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ABSTRACT
Background. Human embryonic stem cells (hESCs) are pluripotent cells derived
from the inner cell mass of in vitro fertilised blastocysts, which can either be
maintained in an undifferentiated state or committed into lineages under determined
culture conditions. These cells offer great potential for regenerative medicine, but
at present, little is known about the mechanisms that regulate hESC stemness; in
particular, the role of cell–cell and cell-extracellular matrix interactions remain
relatively unexplored.
Methods and Results. In this study we have performed an in silico analysis of cell-
microenvironment interactions to identify novel proteins that may be responsible
for the maintenance of hESC stemness. A hESC transcriptome of 8,934 mRNAs was
assembled using a meta-analysis approach combining the analysis of microarrays and
the use of databases for annotation. The STRING database was utilised to construct
a protein–protein interaction network focused on extracellular and transcription
factor components contained within the assembled transcriptome. This interactome
was structurally studied and filtered to identify a short list of 92 candidate proteins,
which may regulate hESC stemness.
Conclusion. We hypothesise that this list of proteins, either connecting extracellular
components with transcriptional networks, or with hub or bottleneck properties,
may contain proteins likely to be involved in determining stemness.

Subjects Cell Biology, Computational Biology, Developmental Biology, Molecular Biology
Keywords Transcriptome, Interactome, Protein–protein interaction network, Human embryonic
stem cells, In silico analysis

INTRODUCTION
Human embryonic stem cells (hESCs) are pluripotent cells present in the inner cell mass of

the blastocyst (Pera, Reubinoff & Trounson, 2000). They give rise in vivo to the three germ

layers (ectoderm, endoderm and mesoderm) and therefore, have the ability to generate

all tissues within the body. These cells can also be derived in vitro (Thomson et al., 1998),

maintaining an ability to either self-renew or differentiate (Keller, 2005). Human ESCs are
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a fundamental tool for understanding human embryonic development and constituent

mechanisms of differentiation (Keller, 2005). Moreover, they represent a potentially

powerful tool in drug screening (Jensen, Hyllner & Bjorquist, 2009) and regenerative

medicine (Aznar & Gomez, 2012; Keller, 2005; Wobus & Boheler, 2005). However, in order to

mobilise the potential of hESCs, it is necessary to understand the molecular determinants

of self-renewal and differentiation.

The core transcriptional network regulating pluripotency (Babaie et al., 2007; Boyer

et al., 2005; Chavez et al., 2009; Marson et al., 2008; Rodda et al., 2005) is composed of

three transcription factors: octamer-binding protein 4 (OCT4) (Hay et al., 2004), sex

determining region Y-box 2 (SOX2) (Fong, Hohenstein & Donovan, 2008) and NANOG

(Hyslop et al., 2005; Zaehres et al., 2005). Interestingly, although these transcription factors

clearly drive pluripotency (Li et al., 2009; Takahashi et al., 2007), their expression is not

restricted to hESCs (Atlasi et al., 2008; Leis et al., 2012; Liedtke et al., 2007; Pierantozzi

et al., 2011; Zangrossi et al., 2007). Thus, stemness must in part depend on other hESC

specific characteristics, such as the context of expression of these three transcription

factors. Protein–protein interaction networks may provide a valuable insight into

this hESC specific context (Boyer et al., 2005; Muller et al., 2008). Proteins of the cell

microenvironment may also be an important part of this network (Evseenko et al.,

2009; Stelling et al., 2013; Sun et al., 2012), since this is the niche where cell–cell and

cell-extracellular matrix (ECM) interactions occur, allowing selective cell communication.

Indeed, it was through the addition of ECM proteins and growth factors that xeno-free

culture conditions for hESCs were defined (Melkoumian et al., 2010; Rodin et al., 2010).

These methods have facilitated investigation of the roles that extracellular molecules, such

as heparan sulfate (HS) (Stelling et al., 2013), fibroblast growth factor (FGF)-2 (Eiselleova

et al., 2009; Greber et al., 2010) and activin A (Xiao, Yuan & Sharkis, 2006) play in hESC

self-renewal and differentiation. However, such factors have not always been linked to

specific transcriptional networks and many of the defined medium formulations do not

completely sustain pluripotency (Baxter et al., 2009; Ludwig et al., 2006). Therefore, other

factors involved in the maintenance of stemness must be missing. One key factor could be

a wider link between ECM interactions and transcriptional networks, thereby establishing

important relay mechanisms between endogenous and exogenous stemness regulators.

Data from large-scale transcriptomic and proteomic studies (Koh et al., 2012) facilitate

the construction of large biological networks in which nodes and edges represent

molecules and interactions respectively. Studying the topological properties of these

networks may enable the elaboration of novel hypotheses. For instance, it has been shown

that hubs, which are highly connected nodes within a network, are more likely to be

important proteins in a protein–protein interaction network (Jeong et al., 2001), as well

as bottlenecks, which are nodes with a high betweenness centrality, meaning many shortest

paths within the network pass through them (Yu et al., 2007).

To gain a more global insight into the potential contribution of the cell-

microenvironment to stemness, we employed an in silico systems-level approach where

a meta-analysis of dozens of microarrays was performed to establish a stringent yet
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more representative hESC transcriptome. Transcripts of transcriptional and extracellular

proteins were used to build a putative interactome or protein–protein interaction network.

The organisation of this network was then analysed to identify extracellular proteins with

hub or bottleneck properties, which may be involved in determining stemness, as well as

proteins connecting the extracellular factors to transcription.

MATERIALS AND METHODS
Establishing hESC and hESC-derived transcriptomes
The microarray datasets used to establish a high coverage hESC transcriptome were raw

data (.CEL image files) of single channel Human Genome U133 Plus 2.0 Affymetrix

microarrays downloaded from the ArrayExpress public database (Parkinson et al.,

2007). Probe intensity extraction and normalisation procedures were performed with

BRB-ArrayTools 4.3.0 beta 1 (Simon et al., 2007) using default median array values

(selected by BRB-ArrayTools 4.3.0 beta 1) as reference. The minimum required fold

change was 1.5. If less than 20% of the expression values met this value, the gene was

excluded. Each individual dataset was first analysed using the three available algorithms:

Robust Multi-array Analysis (RMA) (Irizarry et al., 2003), GC-RMA (Wu et al., in press)

and Micro Array Suite 5.0 (MAS5.0) (Hubbell, Liu & Mei, 2002). The three lists of

expressed genes were either combined to create a total list containing all expressed genes,

or compared to create an intersection list containing only overlapping genes. For the hESC

datasets, when the intersection list contained at least 50% of the genes of the total list,

the dataset was used to perform a meta-analysis to establish the hESC transcriptome.

Thus, all hESC datasets matching this criterion were grouped to be analysed together and

generate the final intersection list used as the hESC transcriptome for further analysis

(Fig. 1). For the hESC-derived cell datasets, if the intersection list contained at least 50%

of the genes of the total list, the full transcriptome (fibroblasts and endothelial cells) was

used for transcriptomic comparisons; otherwise the datasets were combined to build

the final intersection list and form the hESC-derived cell transcriptome, which was

used for transcriptomic comparisons (Fig. 1). The identifiers were EntrezGene IDs and

Official Gene Symbol identifiers. The identifier conversion was done with the database

for annotation, visualization and integrated discovery (DAVID) 6.7 (Huang, Sherman &

Lempicki, 2009a; Huang, Sherman & Lempicki, 2009b).

Selection of extracellular and transcription related
sub-transcriptomes
The extracellular (EC) and the transcription factor related (TF) components of

the transcriptomes were extracted using the Gene Ontology (GO) database (Ashburner

et al., 2000). The terms used were: GO:0005576 (extracellular region) and GO:0009986

(cell surface) for the EC component; GO:0005667 (transcription factor complex),

GO:0008134 (transcription factor binding), GO:0000988 (protein binding transcription

factor activity) and GO:0001071 (nucleic acid binding transcription factor activity) for the

TF component. Genes involved in biological processes (e.g., cell cycle (GO:0007049), cell

Mournetas et al. (2014), PeerJ, DOI 10.7717/peerj.618 3/22

https://peerj.com
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005576
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0009986
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0005667
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0008134
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0000988
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0001071
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://amigo.geneontology.org/amigo/search/ontology?q=GO:0007049
http://dx.doi.org/10.7717/peerj.618


Figure 1 Flow chart of the microarray dataset analysis. This flow chart describes the microarray
meta-analysis process ending by the transcriptome establishment of hESC, endothelial cells, fibroblasts
and mixed hESC-derived cells.
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adhesion (GO:0007155), cell communication (GO:0007154), cell junction (GO:0030054)

and cytoskeleton organization (GO:0007010)) were also highlighted.

By using a published list of HS binding proteins (Ori, Wilkinson & Fernig, 2008), the EC

component was divided into two distinct groups: genes coding for HS binding proteins and

those coding for non-HS binding proteins.

The hESC transcriptome was compared with the three different hESC-derived cell

transcriptomes to establish which mRNAs were only expressed in hESC (the specific part)

and which ones were expressed in all analysed transcriptomes (the common part).

Construction and analysis of putative interactomes
Putative interactomes were built with the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING) 9.0 database (Szklarczyk et al., 2011) using interaction data

from experimental/biochemical experiments and association in curated databases only,

which excludes interaction predictions by neighbourhood in the genome, gene fusions,

co-occurrence across genomes, co-expression and text-mining (co-mentioned in PubMed

abstracts). A stringent interaction confidence of 0.7 was imposed to ensure a higher

probability that the predicted links exist (Szklarczyk et al., 2011).

Analysis of network structure
Cytoscape 2.8.0 software (Shannon et al., 2003) and associated plug-ins were used to

visualise and analyse protein–protein interaction networks. Randomised networks were

created by the RandomNetworks v1.0 plug-in from the real protein–protein interaction

networks. Therefore, each random network had the same number of nodes N and edges

L as its corresponding real network. Network topological parameters, such as connected

components, average degree ⟨k⟩ , degree distribution P(k), average clustering coefficient

⟨C⟩, clustering coefficient distribution C(k) and characteristic path length ⟨l⟩, were

computed with the NetworkAnalyser plug-in. Statistical analysis was performed using

IBM SPSS Statistics 21 software.

Enrichments analysis of interactome components
Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto, 2000) pathway

and GO Biological Processes term enrichments were processed using DAVID 6.7 (Huang,

Sherman & Lempicki, 2009a; Huang, Sherman & Lempicki, 2009b) for the analysis of tran-

scriptome subsets. Terms were recorded when the EASE score was 60.1 and considered

significantly enriched when the false discovery rate was 60.05. Enrichment was calculated

through two different ways: the ratio of the ratio of proteins belonging to the term in the

analysed list and the ratio of proteins belonging to the term in Homo sapiens, or hESCs.

Selection of candidate proteins
Proteins with a degree k in the top 20% were considered as hubs, while proteins with a be-

tweenness in the top 20% were considered as bottlenecks (Yu et al., 2007). The EC/TF and

specific/common interfaces were established from the hESC sub-interactome, constructed

with STRING data (edge confidence of 0.7) and containing EC and TF components only.

To be part of the EC/TF interface network, an EC node had to be connected to at least one
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Figure 2 Establishment of the list of candidates, a flow chart. This flow chart describes the candidate
choice process from the hESC transcriptome to the final list of 92 proteins.

TF node and vice-versa. Similarly, to be part of the specific/common interface, a specific

node had to be connected to a least one common node and vice-versa. In this complete

(ALL EC+TF) list of candidate proteins composed of the two interfaces, hubs and

bottlenecks, only the EC nodes from the specific and common parts were kept to establish

the final (C+S EC) short list of candidate proteins (Fig. 2). The KEGG pathway and GO

Biological Processes term enrichments were processed as previously. Statistical analysis was

performed using IBM SPSS Statistics 21 software and presented as mean ± SEM.

RESULTS
The hESC transcriptome
To discover new regulators of hESC pluripotency, 24 hESC microarrays were analysed from

four different datasets (Table 1). A total of 8,934 genes were found to be expressed, which
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Figure 3 Overlaps of transcriptomes and sub-transcriptomes. (A) Main overlaps of hESC and hESC-
derived cell transcriptomes. Grey, hESC transcriptome; Blue, endothelial cell transcriptome; Red: fibrob-
last transcriptome; Green: mixture of hESC-derived cell transcriptome. (B) The overlaps of hESC sub-
transcriptomes. The hESC transcriptome is composed of 8,934 mRNAs in total with a hESC-specific part
(1,010 mRNAs, brown part), a common part (1,933 mRNAs, blue part) shared with the hESC-derived
cells, and the rest of the mRNAs (grey). Sub-transcriptomes can be highlighted: the HS binding proteins
part (191 mRNAs, specific in red and common in pink); the extracellular part (EC) without HS binding
proteins (576 mRNAs, specific in orange and common in purple); the transcription factor related part
(TF, 721 mRNAs, specific in yellow and common in light blue).

constitute the high coverage hESC transcriptome (Table S1). To establish hESC specific

expression profiles, three different early hESC-derived cell transcriptomes were extracted

from analogous fibroblast (5,086 mRNAs), endothelial cells (5,522 mRNAs) or mixed

hESC-derived cells (10,730 mRNAs, Table 1 and Table S1).

The mRNAs specifically expressed by the hESCs (1,010 mRNAs) and those common

to hESCs and hESC-derived cells (1,933 mRNAs) were identified by comparing the

hESC trancriptome with the hESC-derived trancriptomes (Fig. 3A). Gene Ontology

(GO) annotation database (Ashburner et al., 2000) was then used to identify the hESC

transcription factor (TF) related (721 mRNAs) and extracellular (EC) transcripts. In this

last set of mRNAs, a distinction between transcripts coding for HS binding proteins (191

mRNAs) and non-binding proteins (576 mRNAs, Fig. 3B and Table S1) was enabled by a

published list of HS binding proteins (Ori, Wilkinson & Fernig, 2008).

Transcriptome analysis showed that genes known to be involved in stemness were

represented in this hESC transcriptome, such as POU class 5 homeobox 1 (POU5F1, which

encodes OCT4 protein) (Nichols et al., 1998) and SOX2 (Avilion et al., 2003). As expected,

some of these were in the hESC specific subset, such as the telomerase reverse transcriptase

(TERT) (Yang et al., 2008) and growth differentiation factor 3 (GDF3) (Levine & Brivanlou,

2006) (Table 2A). Interestingly, NANOG (Chambers et al., 2003) was not present here.

Some germ layer markers were also found in the hESC transcriptome, but they were never

specific (Table 2B). Lastly, many common additions to cell culture medium, which have

been observed to facilitate hESC growth in vitro, such as FGF2 (Eiselleova et al., 2009;
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Table 2 Transcriptomes and literature comparisons, a selection of markers. ‘Transcriptome’ column: transcriptome(s) or sub-transcriptome
containing the mRNAs. (A) Signalling molecules required for pluripotency/self-renewal; (B) Germ layer markers and (C) Molecules related to
culture medium of hESCs.

Marker/Family Acronym Name Transcriptome GO term

PTEN phosphatase and tensin homolog hESC (COMMON) CS/CA/CC/Cco

TERT telomerase reverse transcriptase hESC (SPECIFIC)

GDF3 growth differentiation factor 3 hESC (SPECIFIC) EC non-HS

NODAL nodal homolog (mouse) hESC (SPECIFIC) CCo/EC non-HS

ZIC3 Zic family member 3 hESC, Mix TF

SOX2 SRY (sex determining region Y)-box 2 hESC, Mix CC/CCo/TF

A Embryonic stem cell

POU5F1 POU class 5 homeobox 1 hESC, Mix CCo/TF

NEFH neurofilament, heavy polypeptide hESC (COMMON) CS
Ectoderm

TUBB3 tubulin, beta 3 class III hESC, Mix CCo

KRT19 keratin 19 hESC (COMMON) CS
Endoderm

SOX7 SRY (sex determining region Y)-box 7 hESC, Endo, Mix CCo/TF

KDR kinase insert domain receptor
(a type III receptor tyrosine
kinase) (VEGFR)

hESC, Mix CA/CCo/HS

PDGFRA platelet-derived growth factor
receptor, alpha polypeptide

hESC (COMMON) CS/CA/CCo

B

Mesoderm

VIM vimentin hESC (COMMON) CS

FN1 fibronectin 1 hESC (COMMON) CA/HS

ITGA5 integrin, alpha 5 (fibronectin receptor,
alpha polypeptide)

hESC, Mix CA/CCo/J/HS
Fibronectin

ITGB1 integrin, beta 1 (fibronectin
receptor, beta
polypeptide, antigen CD29
includes MDF2, MSK12)

hESC, Endo, Mix CS/CA/CC/CCo/J/HS

FGF2 fibroblast growth factor 2 hESC (COMMON) CC/CCo/HS/TF

FGFR1 fibroblast growth factor receptor 1 hESC (COMMON) CC/CCo/HS

FGFR2 fibroblast growth factor receptor 2 hESC, Endo, Mix CC/CCo/HS

FGFR3 fibroblast growth factor receptor 3 hESC, Endo, Mix CCo/J/HS

Fibroblast growth factor

FGFR4 fibroblast growth factor receptor 4 hESC (SPECIFIC) CCo/J/HS

ACVR1B activin A receptor, type IB (ALK4) hESC (COMMON) CC/CCo/EC non-HS

ACVR1C activin A receptor, type IC hESC (SPECIFIC) CCo

ACVR2A activin A receptor, type IIA hESC, F, Mix CCo

ACVR2B activin A receptor, type IIB hESC, Endo, Mix CCo/EC non-HS

C

Activin A

INHBA inhibin, beta A/Activin A hESC (COMMON) CC/CCo/HS

Notes.
Endo, endothelial cell; F, fibroblast; Mix, mixture of hESC-derived cells; GO term column, GO terms found during the GO extraction; CA, cell adhesion; CC, cell cycle;
CCo, cell communication; CS, cytoskeleton organisation; J, cell junction; EC, extracellular part; HS, heparan sulfate binding proteins; TF, transcription factor related
part.
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Figure 4 General network parameters of EC+TF putative interactomes. (A) The average clustering
coefficient of real networks and their corresponding average randomised networks with SEM bars (One
sample t-test, n = 5, p-value <0.001). (B) The node degree distribution P(k) and (C) the clustering
coefficient distribution C(k). C, common part; S, specific part; R, random; EC, extracellular part; TF,
transcription factor related part.

Vallier, Alexander & Pedersen, 2005) and activin A (Xiao, Yuan & Sharkis, 2006) were also

present (Table 2C).

Putative extracellular/transcriptional interactomes
As the aim of this study was to learn more about the potential importance of functional

links between cell/cell–matrix interactions and transcription, putative protein–protein

interaction networks containing only transcriptional and extracellular components

(EC+TF) were established by means of the STRING database (Szklarczyk et al., 2011)

using transcriptional expression data as a proxy for protein expression profiles. Two

interactomes were built: one (called ALL) containing all identified EC+TF proteins,

composed of 702 nodes and 3,201 edges (Data S1A), and one (called C+S) containing

only those transcripts/proteins that were either specific to hESCs or common to hESCs and

hESC-derived cells, comprising 209 nodes and 371 edges (Data S1B).

The average clustering coefficient ⟨C⟩ (indicating the network cohesiveness) was closer

to zero for all randomised networks compared to both ALL and C+S interactomes,

implying a significantly higher occurrence of clusters in these selected networks (Fig. 4A).

As observed in previous protein–protein interaction network studies (Albert, Jeong &

Barabasi, 2000; Jeong et al., 2001), both selected networks (ALL and C+S) and randomised

networks exhibit a scale free structure, where the degree distribution P(k) follows a

power-law P(k) ∼ k−γ , involving the presence of hubs (Fig. 4B and Table S2), and the

clustering coefficient distribution C(k) is independent of k meaning there is no inherent

presence of modules unlike hierarchical networks, even if there was a tendency of the real

networks to be hierarchical (C(k) ∼ k−β) compared to the randomised versions (Fig. 4C).
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These results demonstrate that the EC+TF putative protein–protein interaction

networks were suitable for further analysis.

Enrichment analysis
GO Biological Processes term and KEGG pathway enrichments were used to determine if

the EC+TF putative interactomes contained significantly enriched subsets of proteins. As

expected, terms related to EC (extracellular matrix organization), and TF (transcription,

DNA templated) appeared. More interestingly, terms relating to development (embryonic

development) and pathways already known to be involved in hESC stemness maintenance

(transforming growth factor (TGF)- β (James et al., 2005) or wingless-type MMTV

integration site family (Wnt) (Sato et al., 2004)) and differentiation (bone morphogenic

protein (BMP) signalling (Xu et al., 2005)) were also identified. KEGG Pathways in cancer

as well as GO terms of cell differentiation, cell adhesion, cell communication and cell

proliferation were represented too (Fig. 5 and Table S3A).

Fewer terms were found to be significantly enriched when only the common and

specific parts (from ALL to C+S) were analysed. However, when they were found

significant, the vast majority was more enriched, except the terms related to TF (Table

S3A). Nuclear-transcribed mRNA catabolic process (representing 56% of ALL and 48% of

C+S) and multicellular organismal development (representing 47% of ALL and 54% of

C+S) were the most represented non-related terms (Table S3A).

Interestingly, regulation of cellular component movement was well enriched with fold

changes in ALL of 5.8 (Homo sapiens as background)/4.6 (hESC as background) and

in C+S of 9.4 (Homo sapiens as background)/7.4 (hESC as background). 28%/51% of

the proteins belonging to this term in Homo sapiens/hESC were represented in ALL and

17%/31% in C+S (Tables S3A).

These data show that the EC+TF putative interactomes, both ALL and C+S, still

contained the subsets of proteins involved in development, cell differentiation, cell

adhesion and cell communication.

Novel proteins potentially associated with stemness
The final list of potential stemness proteins was established from ALL, the EC+TF putative

protein–protein interaction network. This list (called ALL EC+TF) was composed of

nodes with hub or bottleneck features, as well as nodes within the specific/common and

EC/TF interfaces (Fig. 2). Hubs are thought to be functionally important due to their high

number of interactions, while bottlenecks form links between different processes. 58%

of the bottlenecks in the ALL network were also hubs. The specific/common interface

reflects the links between the more general cell functions and those specific to hESCs. The

EC/TF interface represents points of communication between the genome and the cell’s

environment, including other cells. The ALL EC+TF contained 387 candidates (49% EC

and 55% TF) with 29 specific (8%) and 126 common (33%) nodes. The key transcription

factors OCT4 and SOX2 were present as hubs and part of the EC/TF interface (Table S4A).

Considering GO set (TF, EC) enrichment with regards to proteins belonging to

common or specific parts of the transcriptome, the specific subset was enriched in non-HS
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Figure 5 GO/KEGG analyses of EC+TF putative interactomes. (A) GO Biological Processes term
enrichment (against Homo sapiens), in fold change. (B) Percentage of the total number of proteins in
Homo sapiens related to GO Biological Processes that are present in ALL and C+S putative interactomes.
C, common part; S, specific part.

binding EC proteins (1.7-fold change), whereas the common subset was enriched in HS

binding proteins (1.6-fold change) (Fig. 6A). In addition the common subset was found

to be enriched in both hubs (1.3-fold change) and bottlenecks (1.6-fold change) (Fig. 6B).

Finally, hubs were enriched in TF (1.4-fold change) and bottlenecks in HS binding proteins

(1.3-fold change, Fig. 6B).

To assess the validity of the candidate prediction, a random ALL EC+TF list was

established the same way using a randomised version of the EC+TF putative interactome
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Figure 6 Comparative enrichment trends within the candidate protein list. (A) Enrichments in spe-
cific, common and other parts with HS, EC non-HS and TF. (B) Enrichments in HS, EC non-HS and TF
parts with EC/TF interface, C/S interface, hubs and bottlenecks. C, common part; S, specific part; EC,
extracellular part; HS, heparan sulfate binding proteins; TF, transcription factor related part.

(Tables S4B). The hub subset was identical in both real and random versions of the

candidate list due to the way the randomised network was generated. However, the

bottleneck subset in the real list had proteins with significantly higher betweenness

centrality (7,456 ± 835, paired sample test, n = 134, p-value <0.001) than the one in the

random list (0.0108 ± 0.0005). Moreover, the random list with 581 proteins retained 83%

of the original EC+TF putative interactome against 55% for the real list. The comparison

between the real list of candidates and its random version showed that the filtering process

was meaningful.

Three shortened lists were generated from ALL EC+TF list to decrease the number of

candidates by either keeping only EC proteins (ALL EC, 188 proteins, Table S4C) or/and

C+S proteins (C+S EC+TF, 155 proteins, Table S4D and C+S EC, 92 proteins, Table S4E)

as described in Fig. 2. 59% of the common proteins in the longest ALL EC+TF list and

62% of the specific ones were conserved in the shortest C+S EC list. Similarly, 9% of the

hubs and 20% of the bottlenecks were kept.

To determine if each list and each subset (hubs, bottlenecks and interfaces, as well as

specific, common and other proteins from the complete (ALL EC+TF) to the shortest

(C+S EC) list) still contained proteins potentially involved in stemness maintenance,

we undertook further GO Biological Processes term and KEGG pathway enrichments

(Table S3B–I). Only the subset containing the hESC-specific proteins was found without

any significant enrichment regarding the analysed terms and pathways (Table S3C).

However, the most represented term in both specific subsets from the ALL EC+TF and

ALL EC, as well as in the four full lists and in all other subsets, was multicellular organismal

development (Table S3B–I).
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Again, terms and pathways related to TF appeared in ALL EC+TF and C+S EC+TF

lists, as well as in all the other subsets of these two lists (Table S3B,D–I). These TF terms and

pathways were logically lost in the ALL EC and C+S EC lists and subsets.

GO terms related to cell differentiation, cell adhesion, cell communication, cell

movement or cell proliferation, and KEGG pathways of cancer were still significantly

enriched in the four lists and in the vast majority of the analysed subsets (Table S3B,D–I).

These data demonstrate that the four lists of candidates, as well as each subset of

proteins (hubs, bottlenecks, specific/common and EC/TF interfaces) incorporated proteins

involved in development and cell communication. Focusing on the EC proteins that

were either specific to hESCs or common to hESCs and hESC-derived cells allowed us

to reduce the number of candidates to 92 proteins (Table 3 and Table S4E), while insuring

that proteins potentially involved in stemness maintenance were retained. Among these

proteins, some are already known to be required for maintenance of hESC stemness, either

directly, such as NODAL (James et al., 2005; Vallier, Alexander & Pedersen, 2005), FGF2

(Eiselleova et al., 2009; Vallier, Alexander & Pedersen, 2005) and activin A (Xiao, Yuan &

Sharkis, 2006), or indirectly through signalling pathways such as TGF-β (James et al., 2005)

or Wnt (Sato et al., 2004). Other proteins are also known to play a role in mouse ESC

pluripotency, but not yet in hESC, such as the transcription factor 3 (TCF3) (Cole et al.,

2008). However, for the majority of candidates, including titin, nothing is known yet about

their functions in the context of hESCs.

DISCUSSION
We provide a novel picture of the hESC transcriptome built from a meta-analysis and

allowing the in silico analysis of a putative hESC protein–protein interaction network.

This systems-level approach has been used to identify proteins potentially involved in the

maintenance of stemness.

Transcriptomic data provide the most comprehensive insight into variations in cell type

or condition specific gene expression profiles. Therefore, data from multiple microarray

studies were chosen to generate putative interactomes due to the lack of corresponding

comprehensive proteomic profiles. Even if mRNA and protein levels have been suggested

to correlate weakly, this correlation may be stronger than anticipated, though this depends

on the techniques used to measure mRNA (Li, Bickel & Biggin, 2014; Pascal et al., 2008;

Schwanhäusser et al., 2011; Schwanhäusser et al., 2013). Thus, the present study provides

a predictive qualitative insight into sub-networks of proteins, which may mediate or

maintain human stem cell pluripotency.

The decision to selectively include genes only found by three different algorithms

allowed a reduction in the number of false positives in the whole transcriptome, but

probably amplified the number of false negatives, which may explain the absence of

NANOG. Regarding the specific/common distinction, this pipeline permitted confidence

about the common mRNA subset, whereas it likely increased the false positive rate in

the specific mRNA subset, which is still half of the common one. However, the use
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Table 3 The list of candidates, an overview. The ‘hubs’ column gives the degree; the ‘bottlenecks’ column gives the betweenness; the ‘S/C’ column
indicates if the protein is in the specific/common interface; the ‘EC/TF’ column indicates if the protein is in the EC/TF interface; the ‘KEGG pathway’
column indicates the number of pathway involving each protein (see Table S4 for a complete list).

Acronym Name GO term Hubs Bottlenecks S/C EC/TF KEGG
pathway

ACTN4 actinin, alpha 4 EC non-HS/CS 17 4

ACVR1B activin A receptor, type IB (ALK4) EC non-HS/CC/CCo X X 1

ADM adrenomedullin EC non-HS/CCo 4050.8 X X 0

BMP2 bone morphogenetic protein 2 HS/CC/CCo 2693.9 X X 3

DMD dystrophin EC non-HS/CS/CCo X 0

FGFR1 fibroblast growth factor receptor 1 HS/CC/CCo 2634.2 X X 5

FN1 fibronectin 1 HS/CA 26 6988.8 X 5

IL6 Interleukin 6 HS/CCo X 4

INHBA inhibin, beta A/Activin A HS/CC/CCo X 2

ITGA6 integrin, alpha 6 (CD49f) EC non-HS/CA/CCo/J 40 15218.1 X 6

ITGAV integrin, alpha V (vitronectin receptor) HS/CA/CCo 40 12409.4 X 6

JAM3 junctional adhesion molecule 3 EC non-HS/CA/CCo/J X X 2

LAMA1 laminin, alpha 1 HS/CA/CCo 15 X 4

MET hepatocyte growth factor receptor HS/CS/CC/CCo 24 10501.7 X X 6

PLAT plasminogen activator, tissue HS/CCo 2552.8 X 0

PLAU plasminogen activator, urokinase HS/CA/CCo X 1

SERPINE1 serpin peptidase inhibitor, clade E, member 1 HS/CA/CCo 24 10022.8 X 1

SERPINI1 serpin peptidase inhibitor, clade I, member 1 EC non-HS/CA X 0

TGFB2 transforming growth factor, beta 2 HS/CA/CC/CCo 25 10580.8 X X 6

C

THBS1 thrombospondin 1 HS/CA/CC/CCo 2066.0 X 5

VEGFA vascular endothelial growth factor A HS/CA/CCo 16 6817.1 X 6

CDH8 cadherin 8, type 2 HS/CA X X 0

FGF4 fibroblast growth factor 4 HS/CA/CCo X X 3

FGFR4 fibroblast growth factor receptor 4 HS/CCo X X 4

IDE insulin-degrading enzyme EC non-HS/CCo X 0

INHBE inhibin, beta E EC non-HS X 2

NODAL nodal homolog (mouse) EC non-HS/CCo X 1

PLXNB1 plexin B1 EC non-HS/CCo X 0

TTN titin EC non-HS/CS/CC X X 0

S

WIF1 WNT inhibitory factor 1 EC non-HS/CCo X X 1

Notes.
GO, Gene Onlotogy; KEGG, Kyoto Encyclopedia of Genes and Genomes; C, common part; S, specific part; EC, extracellular part; TF, transcription factor related part; J,
cell junction.

of transcriptomic data from different hESC lines cultured under different conditions

highlighted the core transcriptome of these cells.

Not all mRNAs were represented in the putative protein–protein interaction network,

probably because coverage of human protein–protein interactions in all databases,

including STRING, remains incomplete (De Las Rivas & Fontanillo, 2010). High edge

stringency limits imposed in this study should minimise inclusion of false positive

interactions (De Las Rivas & Fontanillo, 2010), thereby increasing confidence in the

relevance and utility of predicted networks.
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The scale-free nature of the EC+TF putative interactomes mean that they should exhibit

a high error tolerance thanks to redundancy and a high attack vulnerability, due to the

presence of hubs (Albert, Jeong & Barabasi, 2000).

Even incomplete interactomes are very complex structures. In order to focus on the

likely most important proteins within this interactome, four selection criteria were applied,

the first being the selection of hESC hubs. These proteins constitute a small, but often

essential part of the interactome (Awan et al., 2007). For example, deletion of just one hub

in yeast is often lethal (Jeong et al., 2001). The second was the selection of bottlenecks,

which link processes and so permit cross-talk. The third and the fourth criteria involved

were that proteins had to be in the specific/common or EC/TF interfaces. These interfaces

are posited to be important, as they reflect communication links between the nucleus and

the extracellular matrix, and between the specific and common proteins, which ultimately

make hESCs different from other cell types.

Interestingly, the GO term related to cell motility regulation was strongly represented

in the candidate lists. Cell movement is a key component of morphogenesis. It is usually

accomplished by three steps (protrusion, adhesion and de-adhesion) where cytoskeleton

and ECM are involved (Ananthakrishnan & Ehrlicher, 2007). This may be significant as

recent data indicate that cell motion may be an intrinsic feature of hESCs (Li et al., 2010).

Regulation of cell proliferation also appeared in our analysis of candidate lists. This may

be significant, as cell proliferation is a key property of hESCs, since these cells are able to

proliferate almost indefinitely in vitro (Miura, Mattson & Rao, 2004). This capability is

sustained by the EC part with growth factors (Activin A (Baxter et al., 2009) and FGF2 (Xu

et al., 2005)) and ECM molecules (fibronectin (Baxter et al., 2009) or laminin (Rodin et al.,

2010)), as well as by the TF part through the Smad signalling pathway (James et al., 2005;

Vallier, Alexander & Pedersen, 2005). Cell proliferation can also be linked to the significant

enrichment of cancer pathways in hESCs. Several links arise between cancer and hESCs, for

example, the formation of teratomas as a test to assess pluripotency.

CONCLUSION
Mechanisms involved in stemness are complex, multi-level and determined by the intrinsic

cell potential, cell/cell and cell/matrix interactions. The meta-analysis of transcriptomic

data in this study has allowed the construction of a hESC putative protein–protein

interaction network from which novel ECM proteins have been identified as potential

stemness regulators.

Networks are a snapshot of a dynamic model (Assmus et al., 2006; Peltier & Schaffer,

2010). Notions of attractors (or cell stable stationary states), landscapes formed with val-

leys (attractors) and hills (barriers between attractors), and cell state transitions described

by dynamic systems theory will complete this systems biology approach and bring new

hypotheses on hESC behaviour (MacArthur, Ma’ayan & Lemischka, 2008; MacArthur,

Ma’ayan & Lemischka, 2009; Peltier & Schaffer, 2010; Roeder & Radtke, 2009).
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