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ABSTRACT
Introduction. Whole-metagenome sequencing can be a rich source of information
about the structure and function of entire metagenomic communities, but getting
accurate and reliable results from these datasets can be challenging. Analysis of these
datasets is founded on the mapping of sequencing reads onto known genomic regions
from known organisms, but short reads will often map equally well to multiple
regions, and to multiple reference organisms. Assembling metagenomic datasets prior
to mapping can generate much longer and more precisely mappable sequences but the
presence of closely related organisms and highly conserved regionsmakesmetagenomic
assembly challenging, and some regions of particular interest can assemble poorly. One
solution to these problems is to use specialised tools, such as Kelpie, that can accurately
extract and assemble full-length sequences for defined genomic regions from whole-
metagenome datasets.
Methods. Kelpie is a kMer-based tool that generates full-length amplicon-like se-
quences from whole-metagenome datasets. It takes a pair of primer sequences and
a set of metagenomic reads, and uses a combination of kMer filtering, error correction
and assembly techniques to construct sets of full-length inter-primer sequences.
Results. The effectiveness of Kelpie is demonstrated here through the extraction and
assembly of full-length ribosomal marker gene regions, as this allows comparisons
with conventional amplicon sequencing and published metagenomic benchmarks. The
results show that the Kelpie-generated sequences and community profiles closelymatch
those produced by amplicon sequencing, down to low abundance levels, and running
Kelpie on the synthetic CAMI metagenomic benchmarking datasets shows similar high
levels of both precision and recall.
Conclusions. Kelpie can be thought of as being somewhat like an in-silico PCR tool,
taking a primer pair and producing the resulting ‘amplicons’ fromawhole-metagenome
dataset. Marker regions from the 16S rRNA gene were used here as an example because
this allowed the overall accuracy of Kelpie to be evaluated through comparisons with
other datasets, approaches and benchmarks. Kelpie is not limited to this application
though, and can be used to extract and assemble any genomic region present in a
whole metagenome dataset, as long as it is bound by a pairs of highly conserved primer
sequences.
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INTRODUCTION
Kelpie can be thought of as an in silico PCR program. It takes a pair of primer sequences
and a whole metagenome sequencing (WGS) dataset, and generates a corresponding set
of inter-primer amplicon-like sequences. It does this using iterative kMer filtering, error
correction, incremental assembly and recursive tree exploration. The results section of this
paper primarily discusses using Kelpie to determine the composition of a metagenomic
community, although this is just one possible application, and was chosen simply because
of the availability of suitable datasets and benchmarks, including sets of ‘correct’ results for
effectiveness comparisons.

Whole-metagenome sequencing datasets can be a rich resource for investigating both the
structure of a metagenomic community and the functional capabilities of its members, but
reliably and accurately extracting such information from large volumes of sequencing data
can be challenging. These challenges arise from the nature of the sequencing data itself, the
presence of ubiquitous and highly conserved genomic regions and the possible presence of
related organisms within the community. Whole genome sequencing (WGS) metagenomic
data is typically generated using a platform such as Illumina HiSeq or NovaSeq. These
systems produce very large volumes of short (100–150 bp) reads at a low cost per read, but
their short lengthmakes them less distinct than longer reads would be, and somore difficult
to map unambiguously to known reference sequences for the purposes of classification and
annotation. Assembling the metagenomes can generate much longer and more distinctive
sequences, and these can be used to more reliably determine the presence of particular
organisms or genes, but metagenomic assembly is itself challenging in the presence of
conserved regions and related organisms (Treangen & Salzberg, 2012;Wang et al., 2015).

The challenges involved in accurately interpreting short metagenomic datasets are
well illustrated by the task of determining the structure of a community from a WGS
metagenomic dataset. Approaches based on the direct mapping of reads face issues arising
from the indistinctiveness of short reads, while assembly-based approaches run into
problems caused by conserved regions and related organisms.

Metagenomic community profiling is commonly done using low cost targeted amplicon
sequencing, rather than through the analysis of whole genome sequencing datasets. A
chosen variable region of a marker gene is extracted and amplified from metagenomic
DNA using multiple rounds of PCR, with a pair of primers that match highly-conserved
sequences on either side of the region. These primers can be chosen to cover regions that
are sufficiently long and variable to allow closely related organisms to be distinguished
from each other. The resulting ‘amplicons’ are then sequenced, and the reads are then
processed and classified in some way to determine which organisms are present in each
sample and to give some idea of their abundances. Given a well-chosen variable region and
suitable primers, and a good quality reference gene database, this approach can accurately
identify the organisms present in a community, perhaps down to species level. Amplicon
sequencing is also well supported through tools, pipelines and reference datasets. The
book (Taberlet et al., 2018) gives an overview of amplicon sequencing in the context of
environmental DNA studies, and discusses both its strengths and weaknesses.
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Whole genome sequencing can answer more questions than amplicon sequencing as its
reads are derived from the entire genomes of the community members, rather than just
being constrained to a small region of a single chosen marker gene. Community structure
can be determined from WGS datasets through the use of either marker gene or whole
genome comparisons; and both of these approaches can be based on either the WGS reads
directly or on the contigs coming from a metagenomic assembly of these reads. The report
from the Critical Assessment ofMetagenome Interpretation (CAMI) benchmarking project
(Sczyrba et al., 2017) discusses these different approaches in some detail, and compares the
effectiveness of a number of publishedWGS community profiling tools on a set of synthetic
datasets. The paper from Lindgreen, Adair & Gardner (2016) also presents an overview of
available metagenome analysis tools.

The first step in those workflows that are based on mapping WGS reads to marker
genes is to search the datasets for just those reads that appear to be derived from the
chosen marker gene. This search can be done with tools based on Hidden Markov Models
(HMM), a fast kMer filter (Greenfield, 2018a), or even BLASTing all the WGS reads against
a reference set. The result will be a small set of filtered reads, around 0.1% of the initialWGS
read set for the bacterial 16S rRNA gene. These reads can then be classified in conventional
ways, such as through the use of statistical classifiers, such as RDP (Wang et al., 2007), or
by matching them to a reference database. The short length and random placement of
the WGS reads reduces the effectiveness of this approach, as some of the selected reads
will come from conserved regions of the marker gene or from related organisms, and may
resolve only to a higher taxonomic levels, such as Class or Order. The EBI Metagenomics
Portal (Mitchell et al., 2018) uses this reads-based approach, first filtering the WGS reads
using Infernal (Nawrocki & Eddy, 2013) in HMM-only mode against a library of ribosomal
RNA models from Rfam (Nawrocki et al., 2015), and then classifying these selected reads
with MAPseq (Matias Rodrigues et al., 2017) against a SILVA SSU/LSU reference set (Quast
et al., 2013).

Given the resolution limitations inherent with shortWGS reads, an appealing alternative
approach is to first assemble the WGS metagenomic datasets, and then search for the
wanted marker genes in the resulting contigs. The gene sequences that are found can then
be classified in any of the usual ways. Metagenomic assembly can potentially produce
complete marker gene sequences, resulting in much improved classification resolution,
perhaps down to the level of species or strain. In practice though, the presence of highly
conserved regions in these marker genes makes their accurate assembly very challenging,
and the resulting genomic regions are often incomplete or split into multiple small
contigs, with consequent impacts on the accuracy of the resulting community profile. The
limitations of this assembly-based approach are discussed further in the Results section.

Gene-targeted assembly can also be used to extract longer andmore classifiable sequences
frommetagenomicWGS datasets. Tools such as EMIRGE (Miller et al., 2011) basically align
WGS reads to a set of reference sequences, and then make adjustments to these alignments
to produce complete target region sequences. Xander (Wang et al., 2015) is another targeted
assembler that works by first building a de Bruijn graph from the WGS reads and then
searching for regions that match HMMs generated from reference sequences for the target
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genes. Both these approaches effectively work by aligning WGS reads to sets of reference
sequences, and rely on genes present in the community being close enough to ones found
in the reference sets to get sufficiently unambiguous alignments. Kelpie has no such
dependency on reference sequences and, like PCR, just takes a pair of primer sequences
and returns whatever was found between them, regardless of its similarity to known genes
or conformity to a model trained on such genes.

Taxonomic profiling can also be based on whole genomes rather than just marker
genes. WGS reads or assembled contigs can be matched against whole genome reference
sets, and the results used to generate community profiles. The appeal of this approach
is that it may better separate closely related organisms, especially if these differ in their
functional capability through horizontal gene transfer or the acquisition of plasmids.
Megan (Huson et al., 2011), Kraken (Wood & Salzberg, 2014) and MG-RAST (Glass et al.,
2010) are examples of tools and pipelines that are based on whole genome profiling. In
practice, the effectiveness of this approach is limited by the restricted taxonomic coverage
of the available reference sets, especially for environmental studies where novel organisms
are commonplace. Some of the tools considered by the CAMI study are based on whole
genome profiling and will be discussed further in the Results section.

WGS taxonomic profiling with Kelpie starts by extracting and assembling sets of
full-length amplicon-like marker gene sequences from a set of filtered WGS reads and pair
of primer sequences. These ‘amplicon’ sequences can then be run through conventional
amplicon pipelines or other such tools to generate taxonomic profiles and further results
of interest. This approach can result in improved resolution compared to direct read
mapping as the assembled sequences can be considerably longer than a single WGS read,
come from known regions within a chosen marker gene, and the primers can be chosen
to cover informative variable regions. Kelpie generates sets of extended reads rather than
traditional contigs, with each of these amplicon-like sequences being seeded from a single
WGS read that contained the specified forward primer that was then extended until a
reverse primer sequence was reached. Generating sets of extended reads in this way makes
Kelpie compatible with conventional amplicon-based pipelines, and also tends to preserve
some strain variation, as discussed in the Results. In practice, taxonomic profiles generated
using Kelpie are highly accurate, and give comparable results to PCR-based amplicon
sequencing, down to the point where there is insufficient depth of coverage in the WGS
dataset to fully cover the chosen marker gene regions.

The results presented later are all based on this application as it allowed the effectiveness
and accuracy of Kelpie to be assessed through comparison against alternative techniques
and published metagenomic benchmarks. Kelpie is not limited to this application though,
and can be used to extract and assemble any genomic region present in a WGS dataset that
is bounded by pairs of highly conserved primer sequences.

METHODS & MATERIALS
Algorithm description
Kelpie is founded on the distinctiveness properties of medium to large kMers (>∼20 bp).
Once ‘k’ is big enough, the space of possible kMers becomes so large that instances of
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kMer sharing between organisms almost always signify shared genes or domains, either
through relatedness or gene transfer (Greenfield & Roehm, 2013). One useful application
of this distinctiveness property is that, given a long enough kMer, it is frequently possible
to correctly predict the kMer that follows it in the genome from which it was derived,
even with metagenomic datasets. These predictions are done by simply generating each of
the 4 possible following kMers, produced by concatenating the rightmost (k-1) bases of
the current kMer with each of ‘A’, ‘C’, ‘G’, and ‘T’ in turn, and checking the presence of
each these variants in the set of distinct kMers constructed from the entire WGS dataset.
For Kelpie running on the three coal seam metagenomes discussed in the Results section,
this concatenate-and-check technique found that there was only a single viable ‘next’
kMer 99.6% to 99.9% of the time when attempting to extend an under-construction
amplicon by a single base at a time. This technique of generating long sequences through
unambiguous extension is also at the core of kMer-based error correction algorithms, such
as Blue (Greenfield et al., 2014), and is also used in the Inchworm phase of the Trinity RNA
transcript assembler (Grabherr et al., 2011).

In the current release of Kelpie, the starting point is a filtered subset of an entire WGS
dataset that just contains reads derived from the genomic region of interest, such as the 16S
or 18S rRNA gene. For a bacterial metagenomic dataset, this initial filtering will typically
reduce the data volumes to be processed by Kelpie by around 99.9%, making it feasible
to keep the filtered reads in memory for much improved performance. This filtering does
not have to be exact, and including some non-target reads will have little effect as they
will be discarded by the more targeted filtering performed in the first stage of Kelpie. This
kind of filtering is also used in other reads-based WGS metagenomic taxonomic profiling
pipelines, such as the EBIMetagenomics Portal (Mitchell et al., 2018). It is also helpful if the
filtered reads are quality-trimmed before being processed by Kelpie, as this will reduce the
number of erroneous kMers that have to be considered. This can be done within filtering
tool if it has an appropriate option, or separately with a tool such as Trimmomatic (Bolger,
Lohse & Usadel, 2014).

Kelpie processes a filtered WGS dataset in three distinct phases:

• Extracting just those reads that cover the defined inter-primer region;
• Building kMer tables from these inter-primer region reads;
• Extending any reads found to contain a forward primer sequence.

The first phase goes through the initial filtered reads and uses an iteratively constructed
inter-primer kMer filter to select just those that cover the specified inter-primer region. The
first step in building this filter is to find all the reads that contain a ‘starting’ primer sequence
(either the specified forward primer or the reverse complement of the reverse primer).
The kMers (actually 32-mers) following the primers in these starting reads are added to an
initial inter-primer filter (a kMer hash set). The remaining reads are then scanned again,
looking for any that start with a kMer found in this inter-primer filter set. The kMers from
these newly selected reads are then added to the inter-primer filter, and the remaining
reads are scanned once again. This process continues until the entire inter-primer region
has been covered and the reads being selected contain a ‘finishing’ primer. The initial set
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of filtered reads are then passed over this inter-primer filter once again, and just those
reads that start with kMers found in the filter set are retained. Any reads that contain either
‘starting’ or ‘finishing’ primer sequences are trimmed appropriately. The result is a set of
trimmed reads that cover the primer-defined region. Any reads starting with the forward
primer or ending with its reverse complement are marked as ‘starting’, and these reads are
the ones that will be extended in the final phase.

The next phase turns these ‘inter-primer’ reads into the collection of kMer hash tables
for the extension phase. There is no ideal length for these extending kMers. Shorter kMers,
such as 32-mers are more plentiful but are also more likely to be shared between different
organisms; while longer kMers (such as 80-mers) are more distinctive and less likely to be
ambiguously shared, but fewer of them can be derived from each read, especially from the
trimmed reads at the start and end of the primer-defined region. The solution adopted is
to have multiple kMer tables, with ‘k’ ranging from 32 to almost the full read length (in
steps of 8 bp). For 100 bp reads, this results in nine such kMer hash tables. The reads are
first tiled for 32-mers and the resulting kMer table is built and then ‘denoised’ by removing
dubious kMers, such as those found only once, or those that are rare and appear to be error
variants of abundant kMers. The reads are tiled repeatedly for progressively longer kMers
to construct the remaining kMer tables.

The final phase then takes each of themarked ‘starting’ reads in turn and calls ExtendRead
to try to unambiguously extend it, one base at a time, until the extended read finishes with
a ‘finishing’ primer. At every iteration of the extension loop, the read is effectively further
extended by adding each of the possible bases, A, C, G and T to its end. Each of these
possible extended reads is then checked against the full collection of kMer tables to ensure
that it is fully supported by theWGS reads. If multiple extensions prove to be viable, each of
them is then tested to see if extending it further would eventually reach a terminal primer,
and so result in a complete amplicon. This extension check is done by recursively calling
ExtendRead on each of the viable extensions. Figure 1 contains a high-level pseudocode
description of this ExtendRead method and its iterative and recursive extension loop.

The presence of strains and closely related organisms within metagenomic communities
means that sometimes there will be multiple viable extended reads, all of which have both
good kMer support from the WGS data and end in a terminal primer. In this case, Kelpie
breaks the tie by randomly choosing one of the reads, in proportion to the repetition depth
of the 32-mers at the end of the read being iteratively extended. For example, if both ‘A’
and ‘T’ could viably be added to the end of the extending read, and the 32-mer xxxxxxxxA
was found 90 times in the WGS reads, and the xxxxxxxxT 32-mer was found 10 times, the
Kelpie will choose the ‘A’-extended read 90% of the time. Choosing in proportion in this
way ensures that less common strain variants are properly represented in the final set of
‘amplicons’, and not just subsumed by more common variants.

Once all the ‘starting’ reads have been extended, Kelpie drops any of these extended reads
that did not reach a terminating primer, trims the primer sequences from the remaining
full-length amplicons and writes them out as a FASTA file.

The depth-first recursive exploration of possible read extensions is computationally
expensive, but, in practice this path is rarely taken. Almost all decisions about what base to
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method ExtendRead(read, out extendedRead, out tpReached)  

{   

 extendedRead = read;   

 while (extending)  

 {   

  // does the extended read end with a terminal primer?     

  if (extendedRead.EndsWith(terminalPrimer))  

   return extendedRead & 'true';  

 

  // check whether the 4 possible extended reads all have support from the  

     // WGS reads via the kMerTables   

  foreach (kMerLength in kMerTableLengths)  

  {       

   generate all 4 possible 'next' (kMerLength) kMers at end of the read; 

   lookup their counts in (kMerLength) kMerTable and check if viable; 

   save 32-mer counts for later tie breaking; 

   // if none of the extensions are viable, abandon this read extension 

   if (viableAlternatives == 0)       

    return extendedRead and 'false'; 

   // if just one extension is viable, so stop checking longer kMers 

   if (viableAlternatives == 1)       

    break; 

  } 

   

  // only one of the possible extensions is viable 

  if (viableAlternatives == 1)        

  { 

   // add the viable base to the read and continue extending 

   extendedRead += viableBase; 

   continue; 

  }  

    

  // multiple viable extensions… 

  // recursively explore each of them and see how far downstream it can get 

  generate viableExtendedReads[] from all viable extensions; 

  foreach (read[i] in viableExtendedReads[])  

   // recursively explore the consequences of this extension 

   tpReached[i] = ExtendRead(read[i], out read[i]);  

    

  count number of extensions that reached terminal primer (tpCount); 

  // none of the extensions get to the end… 

  if (tpCount == 0)           

   return longest of extended reads and 'false'; 

  // just one extension could get to terminal primer, so all done 

  if (tpCount == 1)           

   return only winning read (now fully extended) and 'true'; 

    

  // tie: multiple extensions can reach a terminal primer 

  randomly choose a winner in proportion of saved 32-mer counts; 

  return winning (now fully extended) read and 'true'; 

   

 } // while (extending) 

} 

 

Figure 1 Pseudocode for Kelpie extension phase.
Full-size DOI: 10.7717/peerj.6174/fig-1

choose to further extend an extending read are taken just by looking at the kMer tables, and
almost all of these decisions only have to check the initial 32-mer table. Table 1 presents
some statistics on these decisions from the three coal seam metagenomes discussed in
the ‘Results’ section. The initial 32-mer kMer check came up with a single unambiguous
‘next’ base in 96.0% to 98.7% of the time, and checking the remaining kMer tables came
up with a single choice 98.2% to 100.0% of the time. It was only necessary to explore
the tree of possible extensions 0.0% to 1.2% of the time. One necessary limitation with
Kelpie, in common with all other assemblers, is that all the distinct gene regions being
extended/assembled have to be completely covered by reads from the WGS dataset. The
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Table 1 Read extension decision statistics for three CSM datasets.

W1 W2 W3 W1 W2 W3

read extension checks 20517124 3562698 8402118
single choice at k= 32 19700062 3518077 8222559 96.0% 98.7% 97.9%
single choice at k= 40 66318 15118 77026 0.3% 0.4% 0.9%
single choice at k= 48 72763 12650 11615 0.4% 0.4% 0.1%
single choice at k= 56 17655 715 10485 0.1% 0.0% 0.1%
single choice at k= 64 34950 1488 4043 0.2% 0.0% 0.0%
single choice at k= 72 19292 11136 21155 0.1% 0.3% 0.3%
single choice at k= 80 18425 1128 7107 0.1% 0.0% 0.1%
single choice at k= 88 117494 0 7540 0.6% 0.0% 0.1%
single choice at k= 96 97699 1273 3204 0.5% 0.0% 0.0%
single kMer choice 20144658 3561585 8364734 98.2% 100.0% 99.6%
looked downstream 238307 962 28396 1.2% 0.0% 0.3%
single good downstream 134009 46 7436 0.7% 0.0% 0.1%
chose in proportion by depth 104293 909 19487 0.5% 0.0% 0.2%
chose longest downstream 5 7 1473 0.0% 0.0% 0.0%
# of starting reads 19750 15876 23324
# of reads abandoned 145 28 79 0.7% 0.2% 0.3%
# of fully extended reads 19605 15848 23245 99.3% 99.8% 99.7%

impact of this requirement is that rarer organisms in the community will not be represented
in the set of extended reads if their coverage is incomplete.

All of the results discussed in the next section were obtained from running Kelpie
(V1.0.3) on a Dell Latitude E7470 laptop with a 2.4 GHz Intel i5-6300U processor (2 cores,
4 threads) and 16GB of RAM. The three coal seam microbiome datasets took 80.0 s, 33.7 s
and 73.1 s to process, after the preliminary 16S rRNA filtering had been done. The CAMI
Low and Medium datasets took 27.3 s and 33.1 s, respectively, after filtering. Kelpie is
written in C# and can be run under Windows, OSX and Linux. Kelpie code is open source
and available for download from GitHub (Greenfield, 2018b). It is made available under an
MIT licence.

Kelpie is a command-line program and is usually run as follows:
Kelpie -f forwardPrimer -r reversePrimer readsToFilterFNP extendedReadsFN

where forwardPrimer is the forward primer sequence
reversePrimer is the reverse primer sequence
readsToFilterFNP is a list of reads file names or a file name pattern
extendedReadsFN is the file name for the extended reads
For example: Kelpie -f GTGYCAGCMGCCGCGGTAA -r GGACTACNVGGGTWTCTAAT

W1_?_16S_20_fz_25.fa W1_16S_v4.fa

Other options are available for use in very unusual cases, and these are described in the
documentation provided as part of the Kelpie package.
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TESTING & EVALUATION
The effectiveness and accuracy of Kelpie was evaluated using its application to the task
of determining the structure of a metagenomic community. This application was chosen
because the Kelpie-generated results could be compared both against independently defined
‘truths’ and results from alternative tools and techniques. The results generated by Kelpie
were compared to:

• a profile produced from the EBI Metagenomics pipeline (Mitchell et al., 2018).
• real amplicon data from a coal seam metagenome project.
• two of the synthetic metagenomic datasets generated by the CAMI project (Sczyrba et
al., 2017).

The amplicon PCR used the 16S rRNA V4 primers defined by the Earth Microbiome
Project (Thompson et al., 2017). These primers were GTGYCAGCMGCCGCGGTAA
(forward) and GGACTACNVGGGTWTCTAAT (reverse). These two primers were used
in the corresponding Kelpie tests so that the results from real amplicon sequencing and
Kelpie could be meaningfully compared, and the same primers were also used for the EBI
and CAMI-based tests.

The Kelpie numbers presented in the results below are counts of fully-extended reads.
As discussed earlier, Kelpie works by finding reads that include a starting primer sequence
and extending each one of these, one base at a time, until a terminating primer is reached.
The result is a set of full-length extended reads, each one of which has its origins in a single
WGS read.

EBI metagenomic pipeline
The starting point for Kelpie is currently, for performance reasons, a set of filtered reads
that cover the target region, and probably the entire target gene that surrounds it. The
EBI Metagenomics pipeline includes such a 16S rRNA filtering step, and the selected reads
are directly classified to generate a taxonomic profile for the submitted dataset. As part
of the testing of Kelpie, an EBI Illumina WGS submission (MGYS00000465/ERP008951)
was chosen at random. The 16S rRNA HMM-filtered reads were downloaded from EBI,
assembled with Kelpie using the above v4 primers, and run through the GHAP amplicon
pipeline (Greenfield, 2017). This test both demonstrated that Kelpie was compatible
with 16S rRNA reads selected using conventional HMM-based tools, and also allowed a
comparison between the profiles produced from the Kelpie-assembled reads and the results
generated by the EBI pipeline.

Coal seam metagenomes
Three coal seammetagenome (CSM) samples, called here W1, W2 andW3, were produced
as part of an industry-funded study of microbial life in Queensland coal fields. Two of
the samples came from the Surat Basin and the other from the Bowen Basin. The DNA
extracted from each of these three samples was split, with one part being sent off for WGS
sequencing (paired-end 100 bp Illumina HiSeq), and the other amplified using the EMP
V4 PCR primers and then sequenced (paired-end 300 bp Illumina MiSeq). The amplicon
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andWGS datasets for all three samples are available for download at Coal Seam Formation
Water Community Profiles (Greenfield, 2018c). These three samples are also included in
the Coal SeamMicrobiome reference set (Vick et al., 2018) as Surat 3 (W1), Bowen 3 (W2)
and Surat 1 (W3).

The amplicon data was quality-trimmed and then pair-merged using the USearch
fastq_mergepairs function (Edgar, 2010) to produce full-length (∼250 bp) amplicon
sequences (with primers trimmed).

The WGS data was filtered for just the reads that covered the 16S rRNA gene by a
simple kMer filter (Greenfield, 2018a) that kept only those reads that had sufficient kMer
matches onto genes included in a 16S rRNA reference set. This reduced the size of the
data files to be processed by Kelpie by about 99.8% (filtering the W3 WGS dataset looked
at 322,127,528 reads and kept just 597,668 of them). These putative 16S reads were then
processed with Kelpie using the same EMP V4 primers to produce a set of full-length
amplicon-like sequences.

The Kelpie-generated and the real amplicon datasets were then run through a
conventional amplicon pipeline (Greenfield, 2017) based on USearch and RDP (Wang
et al., 2007) tools, both separately and together. The results were assessed to see if similar
community profiles were generated from both sets of reads, and if the actual sequences
generated by PCR and Kelpie were identical.

A more conventional way of extracting inter-primer regions from WGS metagenomic
data would be to first assemble the full dataset using a metagenomic assembler, and then
search for and extract just the targeted genomic regions from the resulting contigs. This
approach was evaluated by first assembling the full WGS dataset for each of the three
samples with metaSPAdes (Nurk et al., 2017), and searching within the resulting contigs
for regions bounded by the specified forward and reverse primers. metaSPAdes was also
used to assemble just the filtered 16S rRNA reads used as input to Kelpie, as it was thought
that this could result better assemblies.

CAMI synthetic benchmarks
One shortcoming with the previous two sets of tests is that they are based on comparisons
against results produced using conventional tools and techniques, and these alternative
approaches have their own imperfections and quirks. A better approach would be to
test Kelpie using a dataset with known ‘correct’ answers and then calculate accepted
performance statistics, such as recall and precision. The datasets produced for the CAMI
Challenge (Sczyrba et al., 2017) come close to meeting this requirement, providing sets of
synthetic metagenomic reads derived from known organisms, mostly named to the species
level. The CAMI paper both defines standard performance metrics, and compares the
performance of a wide variety of published tools on these benchmark datasets.

The CAMI challenge datasets consist of synthetically generated reads produced from
assembled contigs built from sequence data generated from named cultured organisms.
This approach gave the CAMI organisers considerable flexibility, allowing them to produce
both Illumina HiSeq-like reads and long mate-pair reads with known error rates, and
to simulate the presence of multiple strains of a single starting organism. These reads
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were generated only from assembled contigs, not from complete genomes or from the
unassembled sequence data, and any flaws or gaps in the assemblies are consequently
reflected in the reads used in the study. The ribosome is always challenging to assemble
because it is usually present multiple times in each organism in the metagenome, and this
high level of replication often results in ribosomal sequences being broken into multiple
small contigs. The CAMI synthetic reads were generated only from contigs greater than
1 Kbp in length, and any genes found only in the ignored shorter contigs will be missing
from the corresponding WGS datasets.

The first step in testing Kelpie against the low and medium complexity CAMI datasets
was to determine which organisms actually had their requisite 16S rRNA regions covered by
the generated synthetic reads. This was done by taking the CAMI-provided contig files and
extracting all regions bounded by the same primer sequences used in the amplicon study
above. These extracted 16S rRNA V4 regions were then matched (using usearch_global)
against a collection of 16S rRNA RefSeq reference sequences (downloaded from GenBank
on 23/July/2017). The result was a set of sequences and accession names for those organisms
found to have complete marker gene regions present in the size-filtered contigs. Only these
sequences would have been available to the synthetic read generation process, and so be
represented in the provided WGS datasets.

These sets of named organisms were then compared to the CAMI-provided ‘gold’
taxonomic profiles for each of the datasets. There were no matching contig-derived
sequences for 7 of the 25 species in the low complexity profile, and for 24 of the 95 species
in the medium complexity profile. These missing species were consequently excluded from
the performance evaluations as reads derived from their 16S rRNA V4 regions must also
be missing from the WGS datasets.

Most of the organisms in the CAMI profiles were named to the Species level, although
a few were classified only to higher levels such as Family. The species names from the
accessions and the CAMI profile were almost always identical. One of the low complexity
organism sequences (Anaerobranca) matched at 100% identity to an accession with a
different species in the same genus; and four of the organisms in the medium community
profile matched different species, again in the same genus. In those cases where the
CAMI profiles did not go down to Species, the matched accessions were all taxonomically
compatible with the stated classification. The CAMI challenge was also interested in seeing
how well the tools under test could separate strains of species present in a community,
and so simulated the presence of strain variants for some of organisms in the medium
complexity dataset (for 25 of the 95 species). Some of these ‘strains’ resulted in their own
named accessions, and so were included in the Kelpie comparisons.

The CAMI synthetic WGS datasets reflect real metagenomic sequencing datasets in
that the organisms in the community are present at different abundance levels, raising the
possibility that low abundance organismsmay have incomplete coverage of themarker gene
region even if was present in the contigs used to generate the WGS reads. As an example,
the lowest abundance organism whose 16S rRNA V4 region was found in the contigs was
Nonlabens dokdonensis at 0.08% abundance. Given the number of 150-mer WGS reads in
the dataset, and the size of the Nonlabens genome (3,914,632 bp), the estimated depth of
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coverage of this organism is 3.2. As marker sequences with incomplete coverage cannot be
assembled with Kelpie, a kMer depth of coverage was calculated for each of the extracted
marker gene regions.

Kelpie was then run on the both CAMI Low and Medium complexity WGS datasets,
using the same the 16S rRNA V4 primers sequences as used in the other two tests. The
resulting full-length extended sequences were then matched against the same RefSeq-based
16S reference set, again using usearch_global, and the matches were summarised into a set
of matched species/strains and counts to create taxonomic profiles. These Kelpie-based
profiles were then aligned with the ‘gold’ and ‘found in contigs’ profiles to generate
combined tables of organisms and numbers of matching reads. As the CAMI datasets
were derived from known cultured organisms, the results from testing Kelpie against these
datasets can be evaluated using the same precision/recall statistics used in the CAMI study,
rather than relying just on similarity to results produced through alternative techniques
and tools. Those organisms whose marker genes regions were not in the provided contigs
have no presence in the WGS reads and have been dropped from these evaluations as
they were not available for Kelpie to extract and assemble. Low abundance organisms with
incomplete coverage of themarker gene region are included in the performance evaluations
but noted and discussed.

RESULTS
EBI metagenomic pipeline
As discussed in the ‘Background’ section, taxonomic profiles generated by directly mapping
reads to reference sets are inherently somewhat imprecise as the selected reads will be
randomly drawn from the target genes (16S rRNA in this case), and will include reads
covering both conserved and shared regions. In addition, these reads will be shorter than
full-length amplicons, further reducing the specificity of mappings, and the accuracy of
the resultant taxonomic profiles. The ERP008951 project was a faecal microbiome study
that had been run using V2 of the EBI pipeline, and the selected reads had been both
pair-merged and trimmed to 16S rRNA gene boundaries. Some adjustments were made to
Firmicute lineages in the EBI OTU tables (e.g., moving Veillonellaceae→ Negativicutes)
to reduce perceived mismatches coming from the use of different taxonomies, but this
taxonomic harmonisation is incomplete for lower abundance taxa.

The Kelpie-generated results are in good agreement with the EBI profile, but with fewer
unclassified sequences and many more resolving to Species-level. The EBI profile shows
much more diversity at higher level taxa (132 vs. 24 Orders, for example) with a long
tail of rarer taxa such as Halanaerobiales, Natranaerobiales and several Chlorobi. Some of
this diversity will be coming from the direct matching of reads from very low coverage
organisms, but some will be a result of the less precise matching of short reads and matches
onto conserved regions. The full results of this comparison can be found in Table S1,
and Table 2 shows the 25 most abundant species (for EBI) and the 25 largest OTUs (for
the Kelpie-assembled sequences). Only 5 of these top EBI classifications were resolved to
species level, while all of the Kelpie sequences were assigned to a species, with the lowest
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Table 2 Top 25most abundant organisms found in EBI project ERP008951. The first part of the table comes from the community profile gener-
ated by the EBI Metagenomics Portal, and the second part is from an OTU table produced from Kelpie-generated data. The highlighted cells were
only resolved to a taxonomic level above Species.

Top 25 EBI Species

Family Genus Species Sum

Unclassified_f Unclassified_g Unclassified_sp 96675
Bacteroidaceae Bacteroides Bacteroides_sp 242238
Lachnospiraceae Lachnospiraceae_g Lachnospiraceae_sp 100484
Prevotellaceae Prevotella Prevotella copri 86982
Ruminococcaceae Faecalibacterium Faecalibacterium prausnitzii 70676
Ruminococcaceae Ruminococcaceae_g Ruminococcaceae_sp 68736
Clostridiales_f Clostridiales_g Clostridiales_sp 67346
Lachnospiraceae Lachnospira Lachnospira_sp 38338
Enterobacteriaceae Enterobacteriaceae_g Enterobacteriaceae_sp 30687
Bacteroidaceae Bacteroides Bacteroides uniformis 24942
Lachnospiraceae Blautia Blautia_sp 24770
Sutterellaceae Sutterella Sutterella_sp 24151
Porphyromonadaceae Parabacteroides Parabacteroides_sp 23702
Lachnospiraceae Coprococcus Coprococcus_sp 21015
Ruminococcaceae Ruminococcus Ruminococcus_sp 20449
Prevotellaceae Prevotella Prevotella_sp 15063
Lachnospiraceae Roseburia Roseburia_sp 13965
Porphyromonadaceae Parabacteroides Parabacteroides distasonis 13588
Rikenellaceae Rikenellaceae_g Rikenellaceae_sp 13216
Ruminococcaceae Oscillospira Oscillospira_sp 12402
Veillonellaceae Dialister Dialister_sp 11469
Selenomonadaceae Megamonas Megamonas_sp 9059
Enterobacteriaceae Klebsiella Klebsiella_sp 9045
Lachnospiraceae Dorea Dorea_sp 8362
Bacteroidaceae Bacteroides Bacteroides ovatus 7631

Top 25 Kelpie OTUs to Species/Accession

Family Genus Species Match% # == Size

Bacteroidaceae Bacteroides Bacteroides dorei JCM 13471; 175 (AB242142) 99.6 2 19769
Ruminococcaceae Faecalibacterium Faecalibacterium prausnitzii ATCC 27768 (AJ413954) 98.8 1 7177
Prevotellaceae Prevotella Prevotella copri CB7 (AB064923) 100 1 6589
Eubacteriaceae Eubacterium Eubacterium rectale (L34627) 100 1 4891
Enterobacteriaceae Enterobacter Enterobacter cancerogenus LMG 2693 (Z96078) 100 33 4706
Bacteroidaceae Bacteroides Bacteroides finegoldii JCM 13345; 199T (AB222699) 100 1 3719
Eubacteriaceae Eubacterium Eubacterium eligens (L34420) 99.6 1 2561
Bacteroidaceae Bacteroides Bacteroides coprocola M16 (AB200224) 100 1 2480
Bacteroidaceae Bacteroides Bacteroides uniformis JCM 5828T (AB050110) 100 1 2480
Lachnospiraceae Lachnospiraceae_g Lactobacillus rogosae ATCC 27753 (NR_104836.1) 100 1 2286

(continued on next page)
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Table 2 (continued)

Top 25 Kelpie OTUs to Species/Accession

Family Genus Species Match% # == Size

Porphyromonadaceae Parabacteroides Parabacteroides distasonis JCM 5825 (AB238922) 99.2 1 1937
Sutterellaceae Sutterella Sutterella wadsworthensis WAL 9799 (GU585669) 100 1 1612
Prevotellaceae Prevotella Prevotella stercorea CB35 (AB244774) 98.4 1 1386
Lachnospiraceae Anaerostipes Anaerostipes sp. 5 1 63FAA (JF412658) 100 3 1336
Lachnospiraceae Blautia Blautia luti DSM 14534 (NR_114315.1) 100 2 1233
Lachnospiraceae Fusicatenibacter Fusicatenibacter saccharivorans HT03-11 (AB698910) 100 1 1174
Selenomonadaceae Megamonas Megamonas funiformis YIT 11815 (AB300988) 100 1 1163
Porphyromonadaceae Parabacteroides Parabacteroides goldsteinii WAL 12034 (AY974070) 100 1 1135
Lachnospiraceae Roseburia Roseburia inulinivorans A2-194 (AJ270473) 100 1 1079
Bacteroidaceae Bacteroides Bacteroides massiliensis B84634 (AY126616) 100 1 1063
Lachnospiraceae Clostridium XlVa Clostridium algidixylanolyticum SPL73 (AF092549) 97.6 2 930
Lachnospiraceae Coprococcus Coprococcus comes ATCC 27758 (EF031542) 100 1 922
Ruminococcaceae Gemmiger Gemmiger formicilis ATCC 27749; X2-56 (GU562446) 100 1 845
Bifidobacteriaceae Bifidobacterium Bifidobacterium stercoris Eg1 (FJ611793) 100 6 816
Acidaminococcaceae Phascolarctobacterium Phascolarctobacterium faecium (X72865) 100 1 808

match identity of 97.6%. Figure 2 shows how the EBI and Kelpie-generated taxonomic
profiles compare at an Order level using charts generated by STAMP (Parks et al., 2014).
Figure 2A is a bar chart of the 22 most abundant and statistically significant Orders across
both datasets (Two-sided Fisher’s exact test, Storey’s FDR). Figure 2B is a scatter plot
produced from the same data, with an R2 value of 0.994.

Coal seam metagenome studies
The purpose of these Coal SeamMetagenome (CSM) tests was to determine if the sequences
extracted and assembled by Kelpie were comparable to, and preferably identical to, those
produced using traditional amplicon sequencing, and also to demonstrate that these
sequences were compatible with conventional amplicon-based pipelines and tools. The
first 25 (of 228) rows from the OTU table generated from the combined amplicon and
Kelpie-generated data are shown in Table 3, and the full OTU table for all three samples
can be found in Table S2. The full spreadsheet underlying this table is available as Table S6
(‘AE-All’ tab). This OTU table shows complete agreement between the amplicon and
Kelpie-generated samples until well into the rare organisms at the tail of the abundance
distribution. The actual number of sequences assigned to each OTU correspond reasonably
well for the two data sources, and the presence of primer bias in the amplicon PCR data
means that perfect agreement should not be expected anyway.

Multivariate comparisons between the three samples analysed using the amplicon vs
extended approaches were performed by permutational multivariate analysis of variance
(PERMANOVA) using Primer 7+ (Plymouth Marine Laboratory, UK). Two analysis were
performed, one using presence/absence data and the second using the abundance data, in
both cases resemblance statistics were derived from Bray-Curtis similarities.
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Figure 2 Order-level comparison between taxonomic profiles for EBI project ERP008951. (A) Bar
chart showing the most abundant Orders found by the EBI pipeline and in the Kelpie-based OTU ta-
ble. (B) Scatter plot for the same data. Extracted from the spreadsheet in Table S1 and plots generated by
STAMP.

Full-size DOI: 10.7717/peerj.6174/fig-2

Presence/absence: No difference between the two data sets were found (Pseudo-F
= 1.805, P = 0.092). Indicating that the two-techniques produced statistically similar
communities.

Abundance data: No difference between the two data sets were found (Pseudo-F= 0.233,
P = 0.702). Indicating that the two-techniques produced statistically similar communities.

The first OTU in the combined OTU table where an amplicon does not have an
equivalent Kelpie sequence occurs at a relative abundance level of 0.03%, and at a
cumulative abundance of 98.8% of the amplicon sequences. Figure 3A shows how the
percentage of OTUs found by using both amplicons and Kelpie varies with cumulative
abundance, both for the combined OTU table and for each of the per-sample OTU tables.
Figure 3B is a PCA plot produced by STAMP (Parks et al., 2014). STAMP ran a multiple
group test using ANOVA, with a Games-Howell post-hoc test, Eta-squared effect size, and
with multiple test correction done using Storey FDR. These tests showed there were just
9 ‘active features’, and the most abundant of these (OTU_105, an unclassified Firmicutes)
represented only 0.015% of all the amplicon reads.

There is always a considerable amount of ‘noise’ in amplicon-based studies, caused by
effects such as PCR artefacts, cross-sample contamination in the pre-sequencing processes
and ‘tag-jumping’ (Dickie, 2010; Schnell, Bohmann & Gilbert, 2015; Edgar, 2016; Frøslev et
al., 2017), making low abundance counts somewhat unreliable. Rather than establish an
arbitrary ‘noise’ level as a cut-off point, the read coverage for each OTU sequence from each
of the 3 WGS datasets was estimated by using a kMer mapping tool, and counts for any
OTU/sample cell with less than 90% kMer coverage of the corresponding sequence were
not included in the performance numbers below. Some of these appear to be artefacts,
and others will simply be rare organisms with insufficient WGS read coverage. These
‘untrusted’ amplicon counts are shown in bold in Table 3, and in red in the combined

Greenfield et al. (2019), PeerJ, DOI 10.7717/peerj.6174 15/26

https://peerj.com
http://dx.doi.org/10.7717/peerj.6174#supp-1
https://doi.org/10.7717/peerj.6174/fig-2
http://dx.doi.org/10.7717/peerj.6174


Table 3 Extract from CSMOTU table (amplicons and extended reads). The first 25 of 228 rows of the Coal Seam Metagenome OTU table found
in Table S2. The ‘amp’ columns are amplicon counts; the ‘ext’ columns are counts of Kelpie extended reads. Counts in bold indicate that the OTU
consensus sequence was not completely covered by WGS reads.

OTU Size Species W1 amp W1 ext W2 amp W2 ext W3 amp W3 ext

1 43,603 Desulfuromonas acetexigens (T) (U23140) 27333 13574 132 0 1554 1010
2 24,970 Thermodesulfovibrio aggregans (T) TGE-P1

(AB021302)
24 0 17120 7816 10 0

3 10,514 Treponema zuelzerae (T) type strain: DSM 1903; 2
(FR749929)

13 0 1171 305 5956 3069

4 10,163 Methanobacterium subterraneum (T) A8p, DSM
11074 (X99044)

5 0 29 0 7736 2393

5 7,081 Cytophaga fermentans (T) ATCC 19072 (M58766) 9 0 5845 1220 7 0
7 6,514 Methanosaeta harundinacea (T) 8Ac (AY817738) 1032 192 16 0 3332 1942
6 6,264 Parabacteroides distasonis (T) JCM 5825 (AB238922) 1270 271 9 0 3116 1598
8 5,520 Thermacetogenium phaeum (T) PB (AB020336) 5 0 14 0 3285 2216
10 4,837 candidate division OP1 clone OPB14 (AF027045) 3 0 4057 771 6 0
12 4,611 Lysinibacillus sp. LAM612 (KF443809) 3 0 7 0 533 4068
9 4,258 Methanosarcina siciliae type strain: DSM3028

(FR733698)
1238 2733 11 0 54 222

13 3,847 Methanocalculus pumilus (T) MHT-1 (AB008853) 3312 476 30 0 29 0
11 3,652 Desulfotomaculum acetoxidans (T) DSM 771

(Y11566)
6 0 2463 1177 6 0

14 3,390 Syntrophaceticus schinkii (T) Sp3 (EU386162) 6 0 2871 506 7 0
15 3,383 Methanobacterium aarhusense (T) H2-LR (AY386124) 1 0 3104 271 7 0
17 3,012 Methanothermobacter thermoflexus (T) IDZ, VKM B-

1963, DSM 7268 (X99047)
1 0 2685 326 0 0

16 2,920 Sulfurospirillum alkalitolerans HTRB-L1 (GQ863490) 2340 508 41 0 31 0
21 2,114 Methanobacterium alcaliphilum (T) NBRC 105226

(AB496639)
2 0 1161 100 586 265

18 2,099 Clostridium hungatei (T) AD; ATCC 700212
(AF020429)

5 0 5 0 1124 965

20 2,067 Natronincola peptidivorans (T) Z-7031 (EF382661) 12 0 8 0 1293 754
19 1,955 Pontibacter sp. JC215 A10 (HG008901) 4 0 2 0 931 1018
23 1,734 Porphyromonas pogonae strain MI 10-1288

(NR 136443.1)
1059 128 29 0 389 129

25 1,557 Acetobacterium malicum (T) DSM 4132 (X96957) 929 304 16 0 153 155
22 1,515 Desulfovibrio oxamicus (T) DSM 1925 (DQ122124) 19 10 2 0 860 624
24 1,513 No closest species found 2 0 955 556 0 0

OTU table in Table S2. This table also gives some hint about the prevalence of various
artefacts in amplicon data, with dominant organisms in one sample often having very
low counts in other organisms, as would be expected from the above references. The 9
‘active’ OTUs found by STAMP all had incomplete WGS coverage of the corresponding
amplicon sequence, with the most abundant of them (OTU_105) only having 12%–30%
kMer coverage.

The clustering process used when generating the OTU sequences could be masking
differences between the amplicon and Kelpie-generated sequences as they only have to be
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Figure 3 Agreement between amplicon and Kelpie-based OTUs for CSM datasets. (A) Percentages or-
dered by cumulative read count for the four ‘AE’ OTU tables in Table S6 (samples combined, and pro-
cessed separately). In the combined table, the first OTU without supporting counts from both amplicons
and Kelpie-extended reads comes after 98.8% of the amplicons reads have been assigned to OTUs (83rd
OTU in reverse cumulative size order), and represents 0.03% of the amplicon reads. (B) PCA plot showing
the similarity between the amplicon and Kelpie-based profiles.

Full-size DOI: 10.7717/peerj.6174/fig-3

97% similar to be included in the same OTU. To validate the actual sequences generated by
Kelpie, both the Kelpie-generated ‘amplicons’ and the real PCR amplicons for each sample
were run separately through the same amplicon pipeline, and the resulting OTU centroid
sequences were compared using USearch usearch_global. The results of this sequence-level
identity comparison for the W2 dataset is shown in Table 4 and the results for all 3 datasets
are summarised in Table 5. The full results from these sequence-level comparisons can be
found in Table S6 (‘K-A’ tabs).

The majority (82% to 93%) of the amplicon and Kelpie-assembled centroid OTU
sequences were 100% identical, and 93% to 100% of the sequences were at least 97%
identical. A close examination of these not-100% identical sequences showed that in these
cases there were a number of closely related strains present in the bacterial community,
and the differences between the amplicon and Kelpie-generated OTU sequences were just
a result of the clustering algorithm picking a different centroid sequence from within the
cluster. There are also three OTUs that are found purely in Kelpie data, with no matching
amplicon reads. Aligning the WGS reads to the centroid sequences for these three OTUs
indicates that they actually are present in the community, and their absence from the
amplicon reads may be an artefact of biases inherent in the PCR process.

The combined OTU table from running the amplicon pipeline on the amplicons, the
Kelpie-generated amplicons, the extracted 16S rRNA V4 regions from the full metaSPAdes
assembly, and the metaSPAdes 16S rRNA-only V4 assembly for all three samples can be
seen in full in Table S3. The counts shown in the metaSPAdes-based columns in this OTU
table are derived from the stated depth of coverage for the contigs from which they were
extracted. Figure 4 shows how well the two assembly-based techniques compare to the
amplicon and Kelpie-generated datasets. The amplicon and Kelpie sequences both found
all the most abundant OTUs (top 98%), while the two metaSPAdes assemblies missed
about a third of these, including some of the most abundant ones. The full metaSPAdes
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Table 4 Details from the identity comparisons between the amplicons and Kelpie-generated OTU centroid sequences for theW2 CSM dataset.
The centroid sequences for OTUs 20 and 29 are slightly different, although within the 97% similarity threshold. Closer examination of the sequence
‘clouds’ that were clustered together to form these OTUs showed that these apparent differences arose as a result of the choice of different centroid
sequences rather than the Kelpie and amplicon being actually different and distinct.

OTU Size Kelpie species Id% Amplicon species

1 7816 Thermodesulfovibrio aggregans (T) TGE-P1 (AB021302) 100 Thermodesulfovibrio aggregans (T) TGE-P1 (AB021302)
2 1220 Cytophaga fermentans (T) ATCC 19072 (M58766) 100 Cytophaga fermentans (T) ATCC 19072 (M58766)
3 1169 Desulfotomaculum acetoxidans (T) DSM 771 (Y11566) 100 Desulfotomaculum acetoxidans (T) DSM 771 (Y11566)
4 847 Moorella humiferrea (T) 64 FGQ (GQ872425) 100 Moorella humiferrea (T) 64 FGQ (GQ872425)
5 771 candidate division OP1 clone OPB14 (AF027045) 100 candidate division OP1 clone OPB14 (AF027045)
6 556 – 100 –
7 506 Syntrophaceticus schinkii (T) Sp3 (EU386162) 100 Syntrophaceticus schinkii (T) Sp3 (EU386162)
8 419 Thermodesulfovibrio aggregans (T) TGE-P1 (AB021302) 100 Thermodesulfovibrio aggregans (T) TGE-P1 (AB021302)
9 408 Ignavibacterium album (T) Mat9-16 (AB478415) 100 Ignavibacterium album (T) Mat9-16 (AB478415)
10 326 Methanothermobacter thermoflexus (T) IDZ,

VKM B-1963, DSM 7268 (X99047)
100 Methanothermobacter thermoflexus (T) IDZ,

VKM B-1963, DSM 7268 (X99047)
11 305 Treponema zuelzerae (T) type strain: DSM 1903; 2

(FR749929)
100 Treponema zuelzerae (T) type strain: DSM 1903; 2

(FR749929)
12 271 Methanobacterium aarhusense (T) H2-LR (AY386124) 100 Methanobacterium aarhusense (T) H2-LR (AY386124)
13 211 – 100 –
20 108 Dethiobacter alkaliphilus (T) AHT 1 (EF422412) 98 Dethiobacter alkaliphilus (T) AHT 1 (EF422412)
14 100 Methanobacterium alcaliphilum (T) NBRC 105226

(AB496639)
100 Methanobacterium alcaliphilum (T) NBRC 105226

(AB496639)
15 100 – 100 –
16 98 Thermodesulfovibrio yellowstonii (T) YP87 (AB231858) 100 Thermodesulfovibrio yellowstonii (T) YP87 (AB231858)
17 85 Pelotomaculum propionicicum (T) MGP (AB154390) 100 Pelotomaculum propionicicum (T) MGP (AB154390)
18 82 Sunxiuqinia faeciviva (T) JAM-BA0302 (AB362263) 100 Sunxiuqinia faeciviva (T) JAM-BA0302 (AB362263)
19 79 Thermanaerothrix daxensis strain GNS-1 (NR 117865.1) 100 Thermanaerothrix daxensis strain GNS-1 (NR 117865.1)
21 65 Smithella propionica (T) LYP (AF126282) 100 Smithella propionica (T) LYP (AF126282)
22 60 Caldicoprobacter oshimai (T) JW/HY-331 (AB450762) 100 Caldicoprobacter oshimai (T) JW/HY-331 (AB450762)
23 48 Bellilinea caldifistulae (T) GOMI-1 (AB243672) 100 Bellilinea caldifistulae (T) GOMI-1 (AB243672)
24 37 Leptolinea tardivitalis (T) YMTK-2 (AB109438) 100 Leptolinea tardivitalis (T) YMTK-2 (AB109438)
25 36 uncultured bacterium KF-JG30-18 (AJ295656) 100 uncultured bacterium KF-JG30-18 (AJ295656)
26 35 Desulfotomaculum kuznetsovii strain 17 (NR 115129.1) 100 Desulfotomaculum kuznetsovii strain 17 (NR 115129.1)
27 29 Dethiobacter alkaliphilus (T) AHT 1 (EF422412) 100 Dethiobacter alkaliphilus (T) AHT 1 (EF422412)
28 21 Acidobacteria bacterium P105 (KJ461654) 100 Acidobacteria bacterium P105 (KJ461654)
29 21 Olegusella massiliensis strain KHD7 (NR 146815.1) 99.6 Olegusella massiliensis strain KHD7 (NR 146815.1)
30 19 Syntrophorhabdus aromaticivorans (T) UI (AB212873) 100 Syntrophorhabdus aromaticivorans (T) UI (AB212873)

metagenomic assembly performs slightly worse (57% of the top 98%) than the assembly
from the filtered 16S rRNA reads (65% of the top 98%). The supporting data for this chart
can be found in Table S6 (‘AESS’ sheets).

CAMI SYNTHETIC DATASETS
The results for the Low Complexity CAMI test dataset are summarised in Table 6. All of
the extended 16S rRNA V4 sequences produced by Kelpie were classified to the exactly
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Table 5 Summary of identity comparisons between centroid OTU sequences for the 3 CSM datasets.
The small number of not-identical species appear to be caused by the clustering algorithm choosing differ-
ent consensus sequences from within a cluster of strain-level variants. There are a total of 3 OTUs that are
found by Kelpie that do not appear in the amplicon data.

W1 W2 W3

#OTUs 39 30 57

100% identical 36 92% 28 93% 47 82%
same species (97%+) 1 3% 2 7% 4 7%
same genus (95%+) 1 3% 0 0% 4 7%
not in amplicons 1 3% 0 0% 2 4%

Figure 4 Numbers of OTUs found in the top 98% (A) and 99% (B) of the community profile for each
of the three samples.Numbers of OTUs are ranked by cumulative read count and derived from the three
‘AESS-W’ OTU tables in Table S6. The OTU counts have been adjusted by removing amplicon OTUs that
have incomplete WGS read coverage.

Full-size DOI: 10.7717/peerj.6174/fig-4

same strain as the equivalent regions extracted from the assembled contigs. There are 3
cases in this test where an extracted region did not have matching Kelpie extended reads,
and mapping the WGS reads back to these unmatched regions showed that they were
incompletely covered in the sampled synthetic reads.

Full summaries for the tests using the CAMI Low Complexity dataset are available in
Table S4, and full details in Table S7. Similarly, the comparisons for theMediumComplexity
dataset are available as Table S5 (summary) and Table S8 (details). The two summary files
present both the full mappings from the full CAMI ‘gold’ profile to the accession-matched
sequences extracted from the contigs and the Kelpie-generated sequences, and the same
comparisons but including just those organisms/accessions found to be present in the
assembled contigs.

The CAMI paper defines two metrics that were used to assess the quality of the results
submitted for their taxonomic profiling challenge. Recall is the percentage of organisms
present in the test community were found; and Precision is how accurately they were
identified (at various taxonomic levels). The CAMI paper gives Recall and Precision
numbers for 10 profiling tools, at various taxonomic ranks, and for both the full datasets
and for the top 99% of organisms by abundance. The actual results presented by CAMI
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Table 6 Comparisons for the CAMI Low Complexity dataset. Comparison between the organisms named in the CAMI ‘gold’ profile, the corre-
sponding classified rRNA V4 regions extracted from the CAMI-provided assembled contigs, and the classified Kelpie ‘amplicons’. Any species in the
CAMI profile whose 16S rRNA V4 region could not be found in the provided contigs has been removed from this table.

CAMI gold profile V4 region from contigs Kelpie profile
Species Abnd. Species/strain Cov% Species/strain Reads Abnd.

Schwartzia succinivorans 28.2% Schwartzia succinivorans strain S1-1
(NR 029325.1)

100 Schwartzia succinivorans strain S1-1
(NR 029325.1)

615 26.3%

Hydrotalea sandarakina 19.8% Hydrotalea sandarakina strain AF-51
(NR 109380.1)

100 Hydrotalea sandarakina strain AF-51
(NR 109380.1)

759 32.5%

Tetrasphaera duodecadis 14.9% Tetrasphaera duodecadis strain IAM
14868 (NR 040880.1)

100 Tetrasphaera duodecadis strain IAM
14868 (NR 040880.1)

255 10.9%

Bacillales sp 9.2% Exiguobacterium acetylicum strain
DSM 20416 (NR 043479.1)

100 Exiguobacterium acetylicum strain
DSM 20416 (NR 043479.1)

169 7.2%

Janthinobacterium sp. 7.8% Massilia namucuonensis strain 333-1-
0411 (NR 118215.1)

100 Massilia namucuonensis strain 333-
1-0411 (NR 118215.1)

132 5.6%

Pseudomonas aeruginosa 6.0% Pseudomonas aeruginosa strain DSM
50071 (NR 117678.1)

100 Pseudomonas aeruginosa strain
DSM 50071 (NR 117678.1)

108 4.6%

Paracoccus denitrificans 3.7% Paracoccus denitrificans strain 381
(NR 026456.1)

100 Paracoccus denitrificans strain 381
(NR 026456.1)

74 3.2%

Defluviimonas denitrificans 3.0% Defluviimonas denitrificans strain D9-3
(NR 115019.1)

100 Defluviimonas denitrificans strain
D9-3 (NR 115019.1)

48 2.1%

Desulfatibacillum
alkenivorans

1.9% Desulfatibacillum alkenivorans strain
PF2803 (NR 025795.1)

100 Desulfatibacillum alkenivorans strain
PF2803 (NR 025795.1)

42 1.8%

Actinomycetales sp. 1.1% Williamsia phyllosphaerae strain C7
(NR 108495.1)

100 Williamsia phyllosphaerae strain C7
(NR 108495.1)

8 0.3%

Flavisolibacter ginsengisoli 1.8% Flavisolibacter ginsengisoli strain Gsoil
643 (NR 041500.1)

100 Flavisolibacter ginsengisoli strain
Gsoil 643 (NR 041500.1)

83 3.6%

Tepidibacter formicigenes 0.7% Tepidibacter formicigenes strain
DV1184 (NR 029081.1)

100 Tepidibacter formicigenes strain
DV1184 (NR 029081.1)

11 0.5%

Albidovulum xiamenense 0.4% Albidovulum xiamenense strain YBY-7
(NR 118031.1)

100 Albidovulum xiamenense strain
YBY-7 (NR 118031.1)

1 0.0%

Xylella fastidiosa 0.4% Xylella fastidiosa strain PCE-FF
(NR 041779.1)

100 Xylella fastidiosa strain PCE-FF
(NR 041779.1)

17 0.7%

Lampropedia hyalina 0.4% Lampropedia hyalina strain IAM 14890
(NR 040942.1)

97 incomplete WGS coverage of region

Lysobacter oryzae 0.3% Lysobacter oryzae strain YC6269
(NR 044484.1)

100 Lysobacter oryzae strain YC6269
(NR 044484.1)

16 0.7%

Anaerobranca californiensis 0.2% Anaerobranca zavarzinii strain JW/VK-
KS5Y (NR 044155.1)

96 incomplete WGS coverage of region

Nonlabens dokdonensis 0.1% Nonlabens dokdonensis (NR 102491.1) 50 incomplete WGS coverage of region

for the various tools are not discussed further here, as there may be subtle methodological
differences that would make direct comparisons difficult or unfair, especially in the
treatment of strain variants. The left-hand side of Table 7 shows the Precision and Recall
numbers derived from the Low Complexity dataset results, using the classified, extracted 16
rRNA V4 accessions as the ‘truth’ for the calculations. These metrics were only calculated
at the accession/strain-level, as there were no inexact matches that needed to be resolved
at higher taxonomic levels, unlike the results presented in the CAMI paper.
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Table 7 Recall and precision statistics for the CAMI Low andMedium Complexity datasets.

CAMI low complexity CAMImedium complexity

Present in
contigs

Present & fully
covered by
WGS reads

Top 99% by
abundance

Present in
contigs

Present & fully
covered by
WGS reads

Top 99% by
abundance

#organisms 18 15 14 71 51 57
both (TP) 15 15 14 51 51 49
added(FP) 0 0 0 0 0 0
missing(FN) 3 0 0 20 0 8
Precision 100% 100% 100% 100% 100% 100%
Recall 83% 100% 100% 72% 100% 86%

The results from the CAMI Medium Complexity dataset are similar, with the Kelpie-
generated ‘amplicons’ always matching to the same strain identified from the extracted
16S rRNA V4 regions, and with low abundance organisms with incomplete WGS coverage
having no corresponding Kelpie-generated sequences. TheRecall and Precision numbers for
this dataset are shown in the right-hand side of Table 7. All of these results are derived from
the spreadsheets found in Table S7 (Low Complexity) and Table S8 (Medium Complexity).

Kelpie requires complete WGS read coverage of the region it is assembling, like any
other assembler, and this becomes less likely with the lower abundance organisms in the
community. The stochastic sampling of genomes inherent in the generation of synthetic
reads will tend to produce gaps in coverage, and these coverage gaps will become more
common as the simulated abundance is reduced. For the synthetic CAMI datasets, this
incomplete coverage, and the subsequent decline in Recall, starts with organisms with
about 0.4% abundance, and with an estimated depth of coverage of less than 12. The same
gradual drop can be seen with the real Coal SeamWGS data, as shown previously in Fig. 3,
starting there with organisms present at about 0.3% abundance in the community.

DISCUSSION
Kelpie is a general-purpose PCR-like targeted assembler that generates sets of full-length
between-primers sequences from WGS datasets. The tests and results described above
all came from the same illustrative application, extracting a marker gene region for
the purposes of determining community structure, but this just an example of how
Kelpie can be used. This well-known application was chosen as it provided access to
independently-derived community profiles and relatedmarker gene sequences that allowed
the effectiveness and accuracy of Kelpie to be compared and assessed.

The results from the coal seammetagenome study not only showed that Kelpie-generated
sequences could be used to generate microbial community profiles with an accuracy and
depth comparable to conventional PCR, but that the centroid sequences for the resulting
Kelpie and PCR OTU clusters were either identical or found within the small ‘cloud’
of sequences subsumed within each cluster. These results show that Kelpie is accurately
extracting at assembling between-primer region sequences from this complex WGS
metagenomic data.
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Both the full and 16S-filtered WGS coal seam datasets were also assembled using
the metaSPAdes assembler. The results summarised in Fig. 4 show that Kelpie is more
effective at handling this repeated and ubiquitous genomic region than good conventional
assemblers. Kelpie extracted and assembled those distinct marker gene regions shown as
present by amplicon sequencing, well down into the low depth of coverage tail, while the
conventional assembler failed to produce complete sequences for many of the OTUs.

The results from the EBI and CAMI-based studies were included to show that Kelpie
works equally well on WGS datasets other than coal seam metagenomes, and also that it
is compatible with filtered datasets produced by conventional HMM tools. The Kelpie-
derived community profiles for the synthetic Low and Medium Complexity CAMI WGS
datasets closely match both the provided ‘gold’ profiles, and profiles built from marker
gene regions extracted from the provided assembled contigs. The profiles built from both
the Kelpie sequences and the extracted marker genes almost always agreed on the actual
strain/accessions identified within the community, with the Kelpie data also showing some
of the synthetic strains constructed from the assembled organisms. As shown in Table 7, the
Recall and Precision statistics for Kelpie-generated profiles are extremely good, especially
once those organisms with no coverage or incomplete coverage from the synthetic WGS
reads are excluded.

Kelpie can be used formany applications other than community profiling, and just needs
a pair of conserved ‘primer’ sequences and a filtered WGS dataset. Kelpie has recently been
used to:

• Extract and assemble almost full-length 16S genes from genomic data using the 27F and
1492R primer sequences. These sequences were needed for phylogenetic analysis and
prior conventional assemblies had resulted in the genes being split across multiple small
contigs. This work was done in support of a study of coal seam bacteria which will be
published in 2019.
• Extract and assemble bacterial 16S V4 gene regions from data produced from
metagenomic ‘amoebal’ sequence data. These marker regions were then used to
accurately classify the amoeba-associated bacteria, and allowed strain-level functional
comparisons to the relevant reference organisms. This work was done as part of a study
into amoebic gill disease in salmon and will be published in 2019.
• Extract and assemblemultiplemarker gene regions from the sameWGSdataset, allowing
comparisons of primer effectiveness, and improved classification accuracy (Fuks et al.,
2018), and the use of multiple taxon-specific primers in environmental surveys.
• Extracting functional genes, such as antibiotic resistance and Nif genes from
environmental metagenomic WGS datasets.

CONCLUSIONS
The results discussed above show that Kelpie can successfully extract and assemble full
length inter-primer genomic regions from whole metagenome sequencing datasets with
high precision and recall, even for challenging regions such as the ubiquitous and repeated
16S rRNA gene.
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Running both real bacterial 16S rRNA amplicon data and Kelpie-generated sequences
through a conventional amplicon pipeline showed excellent correspondence between the
‘amplicons’ from both sources for all three samples until well into the low abundance tail,
with the first missing OTU being found at 0.03% amplicon-based abundance. This result
indicates that a Kelpie-based OTU table derived from a WGS dataset will be very close
to a conventional amplicon-based table, down to the level where artefacts are starting to
appear in the amplicon data. The results from the CAMI Low and Medium Complexity
datasets again showed very high precision from the Kelpie-generated extended reads, with
every extracted sequence being matched to the identical strain/accession that was assigned
to the same primer-delimited regions extracted from the assembled contigs that were used
as the source of the synthesised WGS reads. The recall shown in these dataset was also very
high, up until the point was reached where the extracted regions were no longer being
completely covered by the WGS reads.

The use of Kelpie in generating taxonomic profiles from WGS metagenomic reads is
only an example of its potential uses, and was chosen purely because of the availability of
both real and synthetic data that could be used to evaluate its effectiveness and accuracy. In
practice, any region with well conserved primer sequences should be a target for extraction
and assembly by Kelpie.

Apart from on-going work to improve Kelpie’s accuracy when handling low abundance
organisms, the only planned extension is to remove the need for the WGS data to be
pre-filtered. Pre-filtering is an efficient way to reduce the size of the dataset being processed
by Kelpie, allowing it to be easily kept in memory, but some target genes do not have
the well-curated sets of reference sequences or HMM models that make them amenable
to filtering even though they have well defined conserved regions that could be used
as ‘primers’. The use of pre-filtered reads is only a performance optimisation, and the
first stage of Kelpie where it extracts just the small subset of WGS reads that cover the
inter-primer region could be adapted to work directly from the unfiltered datasets at some
performance cost.
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