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(West Papua, Indonesia) as part of a quota system but there is no documentation about
where individual animals were trapped (Lyons & Natusch, 2011; Lyons & Natusch, 2012).
In this study we use nuclear and mitochondrial markers to assess the provenance and
genetic diversity of sugar gliders imported to the USA. We examine three possible origins
for historical and ongoing importation: (a) sugar gliders originate from West Papua,
Indonesia and are thus legally imported; (b) sugar gliders are traded from West Papua
into the USA but are wild-caught elsewhere in Indonesia or Papua New Guinea and; (c)
sugar gliders are wild-caught in Australia and smuggled into the USA, either directly or
through an intermediate hub. We characterise the genetic diversity residing within the
USA population and compare it to other independent introduction events.

MATERIALS AND METHODS
Sample collection
Within the USA, samples were opportunistically collected from the tissue by-product of
neuter procedures, thus all samples were from male individuals. Samples were collected
from seven states: Washington (n= 4), Illinois (n= 3), Maryland (n= 2), Minnesota
(n= 4), New Jersey (n= 2), Wyoming (n= 2) and Texas (n= 128) (Fig. 1; Table S2). All
tissues were donated by qualified veterinarians, with the identity of the owners, breeders or
operators remaining anonymous. The sampling co-ordinates in Table S2 refer to the site
of tissue collection. Extensive sampling was possible in Texas with the co-operation of two
large commercial operators of sugar glider farms. These breeding facilities are thought to
be major suppliers of pet sugar gliders for the greater USA.

To identify the provenance of the USA population, we compiled a database of 93
previously published geo-referenced mitochondrial (mtDNA) and nuclear DNA (nDNA)
sequences for P. breviceps from Genbank (Benson et al., 2013) in Geneious 10.0.5 (Kearse
et al., 2012). Sampling across the native range was comprehensive and included one small
introduced population, located on the island state of Tasmania, Australia. Sample sizes
for the following locations were as follows: mainland Australia, n= 41; Tasmania, n= 21;
Indonesia, n= 5 ; Papua New Guinea, n= 26) (Malekian et al., 2010; Campbell et al., 2018)
(Fig. 1; Table S2).

DNA extraction and PCR amplification
DNA was extracted from 145 tissue samples (testes) using the Qiagen Puregene R©

Tissue Kit following the manufacturer’s protocols. A total of 2,092 bp of DNA
were sequenced from two mitochondrial genes (ND2, ND4, 1,394 bp) and one
nuclear gene (ω-globin, 698 bp) and were amplified to complement previous
phylogenetic studies of the sugar glider (Malekian et al., 2010; Campbell et al., 2018).
A 695 bp fragment of the mtND2 gene was targeted using primers mmND2.1
(5′-GCACCATTCCACTTYTGAGT-3′) and mrND2c (5′-GATTTGCGTTCGAATGTA-
GCAAG-3′) (Osborne & Christidis, 2001). An 699 bp fragment of the mtND4 gene was
targeted using primers mt10812H (5′-TGACTACCAAAAGCTCATGTAGAAGC-3′)
and mt11769L (5′-TTTTACTTGGATTTGCACCA-3′) (Arevalo, Davis & Sites, 1994)
and a 698 bp fragment of the nuclear ω-globin gene was targeted using primers G314
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Figure 1 Petaurus breviceps samples collected from the pet trade in the United States of America and
wild-caught specimens from across the species native range. The introduced USA population is indi-
cated in orange, and native populations on the Island of New Guinea in blue (P. b papuanus, P. b. tafa,
P. b. flavidus, P. b. biacensis), Australia in red (P. b ariel) and green (P. b. longicaudatus, P. b. breviceps)
(Malekian et al., 2010; Campbell et al., 2018).’’

Full-size DOI: 10.7717/peerj.6180/fig-1
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(5′-GGAATCATGGCAAGAAGGTG-3′) and G424 (5′-CCGGAGGTGTTYAGTGGTA-
TTTTC-3′) (Wheeler et al., 2001). PCR amplifications contained 50 ng of DNA, 1×PCR
buffer; 62.5 mMMgCl2; 5mM dNTP’s; 0.4 µMeach forward and reverse primer; 4 mg BSA,
0.5 µl of Amplitaq Gold and ddH20 to a total volume of 25 µl. PCR conditions consisted
of denaturation at 95 ◦C for 9 min followed by 35 cycles of denaturation at 94 ◦C for 45 s,
50 ◦C for 45 s and 72 ◦C for 45 s and finally an extension period of 72 ◦C for 10 min. To
confirm amplification, 5 µl of PCR product was visualised in a 1.0% agarose gel containing
ethidium bromide.

Sequencing
PCR products were purified using ExoSAP protocol consisting of 20 µl of PCR product
combined with 0.72 µl shrimp alkaline phosphatase (SAP); 0.36 µl exonuclease I (EXO);
3.92 µl ddH2O (Amersham Pharmacia, Piscataway, NJ, USA), incubated at 37 ◦C for 30
mins followed by an enzyme inactivation step at 80 ◦C for 15 mins. Sequencing reactions
consisted of 1 µl of purified PCR product, 0.25 µl of BigDye R© v3.1 (Applied Biosystems),
1× sequencing buffer, 0.16 µM primer and ddH20 to a total volume of 9 µl. Cycling
conditions were 45 cycles of 96 ◦C for 10 s, 50 ◦C for 5 s followed by 60 ◦C for 4 min.
Sequencing reactions were purified using the Agencourt R© CleanSEQ dye-terminator
removal method as per the manufacturer’s guidelines (Beckman Coulter, Brea, CA, USA).
Sequencing was performed on an ABI 3730 DNA Analyser (Applied Biosystems, Foster
City, CA, USA) at the National Cancer Institute-Frederick.

Phylogenetic analysis
Forward and reverse raw sequences were checked and edited manually in Sequencher
v4.8 (GeneCodes). The consensus sequences for all individuals were aligned in MUSCLE
(Edgar, 2004) using Geneious 10.0.5 (Kearse et al., 2012). Based on the work of Malekian
et al. (2010), Petaurus abidi was used as the outgroup as it is the closest sister group to
P. breviceps.

Mitochondrial data and nuclear data were separated for the network analysis because
they have different modes of inheritance. Networks were generated using median joining
network analysis (Bandelt, Forster & Röhl, 1999) with software package PopART (Allan
Wilson Centre Imaging Evolution Initiative) on the concatenated mitochondrial genes
ND2 and ND4 and the nuclear ω-globin. Number of haplotypes, number of variable sites,
haplotype diversity, nucleotide diversity, Tajima’s D (Tajima, 1989) and gene flow indices
FST, DXY, and DA for the mitochondrial data were calculated in DnaSP v5.10.1 (Librado &
Rozas, 2009).

Phylogenetic analyses were estimated using the maximum likelihood method for the
concatenated dataset. Appropriate models of DNA substitution were determined in
MEGA v7.0 (Kumar, Stecher & Tamura, 2016) with genes partitioned, using the Akaike
Information Criterion (AIC) with gamma distribution and the proportion of invariant sites
estimated during the search (Table S3). Maximum likelihood phylogenies were carried
out using Garli v2.01 (Zwickl, 2006), which allows for the analysis of partitioned data.
Bootstrap support was calculated in Garli v2.01 by performing 1,000 bootstrap replicates.
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Table 1 Gene flow and genetic differentiation statistics for Petaurus breviceps populations. Population
statistics are presented as comparisons between (United States of America (USA), Indonesia (Indo), Papua
New Guinea (PNG) and northern Australian (NAus), using FST (population differentiation), Dxy (abso-
lute divergence) and Da (net diversity).

Statistic Population Indo USA NAus

Fst PNG 0.242 0.599 0.572
Indo – 0.198 0.608
USA – – 0.862

Dxy PNG 0.078 0.082 0.097
Indo – 0.038 0.101
USA – – 0.097

Da PNG 0.019 0.049 0.055
Indo – 0.008 0.061
USA – – 0.084

Split support was calculated using DendroPy (Sukumaran & Holder, 2010) and sumtrees
v4.0.0 (Sukumaran & Holder, 2015).

RESULTS
We took a subset of 140 individuals with complete mitochondrial data from USA and from
the suspected founder populations in PNG, Indonesia and northern Australia to test for
the origin of the pet species using network analysis. We observed a total of 142 variable
sites forming 51 haplotypes (Hd = 0.9344; nucleotide diversity Pi = 0.03828). Tajima’s
D was negative, −1.2, which can be indicative of a rapid population expansion, however
this result was not significant (P = 0.10). We observed relatively low genetic distance
values between Indonesia and USA populations (FST= 0.198; DXY= 0.038; DA= 0.008)
(Table 1), which could reflect either the recent introduction history and/or ongoing gene
flow. The median joining network shows 23 closely related USA haplotypes, two of which
contain sequences identical to haplotypes from Sorong, Indonesia (H21 and H48) (Fig. 2).
The USA and Australian populations are distantly related based on genetic divergence
(FST = 0.86; DXY = 0.097; DA = 0.084). There is very little diversity within the nuclear
network analysis of any population (Fig. S1). Only four haplotypes were observed in the
total dataset, the most frequent occurred in all geographic locations, and all differed by
only one base pair from each other. The three minor haplotypes occurred in Sol River,
Indonesia (G-H1); Northern Territory, Australia (G-H2) and Texas, USA (G-H3).

Of the 287 individuals sequenced across the native range and the USA, 231 had complete
data for all three genes and were concatenated for phylogenetic analysis. Maximum
likelihood analysis shows the USA sequences are most closely related to sequences from
Indonesia as expected (Fig. 3). The USA sequences fall within the PNG/Indonesian clades
sharing a common ancestor with C-H42 (Kai Besar Island, Indonesia) (Malekian et al.,
2010) and including two haplotypes, C-H21 and C-H48, which share identical sequence
with Indonesian individuals sourced from Sorong, Indonesia (Campbell et al., 2018).
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Figure 2 Median joining mitochondrial network demonstrating that Petaurus breviceps samples col-
lected from the pet trade in the United States of America are most closely related to wild-caught indi-
viduals fromWest Papua, Indonesia. Sequences were analysed from USA, the island of New Guinea and
northern Australia, where the pet trade was thought to originate from. The size of the circles indicate the
number of individuals identified with a given haplotype. Colours within the circles indicate the geographic
provenance. Haplotypes that occurred in multiple locations are indicated with a pie chart showing the
proportion of individuals from different locations. Single base pair substitutions are indicated as hatched
black lines.

Full-size DOI: 10.7717/peerj.6180/fig-2
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Figure 3 Maximum likelihood analysis demonstrating that Petaurus breviceps samples collected from
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Table 2 Mitochondrial haplotype diversity of native populations and introduced populations of
Petaurus breviceps. The proportion of haplotypes per individual (Haplotype diversity) is reported to
account for differing sampling intensities across studies and locations.

Native or
introduced

No. of
individuals

No. of
haplotypes

Haplotype
diversity

USA combined Introduced 112 23 0.21
Texas only Introduced 106 22 0.21
Tasmania (AUS)* Introduced 27 1 0.04
Papua New Guinea Native 27 20 0.74
Indonesia Native 5 4 0.80
Australia mainland* Native 71 34 0.48

Notes.
*Asterisk indicates data from Campbell et al. (2018).

Weused the intensely sampled Texas population to investigate within population genetic
diversity. From the 106 samples with complete mitochondrial data we observed 75 variable
sites forming 45 haplotypes (Hd = 0.9716; nucleotide diversity Pi = 0.00447). Tajima’s D
was negative,−1.75, but not significant (P = 0.10). This result suggests a steady population
expansion in Texas, however, it is difficult to rule out possible founder effects with such a
short temporal scale.

A comparison of mitochondrial haplotype diversity between native and introduced
populations of sugar gliders shows low diversity when compared with intrapopulation
diversities among each of the native PNG, Indonesian andmainland Australian populations
sampled (Table 2). However, the USA population has a much higher diversity when
compared with an introduced population found in Tasmania, Australia, even though the
species has been in the USA for a much shorter time period. This would suggest a recent
introduction from multiple source populations into the USA, although ongoing gene flow
cannot be ruled out.

DISCUSSION
Our analysis suggests that all of the USA sugar gliders sampled in this study have originated
from a source population in the vicinity of Sorong, Indonesia because all USA individuals
exist in a single clade with high sequence identity to two individuals sampled from this
region. Our sampling shows no evidence consistent with USA sugar gliders originating
from other parts of Indonesia, Papua New Guinea or Australia. This suggests that trade
in sugar gliders is from a concentrated area and there are no wide-reaching impacts of
the pet-trade across the broader native range of sugar gliders. Our results are consistent
with reports from legal Indonesian wildlife trade channels, which designate Sorong as
the base for collection of sugar gliders and states that exported animals are either captive
bred, or captured from surrounding wild locations. To abide by Indonesian regulations,
exporters must restrict exportation to quotas of individuals (for example 225 animals for
the years 2010 and 2011) (Lyons & Natusch, 2012). There is concern amongst conservation
groups and non-governmental organisations (NGOs) working in the area that Indonesian
exportation rates far exceed these quotas (Lyons & Natusch, 2012). Additionally, there
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are concerns about how wildlife quotas are calculated in Indonesia and where breeding
facilities obtain animals if none currently exist in captivity (Janssen & Chng, 2018). Our
study has not surveyed a sufficient number of genetic loci to provide quantitative estimates
of exportation rate, and we are thus unable to determine compliance with export quotas.
Encouragingly, we did not discover any unequivocal evidence for illegal trade of sugar
gliders. However, we note that participation in this study from operators in the USA
was voluntary. Additionally, our study has surveyed only a small proportion of the USA
population (seven states). It is possible that with more extensive sampling from the USA
population, cases of illegal trade may become apparent. However, because our sampling
was focused upon two large operators that supply the majority of the country, we suggest
that export from West Papua, Indonesia, is for the most part legal.

Compared to other introduced sugar glider populations, domestically kept exotic
pet sugar gliders in the USA are a relatively diverse group, displaying 23 mitochondrial
haplotypes. Traditionally introduced species are thought to harbour low genetic diversity
due to small founding populations and bottlenecks (Nei, Maruyama & Chakraborty, 1975;
Dlugosch & Parker, 2008; Frankham, 2010; Campbell et al., 2018). However, high diversity
has been shown in introduced populations founded by multiple introductions (Kolbe et al.,
2004; Facon et al., 2008; Bock et al., 2015). The genetic diversity for the USA population of
sugar gliders is consistent with reports from breeders suggesting intermittent importation
of new individuals into breeding colonies. The high mtDNA haplotype diversity we
observed in USA captive populations is likely to be a result of multiple collection localities
near Sorong and/or randomly introducing new haplotypes from a genetically diverse
source population in West Papua. The high mitochondrial diversity in the USA and
the low measures of genetic distance between the USA and Indonesia (FST = 0.198;
DXY= 0.038; DA= 0.008) could suggest gene flow between the two countries or multiple
recent introductions of individuals which were wild caught from varying localities. For
comparison, the population of sugar gliders recently introduced to Tasmania, through a
single introduction of unknown numbers approximately 150 years ago, consists of just a
single haplotype (Campbell et al., 2018). Further, FST between Tasmanian and mainland
populations is very high (FST = 0.680) but between population divergence statistics are
very low (absolute diversity, DXY = 0.008; net divergence, DA = 0.005). The most basal
lineage of all sugar gliders is haplotype C-H32, which originates from the geographical
centre of the island of New Guinea in West Papua, Indonesia (Malekian et al., 2010). There
is a strong separation between the PNG/Indonesian clades and the Australian clades.

CONCLUSION
Here we have provided evidence to support anecdotal reports from commercial websites
offering the sale of sugar gliders that the source of the USA population of sugar gliders is
West Papua, Indonesia. In our sampling, we found no evidence of illegal trade from other
parts for the sugar glider native range but we cannot discount the possibility that animals
are taken from other parts of Indonesia or Papua NewGuinea and traded from Sorong. The
scope of our inference is limited due to sparse sampling ofWest Papua, surrounding islands
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and the voluntary nature of tissue donation fromUSA pet owners.More extensive sampling
of wild sugar gliders, animals bred in captive breeding facilities inWest Papua and privately
owned sugar gliders in the USA along with detailed pedigree information from breeders in
the USA would be required to fully understand the importation history (Hogg et al., 2018).
We established that despite being founded very recently (less than 30 years ago), the USA
population is significantly more diverse than other introduced but older populations in
Australia (Campbell et al., 2018). This implies multiple recent introductions and/or gene
flow between Indonesia and the USA (Dawnay et al., 2008; Ogden & Linacre, 2015), and
suggests that there is sufficient diversity within the USA population to avoid negative
consequences of inbreeding if pedigrees are carefully managed. Ongoing importation
of sugar gliders from legal avenues would allow US breeders to actively manage genetic
diversity in the captive USA population, while allowing Indonesian wildlife traders the
opportunity to benefit from their natural resources. For the specific purpose of preventing
inbreeding in the USA an appropriately managed wild harvest of sugar gliders from
West Papua, Indonesia, could continue with sufficient regulation of wildlife trade and
if sustainable wildlife harvest quotas are enforced (Nijman, 2010; Janssen & Chng, 2018).
Initiatives to achieve this could include, stricter licensing and registration for exporters,
minimum mandatory reporting standards for captive breeding facilities and monitoring
of selected wildlife trade hubs (Nijman, 2010).
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