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Background. Histone deacetylases (Hdacs) are epigenetic factors that function to repress gene
transcription by removing acetyl groups from the N-terminal of histone lysines. Histone deacetylase 4
(HDAC4), a class lla HDAC, has previously been shown to regulate the process of endochondral
ossification in mice via repression of Myocyte enhancing factor 2c (MEF2C), a transcriptional activator of
Runx2, which in turn promotes chondrocyte maturation and production of bone by osteoblasts.

Methods & Materials. In this study we generated two zebrafish lines with mutations in hdac4 using
CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and expression of genes known to be
affected by Hdac4/Mef2c interactions@

Results: Lines have insertions causing a frameshift in a proximal exon of hdac4 and a premature stop
codon. Mutations are predicted to result in aberrant protein sequence and a truncated protein,
eliminating the Mef2c binding domain and Hdac domain. Zygotic mutants show a mild to moderate
increase in ossification of pharyngeal ceratohyal and to some extent hyosymplectic cartilages at 7 days
post fertilization (dpf). MRNA'in Situ hybridization at 72 hpf shows that hdac4 is normally expressed in
regions of the wild-type ceratohyal, hyosymplectic, and posterior pharyngeal arch cartilages, indicating
that loss of function may lead to premature or excessive ossification at these sites. At 4 dpf, mutant
larvae have an increase of expression of runx2a and sp7 in the ceratohyal cartilage, which we
hypothesize is due to the de-repression of Mef2c through loss of Hdac4. Expression of runx2b was
unchanged in mutants compared to wild types. A subset of maternal-zygotic mutant and heterozygote
larvae show a dramatically increased level of ossification at 7 dpf compared to zygotic mutants, including
formation of a precocious anguloarticular bone and mineralization of the ceratobranchial and symplectic
cartilages, which normally does not occur until fish are approximately 12 dpf. Some maternal-zygotic
mutants and heterozygotes alsoSshow loss of pharyngeal first arch elements, suggesting loss of Hdac4
may affect neural crest development.

Discussion. The results of this study demonstrate a role for Hdac4 in zebrafish cartilage ossification
consistent with the function of this protein in mice, indicating that the function of Hdac4 in skeletal
development is conserved among vertebrates. Furthermore, we have identified a potentially novel role
for maternal Hdac4 in zebrafish cartilage ossification and neural crest development.
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Abstract

Background. Histone deacetylases (Hdacs) are epigenetic factors that function to
repress gene transcription by removing acetyl groups from the N-terminal of histone
lysines. Histone deacetylase 4 (HDAC4), a class lla HDAC, has previously been shown
to regulate the process of endochondral ossification in mice via repression of Myocyte
enhancing factor 2c (MEF2C), a transcriptional activator of Runx2, which in turn
promotes chondrocyte maturation and production of bone by osteoblasts.

Methods & Materials. In this study, we generated two zebrafish lines with mutations in
hdac4 using CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and
expression of genes known to be affected by Hdac4/Mef2c interactions.

Results: Lines have insertions causing a frameshift in a proximal exon of hdac4 and a
premature stop codon. Mutations are predicted to result in aberrant protein sequence
and a truncated protein, eliminating the Mef2c binding domain and Hdac domain.
Zygotic mutants show a mild to moderate increase in ossification of pharyngeal
ceratohyal and to some extent hyosymplectic cartilages at 7 days post fertilization (dpf).
mRNA in situ hybridization at 72 hpf shows that hdac4 is normally expressed in regions
of the wild-type ceratohyal, hyosymplectic, and posterior pharyngeal arch cartilages,
indicating that loss of function may lead to premature-orexcessiveg ossification at these
sites. At 4 dpf, mutant larvae have an-increase-of expression of runx2a and sp7 in the

ceratohyal cartilage, which we h

loss-of Hdac4, Expression of runx2b was unchanged in mutants compared to wild types.
A subset of maternal-zygotic mutant and heterozygote larvae show a dramatically

increased-evel-of ossification at 7 dpf compared to zygotic mutants, including formation
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of a precocious anguloarticular bone and mineralization of the ceratobranchial and
symplectic cartilages, which normally does not occur until fish are approximately 12 dpf,
Some maternal-zygotic mutants and heterozygotes also show loss of pharyngealfirst
arch-elements and neurocranium defects, suggesting loss of Hdac4 may affect neural
crest development.

Discussion. The results of this study demonstrate a role for Hdac4 in zebrafish
cartilags ossification consistent with the function of this protein in mice, indicating that
the function of Hdac4 in skeletal development is conserved among vertebrates.
Furthermore, we have identified a potential role for maternal Hdac4 in zebrafish

cartilage ossification and neural crest development.

Introduction

The majority of the vertebrate skeleton including the axial, limb, and pharyngeal
elements form as cartilaginous elements that grow rapidly during early development
through the proliferation of matrix-secreting chondrocytes, At specific stages of
development, chondrocytes cease their rapid proliferation and matrix secretion, become
hypertrophic, and signal to nearby cells to commence endochondral ossification
(Karsenty & Wagner, 2002). In zebrafish, ossification involves the recruitment of
osteoblasts to the surface of cartilage to secrete a perichondral collar of mineralized
bone,. In amniotes, endochondral ossification involves both perichondral ossification and
the invasion of the cartilage by blood vessels to deliver osteoblasts which deposit bone
(Hall, 2014). In all vertebrates, the timing of the transition between endochondral growth

and ossification is important in the determining size and shape of skeletal elements,
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This process is precisely regulated by expression of factors in chondrocytes and
osteoblasts including Ihh, Pthrp, Runx2 (Cbfa1), and Sp7 (osterix) (Vortkamp et al.,
1996; Komori et al., 1997; Nakashima et al., 2002; Maeda et al., 2007). Loss of function
of these factors can cause insufficient-ossification, resulting in severe growth and
patterning defects of the skeleton (Quack et al., 1999; Wysolmerski et al., 2001; Gao et
al., 2001; Valadares et al., 2014).

Histone deacetylase 4 (HDAC4), a member of the class Ila group of HDACs
(including HDAC 4, 5, 7, and 9), has previously been demonstrated to be an important
regulator of chondrocyte maturation and initiation of endochondral ossification in mice
(Vega et al., 2004). HDACs lack the ability to bind to DNA directly, but associate with
other proteins to remove acetyl groups from the N-terminal of histone lysines, causing
histones to condense, blocking access of transcription factors to DNA, resulting in
transcriptional repression (Haberland, Montgomery & Olson, 2009). Class lla HDACs
are characterized by a carboxyl-terminal binding protein domain (CtBP), a MEF2
binding domain for binding the transcription factor myocyte enhancing factor 2c
(MEF2C), sites for binding of the chaperone protein 14-3-3, and an HDAC domain
(Haberland, Montgomery & Olson, 2009). MEF2C is a transcription factor which controls
chondrocyte hypertrophy and bone formation by activating transcription-of target genes
such as Runx2 (Arnold et al., 2007). When class Ila HDACs are unphosphorylated, they
localize to the nucleus where they bind to MEF2C, and function to repress transcription
of MEF2C-target genes (Lu et al., 2000; Passier et al., 2000; McKinsey et al., 2000;
Arnold et al., 2007). When calcium/calmodulin protein kinase (CaMKIIl) and protein

kinase D (PKD) phosphorylate 14-3-3 and shuttle the HDAC into the cytoplasm, MEF2C
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becomes unbound to HDAC, and can activate transcription of target genes (Lu et al.,
2000; Passier et al., 2000; McKinsey et al., 2000). Through this process of interaction
with MEF2C, HDAC4 delays the hypertrophy of chondrocytes within cartilage,
controlling the timing and extent of ossification of endochondral bone by osteoblasts
(Vega et al., 2004).

Zebrafish represent a useful model for studying mechanisms of chondrocyte
maturation and the initiation of the cartilage ossification process as they develop
cartilaginous elements as early as 60-72 hours post-fertilization and commence
perichondral ossification of these elements as early as 96 hpf (Eames et al., 2013).
Compared with other vertebrates, zebrafish undergo the same cellular and genetic
signaling pathways associated with skeletal ossification including chondrocyte
hypertrophy, differentiation and matrix secretion by osteoblasts, including expression of
factors associated with ossification such as ihha, runx2a, runx2b, sp7, col1a2, col10a1,
and osteonectin (Flores et al., 2004; Avaron et al., 2006; Li et al., 2009). These
similarities make zebrafish a useful model to study genetic pathways associated with
skeletal development and disease.

In this study, we describe two zebrafish lines with early frameshift mutations in
hdac4. Mutant larvae from heterozygote in-crosses show a mild-to moderate increase in
ossification of certain, pharyngeal cartilage elements, and an up-regulation-of markers of
ossification of the skeleton including runx2a and sp7. A further enhancement of the
excessive ossification defect is observed in maternal-zygotic mutants, indicating an
early maternal contribution to regulation of skeletal patterning in zebrafish. Previously,

we identified a potential role for Hdac4 in neural crest development and neurocranium
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111 formation in zebrafish (DeLaurier et al., 2012). Although this phenotype was not

112 reproduced in any zygotic mutants, a profound loss of anterior facial structures was
113 observed in a subset of maternal-zygeotic-mutants; indicating a function for maternal
114 Hdac4 in neural crest development or formation of other anterior structures of the head
115 or face. In conclusion, hdac4 mutants reproduce aspects of the mouse HDAC4 mutant
116 and may be a useful model, especially along with other reverse-genetic mutants for
117 other class lla Hdacs, to study the function of these factors in skeletal patterning and
118 other developmental pathways.

119

120 Methods

121

122 Zebrafish husbandry

123 AB strain wild-type (WT) zebrafish were originally obtained from the Zebrafish

124 International Resource Center (ZIRC, Eugene, OR). Fish were reared and maintained at
125 28.5°C on a 14 hour on/10 hour off light cycle. Fish were fed as previously described
126 (Wasden, Roberts & DelLaurier, 2017). Maintenance and use of zebrafish followed

127 guidelines from ZIRC, the Zebrafish book (Westerfield, 2007), and the Institutional

128 Animal Care and Use Committee (IACUC) of the University of South Carolina Aiken
129 (approval number 010317-BIO-01).

130

131 Generation of CRISPR lines

132 The CRISPR/Cas9 procedure was based on previously described methodologies

133 (Hwang et al., 2013). CHOPCHORP (http://chopchop.cbu.uib.no/) was used to design a
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guide RNA (gRNA) sequence targeting exon 5 of hdac4 (ensembl
ENSDART00000165238.3), 5 of the Mef2c binding site (located in exon 6) and histone
deacetylase domain, with minimal potential off-target binding (Montague et al., 2014;
Labun et al., 2016). An hdac4-specific oligonucleotide was designed containing a 20 bp
T7 promoter sequence, 20bp of target sequence (GGAGCGTCATCGACAGGAGC),
followed by a 20 bp scaffold overlap sequence as described (Bassett et al., 2013). This
oligonucleotide was annealed to a scaffold oligonucleotide containing the tracrRNA
stem loop sequence using Phusion PCR (New England Biolabs, Ipswich, MA) to
produce a 120 bp template. Template DNA was column purified (DNA Clean &
Concentrator kit, Zymo Research, Irvine, CA) and was used to synthesize RNA using
T7 polymerase (MAXIscript T7 Transcription kit, Thermo Fisher, Vitnus, Lithuania).
Cas9 mRNA was synthesized from pCS2-nCas9n (Addgene, Cambridge, MA). Plasmid
was linearized with Not/-HF (New England Biolabs, Ipswich, MA), column purified
(Zyppy Plasmid Miniprep kit, Zymo Research, Irvine, CA), and mRNA was synthesized
(mMessenger mMachine SP6 kit, Thermo Fisher, Vitnus, Lithuania). Column-purified
hdac4 gRNA and nCas9n mRNA (RNA Clean & Concentrator kit, Zymo Research,
Irvine, CA) were co-injected into one cell-stage embryos. Each embryo was injected
with approximately 3nl of a 5ul mix containing hdac4 gRNA (~60ng/microliter), nCas9n
mRNA (~160ng/microliter), and phenol red as a marker. Unfertilized or dead embryos
were removed from the dish at the end of the first day of injection and on subsequent

days.

Identification of founders and generation of mutant lines
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At 36 hpf, approximately 20% of injected embryos (abnormal and normal-looking) were
pooled into groups of 5 fish per tube, lysed using HotShot (Truett et al., 2000), and PCR
was performed using genomic primers flanking the site of potential mutation. PCR
products were gel-purified and digested using T7 endonuclease (New England Biolabs,
Ipswich, MA) to identify mismatched DNA indicating potential founder lines (Hwang et
al., 2013). Siblings of fish (approximately 40 fish) with positive T7 results were reared to
adulthood and used as founder (Fy) lines for subsequent experiments. Three F fish
demonstrated germ line transmission to offspring, and F, lines were generated from
these founders by out-crossing founders to AB wild types. Adult F, fish were identified
as heterozygous carriers of potential mutations using PCR and T7 endonuclease digest
on finclip DNA. Heterozygous F, fish were outcrossed to generate F; lines, and F; lines
were in-crossed to produce homozygous mutants. PCR products from potential mutants
and wild type siblings were sequenced (Eurofins, Louisville, KY) and genomic
sequences were compared to wild-type siblings to identify mutations (Geneious, version

8, http://www.geneious.com) (Kearse et al., 2012). Mutations were confirmed by RT-

PCR of cDNA (RevertAid First Strand cDNA Synthesis kit, Thermo Fisher, Vitnus,
Lithuania) using an exon 3 forward primer 5’-gccactggaacttctcaagc-3’ and an exon 6
reverse primer 5’-gcagtggttgagactcctct-3’ (Tm = 58°C x40 cycles or Touchdown PCR,
Tm = 72-65°C x15 cycles followed by Tm = 64.5°C x20 cycles). RT-PCR products were
column purified as described above and sequenced to confirm the mutation.
Heterozygous F; and F; carriers of mutant alleles were in-crossed to produce wild type,
heterozygote, and mutant offspring. Maternal-zygotic mutants were generated by

crossing a homozygote mutant female with a heterozygote male.
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Genotyping adults and larvae

Fin clips from adult fish and fin clips or whole larvae used for histological stains were
genotyped using Hotshot lysis as described above. An 822bp region of exon 5 spanning
the site of mutation in hdac4 was PCR-amplified using an intron 4-5 forward primer 5’-
atgttctccctgtgttggtg-3’ and an intron 5-6 reverse primer 5’-gctgtatttccgctcatgtg-3’ (Tm =
58°C, x40 cycles). PCR products were run on a 2% agarose gel at 60V for 5-6 hours to
produce band separation sufficient to distinguish heterozygote (2 bands) fish from wild

type and mutant fish (both 1 lower and upper band, respectively).

Histological stains and mRNA in situ hybridization

Alcian Blue and Alizarin Red staining to label cartilage and bone was performed as
described (Walker & Kimmel, 2007). Double fluorescent mRNA in situ hybridization was
performed as described (Talbot, Johnson & Kimmel, 2010), using probes for hdac4,
runx2a, runx2b, sp7, and sox9a (DelLaurier et al., 2010; Huycke, Eames & Kimmel,
2012). For each mRNA in situ hybridization experiment, 5-10 individual wild type and
mutant larvae were imaged and analyzed. Representative examples of expression

patterns are shown in this paper.

Imaging and image analysis and statistics
Alcian Blue and Alizarin Red stained specimens were dissected and flat mounted on
microscope slides and imaged on a compound microscope. The right pharyngeal

skeleton was flat mounted for each specimen unless it was damaged or defective, in
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which case the left side was used. The areas of flat mounted ceratohyal and
hyomandibula cartilages were measured using pixel area of cartilage and bone using
Imaged (NIH). The area of bone as a ratio of cartilage area was used a measure of
ossification in statistical analysis. In total, 93 fish were measured for the aik2 line (wild
type = 38, heterozygote = 23, mutant = 32) and 61 fish were measured for the aik3 line
(wild type = 17, heterozygote = 28, mutant = 16). Statistical analyses were performed in
SAS 9.4 (SAS Institute, Carey, NC). Fluorescent confocal microscopy was performed

using a Leica SPEII confocal microscope (Leica Microsystems, Buffalo Grove, IL).

Results

Hdac4 mutants have a frameshift lesion

Using CRISPR/Cas9 to target exon 5 of hdac4 (Fig. 1A), we induced frameshift
mutations in two individual fish that were used to generate mutant lines. Ling,
hdac4ak2aik2 has a 19 bp insertion three bases upstream of the protospacer adjacent
motif (PAM) site associated with Cas9 binding and cleaving of DNA. Ling hdac4aik3/aiks
|has a 2 bp insertion, followed by retention of 7 bp of the wild-type sequence, followed by
a 27 bp insertion one base pair upstream of the PAM site (Fig. 1B). In both cases,
frameshifts were induced by insertion of nucleotides into exon 5, resulting in aberrant
amino acids being added to the protein sequence (Fig. 1C). In both mutant lines the
frameshift is predicted to cause the loss of the Mef2c binding domain and premature
stop codons resulting in truncated proteins 174 aa (hdac422ak2) gnd 181 aa

(hdac4aix3/aik3) in length (Fig. 1D). Frameshifts were detected in mutant cDNA compared
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to wild type cDNA using primers spanning exons 3-6, and there was no evidence of
splice variants or exon skipping detected on agarose gels for either mutant (Figs. 1E

and F). In the case of hdac423@k3 g larger band was detected along with the band of

expected size (Fig. 1F, indicated by asterisk). This-band-was-excised-and-sequenced

feature-within-the-mutant, In both the hdac42k2aik2 gnd hdac4ak3=iks3 lines, adult fish and
embryos were genotyped using intronic primers spanning exon 5. The larger mutant
band (841 bp hdac4@k%aik2 858 bp hdac423/aik3) can be distinguished from the wild type

band (822bp), and heterozygotes show both bands (Figs. 1G and H). At 7dpf and

Mutants have increased ossification of pharyngeal cartilage

Heterozygous in-crosses were used to generate wild type, heterozygous, and mutant
larvae for skeletal preparations and analysis. At 7 dpf, mutants from the aik2 and aik3
lines showed a greater extent of ossification of the ceratohyal cartilage compared to
wild-type siblings (Fig. 2B-F, aik2 only shown in D-F, aik3 not shown). Wild type fish
typically had a small area of bone stain localized to the mid-shaft of the ceratohyal,

usually appearing first at the dorsal margin of the cartilage and spreading ventrally (Fig.
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2D and D’). Among mutants, excess bone was observed at the mid-shaft of the
ceratohyal, either as a mild (Fig. 2E and E’) or moderate (Fig. 2F and F’) increase
compared to wild types. In mutants, the extent of bone growth appeared to have
irregular boundaries compared to the wild type pattern (Fig. 2E indicated by arrow in E’)
and a greater extent of formation of a perichondral bone collar around the shaft of the
ceratohyal (Figs. 2E’, F’, indicated by asterisks). No other defects were detected in the
pharyngeal skeleton in mutants analyzed at this stage.

For both the ceratohyal and hyosymplectic, the area of bone and the area of
cartilage were measured, and the amount of ossification was calculated as the ratio of
bone to cartilage present (Figs. 2G-J). For the aik2 line, ANCOVA revealed that the
effect of genotype on the area of ossification of the ceratohyal was significant (F=4.01;
df=2,89; p=0.0215). Tukey’s multiple comparisons showed that mutants had
significantly more bone than wild types (p=0.0057), but heterozygotes were not
significantly different from either mutants (p=0.1751) or wild types (p=0.2488) (Fig. 2G).
For the aik3 line, ANOVA revealed that the effect of genotype on the area of ossification
of the ceratohyal was also significant (F=7.77; df=2,58; p=0.001). Tukey’s multiple
comparisons showed that mutants had significantly more bone than wild types
(p=0.0002), that heterozygotes also had significantly more bone than wild types
(p=0.0134), and that there was no significant difference between heterozygotes and
mutants (p=0.0697) (Fig. 2H). For the aik2 line, ANOVA revealed no significant effect of
genotype on area of ossification of the hyosymplectic (F=2.3; df=2,90; p=10.62) (Fig.
21). For the aik3 line, ANCOVA also revealed no significant effect of genotype on area of

ossification of the hyosymplectic (F=2.48; df=1,56; p=0.0928) (Fig. 2J).

Peer] reviewing PDF | (2018:07:29625:0:0:REVIEW 14 Jul 2018)



Peer]

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

hdac4 is expressed in regions of the pharyngeal skeleton consistent with a role in
cartilage maturation

At 60 hpf, hdac4 expression is broadly expressed throughout the head, with no
apparent strong colocalization with sox9a-expressing cartilages (not shown). Previously,
we described the expression of hdac4 in the ventral region of the developing pharyngeal
skeleton at 72 hpf (DeLaurier et al., 2012), and here we show how specific regions of
expression are associated with sites of ossification of cartilage. By 72 hpf, expression is
localized to regions of sox9a-expressing cartilage as well as in tissue surrounding
cartilage and dermal bone elements. Co-expression of hdac4 and sox9a is detected in
the hyosymplectic, ceratohyal, and palatoquadrate cartilages (Figs. 3A-H, indicated by
arrows). In the case of the hyosymplectic and ceratohyal, co-expression of hdac4 and
sox9a is in regions that will undergo ossification at later stages. hdac4 is strongly
expressed in the posterior pharyngeal arches, overlapping in the mid-region of each
arch with a domain of sox9a expression in the ceratobranchial cartilage within each arch

(Figs. 3I-L).

Mutants have changes in expression of factors associated with onset of
ossification

MEF2C is known to activate transcription of Runx2, a transcription factor that activates
chondrocyte maturation (Arnold et al., 2007). Runx2 in turn activates Sp7, a
transcription factor associated with osteoblast differentiation (Nishio et al., 2006). We

examined how loss of Hdac4, which would lead to over-activity of Mef2c, affects levels
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of mMRNA expression of these factors. Among teleost fish, a whole genome duplication
event generated two copies of vertebrate runx2, runx2a and runx2b (van der Meulen et
al., 2005). As in previous studies, we observed differential patterns of expression of
both genes, indicating that these genes have unique functions in skeletal development
in zebrafish (Fig. 4B and F). At 4 dpf, runx2a and runx2b are expressed in the mid-shaft
region of the ceratohyal cartilage and branchiostegal ray (Fig. 4B and F), and also in the
opercle (not shown). runx2b was also expressed in the hyosymplectic at this stage, but
runx2a was not (not shown). In hdac42k%aik3 mutants, there is an increase in runx2a
expression in the ceratohyal compared to wild type siblings (Fig. 4B-D, indicated by
arrows, M, N). In mutants runx2a expression in the ceratohyal cartilage is broader,
encompassing more length of the ceratohyal compared to wild type siblings, and
expression is stronger (Fig. 4B-D, indicated by arrows, M, N). Expression of runx2b in
hdac4aik3/aik3 mutants appears the same as in wild type siblings (Fig. 4E-H, indicated by
arrows, M, N). At 4 dpf, in both wild types and mutants, sp7 expression is located as a
small region of expression on the lateral aspect of the mid-shaft of the ceratohyal near
the branchiostegal ray in both wild type and mutant larvae. Compared to wild types,
expression of sp7 is increased in hdac4ak%aik3 mutants (Fig. 41-L, indicated by arrows,

M, N).

@ternal-zygotic mutants have increased ossification of the pharyngeal skeleton
and defects in the anterior facial region
At 7 dpf, a subset of maternal zygotic mutants and heterozygotes showed a prominent

increase in cartilage ossification compared to wild types (non-sibling controls) (F@ 5A-
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G). In total, 40.0% (16/40) of maternal zygotic mutants and 40.0% (16/40)
heterozygotes had precocious ossification, including formation of an anguloarticular (aa)
bone associated with the Meckel’s cartilage (Figs. 5B-D, G), an enlarged quadrate (see
Fig. 2A for reference, Fig. 5B), a dorsal hypohyal element (hhd) associated with the
ceratohyal (Figs. 5B and D), ossification of the symplectic of the hyosymplectic (Fig. 5B,
indicated by asterisk), and ossification of the mid-shaft of the first or first and second
ceratobranchial cartilages (Figs. 5C, D, F). Among maternal zygotic mutants, 25.9%
(15/58) had defects associated with loss of the first pharyngeal arch, including a
shortened face (Figs. 5G-J) and loss of one or both Meckel’s cartilages and the anterior
portion of the palatoquadrate cartilage, along with retention of asmall remnant of the
entopterygoid and quadrate (Fig. 5J, see Fig. 2A for reference). Among maternal
zygotic heterozygotes, 10.2% (6/59, Fig. 5G) also had loss of first arch structures. In the
case of larvae with a loss of first arch cartilages, posterior second arch and more
posterior arch structures including the ceratohyal, branchiostegal ray, and opercle were
present (Fig. 5J). Maternal zygotic mutants and heterozygotes also had defects in the
neurocranium cartilage (the primary palate in fish), including clefts, holes, and
shortening of the anterior portion of the element (Fig. 5K representative heterozygote
with normal neurocranium, L-M heterozygote and mutant with neurocranium defects). In
total, 30.8% (16/52) of maternal zygotic mutants, and 15.2% (7/46) of maternal zygotic
heterozygotes had neurocranium defects (Fig. 5G). Most neurocranium defects
occurred in fish which also had loss of first arch structures (11/16, 68.8% of maternal

zygotic mutants, and 5/7, 71.4% of maternal zygotic heterozygotes).
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Discussion

In this study, we generated two novel zebrafish lines with germ line mutations near the
start of hdac4. Both lines have insertions that cause frameshifts and premature stop
codons, which we predict causes truncated proteins with no functional Mef2c binding
domain or HDAC domain. Although a CtBP domain may exist in a truncated form of the
mutant protein, we do not think this is sufficient to preserve function of the Hdac4
protein as a repressor of ossification in the absence of the Mef2c and HDAC domains.
RT-PCR and cDNA analysis does not reveal any alternative splice forms of the
transcript, so we do not believe there is evidence for alternate versions of this protein
caused by exon skipping or alternative splicing (Sharpe & Cooper, 2017). The presence
of RT-PCR bands of the predicted size in mutants also indicates that transcripts are not
subject to nonsense-mediated decay, and so it is unlikely that there is a trigger for a
genetic compensatory response in mutants that could result in a less severe phenotype
(EI-Brolosy & Stainier, 2017).

Analysis of zygotic mutants revealed a mild to moderate but statistically
significant increase in ossification of the ceratohyal cartilage in both lines examined.
One line showed a trend towards increased ossification of the hyosymplectic
(hdac4@ik2aik2) - glthough the increase in bone was not significant in mutants compared to
wild type siblings. Normally, the hyosymplectic is the first element to commence
ossification 4-5 dpf, followed by the ceratohyal by 6 dpf (Eames et al., 2013). In the
case of the ceratohyal, ossification normally begins on the anterior margin of the mid-
shaft of the element and extends posteriorly and along the length of the cartilage

element until around 12 dpf when the proximal end of the ceratohyal ossifies to form the
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364 epihyal and the distal end of the ceratohyal ossifies to form the dorsal hypohyal

365 (Cubbage & Mabee, 1996; Eames et al., 2013). Increased ossification of the ceratohyal
366 in zygotic mutants resembles the pattern observed in 12-14 dpf wild type zebrafish

367 (Eames et al., 2013), indicating that the ossification program in mutants is either

368 precocious or is over-activated due to loss of Hdac4. Previous studies in the Hdac4
369 mutant mouse show precocious ossification of the endochondral skeleton, with

370 particular enhancement of ossification of chondral rib elements and limb cartilages in
371 newborns (Vega et al., 2004). In both the mouse and the zebrafish, ossification of

372 elements is not ectopic, but rather appears to reveal a premature onset of the

373 ossification process.

374 In mouse Hdac4 mutants, Runx2 expression is increased in cartilage, and is
375 associated with the increase of endochondral ossification of elements (Vega et al.,

376  2004). In zebrafish, orthologs of runx2, runx2a and runx2b are both expressed in

377 embryonic and larval cartilage and bone, consistent with a function in ossification

378 (Flores et al., 2004; Li et al., 2009; van der Velden et al., 2013). At 48-96 hpf, runx2a is
379 expressed in the maxilla, dentary, ceratohyal, opercle, and branchiostegal ray elements
380 of the pharyngeal skeleton (Flores et al., 2004; Li et al., 2009; van der Velden et al.,
381 2013). At 48-96 hpf, runx2b is expressed in the ceratohyal, hyosymplectic,

382 parasphenoid, entopterygoid, opercle, branchiostegal ray, and ceratobranchial

383 cartilages of the third to seventh pharyngeal arches (Flores et al., 2004; Li et al., 2009;
384 van der Velden et al., 2013). These subtly different expression patterns indicate that
385 following the teleost whole genome duplication approximately 300 million years ago

386 (Amores et al., 1998; Hoegg et al., 2004), orthologs have similar but divergent functions
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in zebrafish development. We observed increased expression of runx2a in hdac4-
mutant zebrafish compared to wild types, which we hypothesize is due to a de-
repression of Mef2c function leading to increased transcription of runx2a. We did not
observe any change in runx2b expression in mutants compared to wild types, potentially
indicating that runx2b expression is not affected by loss of Hdac4 and increased
function of Mef2c. Phylogenetic analysis indicates that runx2a and runx2b are divergent
paralogs, and thus may be regulated by different factors in zebrafish (van der Meulen et
al., 2005). The observation of a differential response in runx2 paralog expression in
hdac4 mutants may reveal that runx2a and runx2b are regulated differently by Mef2c.
We demonstrated an increase in sp7 expression in the ceratohyal of hdac4 mutants,
which we hypothesize underlies the increased bone formation we observed in mutants,
and may be up-regulated as a consequence of the increase in runx2a observed in
mutants.

Maternal-zygotic mutants and heterozygotes showed an enhancement of the
ossification phenotype observed in zygotic mutants. In addition to the increased
ossification of the ceratohyal observed in zygotic mutants, 40% of maternal-zygotic
mutants and heterozygotes had additional premature ossification of other pharyngeal
skeletal elements. At 7 dpf, these larvae had evidence of a dorsal hypohyal at the distal
portion of the ceratohyal, ossification of the symplectic cartilage of the hyosymplectic
element, and ossification of the anterior ceratobranchial cartilages. Ossification of the
dorsal hypohyal and symplectic normally occurs around 12 dpf, and ceratobranchial
around 13 dpf (Cubbage & Mabee, 1996; Eames et al., 2013), indicating that the

ossification program in maternal-zygotic mutants and heterozygotes is accelerated.
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Among maternal-zygotic mutants and heterozygotes, the presence of an
anguloarticular bone associated with the Meckel’s cartilage was also observed. This
element is normally first observed at around 12 dpf in wild type zebrafish. Unlike the
other elements showing premature ossification, this element is a dermal bone that forms
without a cartilaginous precursor (Cubbage & Mabee, 1996). Other dermal bones
appear to be unaffected in zygotic or maternal-zygotic hdac4 mutants, and dermal
bones are reported to be unaffected in Hdac4 mutant mice (Vega et al., 2004). We
cannot explain why this particular dermal bone appears precociously in hdac4 mutants;
however, as it forms on the surface of the Meckel’s cartilage, anguloarticular precursor
cells may be responding to signals from the underlying Meckel’s cartilage to commence
formation of bone. As an aside, it was noted that the cartilage of maternal-zygotic
mutants and heterozygotes with excessive ossification generally had weaker Alcian
Blue stain, and chondrocytes appeared rounder and less well organized compared to
wild type controls (Figs. 5C and D). These differences in chondrocyte morphology and
cartilage matrix indicate that loss of Hdac4 may also affect chondrocytes or
chondrogenesis.

The profound increase in ossification in a subset of maternal-zygotic mutants and
heterozygotes compared to zygotic mutants suggests that there is a maternal influence
on the chondral ossification program in zebrafish through Hdac4. In zebrafish, the
maternal-zygotic transition (MZT) commences around 2 hpf (128 cells) where maternal
transcripts are degraded and the first waves of zygotic transcripts are generated
(Tadros & Lipshitz, 2009). Using the RNA-seq expression atlas data for zebrafish

(https://www.ebi.ac.uk/gxa/home), we found that the highest level of hdac4 mRNA
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expression in zebrafish is between cleavage (2 cell) and blastula dome (over 1K cell
stage), followed by very low expression of transcripts up to 3 dpf (larval protruding
mouth), after which transcript levels increase (Fig. 6). Since the high levels of hdac4
mMRNA in embryos prior to 128-cell stage can only be maternal transcripts, we believe
this shows that there is a role for maternal Hdac4 in early development, and that only
several days later does zygotic Hdac4 function in development. From our experiments,
it is unclear how early maternal hdac4 may be affecting ossification of cartilage several
days post-fertilization. However, it is possible that maternal Hdac4 protein is still present
in cells several days following the MZT and can influence ossification, or alternately,
maternal Hdac4 may establish an epigenetic environment or signaling cascade in very
early embryos which has consequences on downstream skeletogenesis. Future
experiments will establish the levels of maternal Hdac4 in zebrafish embryos and we will
examine the function of maternal transcripts or proteins on skeletal development in
larvae.

Previously, we reported that morpholino knockdown of hdac4 causes loss of
neural crest and neurocranium defects in zebrafish (DelLaurier et al., 2012). Our zygotic
mutants do not show any evidence of this phenotype. However, approximately one
quarter of hdac4 maternal-zygotic mutants show neurocranium defects and a loss of
first arch cartilages consistent with a role for Hdac4 in neural crest development. Given
the proportion of approximately one quarter of maternal-zygotic mutants showing this
effect, we believe there may be a dihybrid effect of another unknown gene influencing
the phenotypic outcome of loss or reductions of Hdac4 on neural crest. Future

experiments will establish the levels of specifically maternal Hdac4 in zebrafish embryos
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456 and we will examine the function of maternal transcripts or proteins on neural crest

457 patterning and skeletal development in embryos and larvae.

458 In mouse, loss of MEF2C causes impaired chondrocyte hypertrophy and loss of
459 endochondral ossification due to the failure to activate Runx2 and Ihh targets (Arnold et
460 al., 2007). In zebrafish, the pharyngeal development of mef2ca and mef2cb mutants has
461 been previously described (Miller et al., 2007; DelLaurier et al., 2014). Mef2ca mutants
462 have a profound fusion defect of dorsal and ventral first and second arch cartilages and
463 an expanded opercle bone. Mef2ca regulates expression of dix genes, hand2, and

464 nkx3.2 (bapx1) targets downstream of Edn1; and it is proposed that changes to

465 expression of these factors through loss of mef2ca results in the joint fusions and

466 dorsal-ventral patterning defects in mutants (Miller et al., 2007). Single mef2ecb mutants
467 have normal pharyngeal patterning, with no evidence of fusions or expansions of

468 skeletal elements, indicating that Mef2cb does not function in the same capacity as

469 Mef2ca in the Edn1 pathway during pharyngeal development (Miller et al., 2007,

470 DelLaurier et al., 2014). If the function of zebrafish Mef2ca and Mef2cb is conserved with
471 MEF2C function in the mouse, it is predicted that loss of either or both genes combined
472 would result in a loss of perichondral ossification of cartilage. Previous studies do not
473 report a perichondral ossification defect in single homozygous mutants or in mef2ca*-
474 ;mef2ch” or mef2c’;mef2c*- fish, although in all cases, larvae were studied at 6dpf, not
475 7dpf, and cartilage ossification was not quantitatively measured (Miller et al., 2007;

476 DelLaurier et al., 2014). It is possible that the reported absence of a cartilage ossification
477 defect in either single mutant is due to functional redundancy of the Mef2c paralogs to

478 induce perichondral ossification, and that complete loss of both genes could result in
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ossification defects in mutants. Unfortunately, the combined double homozygous mutant
has a heart malformation by 48 hpf (Hinits et al., 2012) resulting in severe
developmental defects by larval stages (DelLaurier et al., 2014). Future studies should
reexamine the function of mef2c genes in cartilage ossification. For the mef2ca mutant,
it would be difficult to compare cartilage ossification patterns with that of wild type
larvae, due to the nature of joint fusions and patterning defects in cartilage. However,
future studies could quantitatively study ossification in mef2ch single mutants, or in
combined mutants where one mef2ca allele is heterozygous (i.e. mef2ca*-;mef2cb”)
and fish develop without cardiac abnormalities, as previously reported (DeLaurier et al.,

2014).

Conclusions

In conclusion, this study shows that mutation of hdac4 in zebrafish causes excessive
ossification of the pharyngeal skeleton, consistent with previous findings in the mouse
(Vega et al., 2004), indicating a conserved function for Hdac4 among vertebrates.
Mutants have increased expression of the transcription factors runx2a and sp7,
activators of the skeletal ossification program, which we hypothesize are upregulated in
response to increased activity of Mef2c through loss of Hdac4. Maternal-zygotic
crosses, along with RNA-seq analysis indicate that maternal Hdac4 is an important
contributor to embryonic and larval development. Zebrafish hdac4 mutant lines may be
useful resources for future study of the function of hdac4 in development of the skeleton
or other tissues, potentially along with other class lla hdac mutants (i.e. hdac5, hdac?,

and hdac9) which may be compensating in part for loss of Hdac4. Maternal-zygotic
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hdac4 mutants and heterozygotes further offer novel insights into the role of maternal

transcripts or proteins on late-stage larval tissue patterning.
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Figure legends

Figure 1: Overview of CRISPR strategy and generation of hdac4 mutant lines. A:
Genomic structure of hdac4 showing gRNA target associated with the protospacer
adjacent motif (5-NGG, PAM) upstream of the Mef2c binding domain sequence. The
histone deacetylase domain sequence is at the 3’ end of the gene. Green arrows
indicate forward (exon 3F) and reverse (exon 6R) primers for RT-PCR and sequencing
of cDNA. Red arrows indicate intronic genotyping primers (hdac4 F6, hdac4 R6)
flanking exon 5. Intron 2/3 and 3/4 not to scale, indicated by hash marks. B: Alignment
of wild type (hdac4**) with mutant cDNA sequence showing nucleotide insertions (blue)
in hdac422aik2 gnd hdac42%¥2ik3 mutants in exon 5. C and D: Insertion of nucleotides
results in reading frame shifts causing aberrant protein sequences (magenta in C, grey
boxes in D), loss of the Mef2c binding domain (indicated in yellow in C), and premature
termination of the protein sequence (asterisk in C indicates stop codon). E and F: RT-
PCR showing hdac4 cDNA is spliced correctly in mutants and there is no evidence of
splice variants. The wild type cDNA product is expected to be 535 bp and mutant bands
are 554 bp (hdac4@k2aik2in E) and 571 bp (hdac42%aik3in F). The larger band in
hdac4ak3/aik3 mutants (indicated by white asterisk in F) was sequenced and determined
to be identical to the lower band. G and H: Genomic DNA samples were genotyped by
PCR and show differences in band sizes indicating mutant (841 bp hdac422aik2 858 bp
hdac4aik3/aik3) "wild type (822bp), and heterozygous fish (mutant and wild type bands). |
and J: At 7dpf, mutant hdac423/ak3 fish (J) appear normal compared to wild type siblings

(). H2O = negative control. 100 bp ladder.
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Figure 2: Analysis of ossification of the pharyngeal skeleton of hdac4 zygotic mutants.
A: Schematic showing elements of the 7 dpf larvae pharyngeal skeleton. Cartilage is
indicated in blue, bone is indicated in red. B and C: Total scores assigned to 7 dpf
larvae scored for aik2 and aik3 lines, respectively. D and D’: wild type larval pharyngeal
skeleton and enlarged view of ceratohyal. E and E’: hdac42k2ak2 mytant larvae showing
“mild” increase of ossification of ceratohyal. Arrow indicates irregular border of
ossification and asterisk indicates bone collar on dorsal surface of ceratohyal. Lower
arrow indicates spread of ossification to ventral aspect of ceratohyal. F and F’:
hdac4ak2aik2 myutant showing “moderate” increase of ossification of ceratohyal. Asterisks
indicate bone collar on dorsal and ventral surfaces of the ceratohyal. G and H: Bar
graphs comparing ratios of bone to total area of the ceratohyal for aik2 and aik3. | and
J: Bar graphs comparing ratios of bone to total area of the hyosymplectic for aik2 and
aik3. For G-J, aik2 total fish = 93, including WT = 38, heterozygote = 23, and mutant =
32; aik3 total fish = 61, including WT = 17, heterozygote = 28, and mutant = 16.
Abbreviations: ch = ceratohyal, bsr = branchiostegal ray, de = dentary, en =
entopterygoid, hs = hyosymplectic, ih = interhyal, m = Meckel’s cartilage, op = opercle,
pq = palatoquadrate, q = quadrate. * p < 0.05, ** p < 0.01, *** p < 0.001. Scale bar = 100

microns. Cartilage is stained blue (Alcian Blue), bone is stained red (Alizarin Red).

Figure 3: Expression of hdac4 and sox9a mRNA in the pharyngeal skeleton of wild type

embryos at 72 hpf. A: Schematic of skeletal elements, lateral view for B-D, blue

indicates cartilage, red indicates bone. B-D: expression of hdac4 and sox9a, arrows
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557 indicate expression in hyosymplectic, ceratohyal, and palatoquadrate cartilages. E:
558 Schematic of skeletal elements, lateral view for F-H. F-H: expression of hdac4 and

559 sox9a, arrows indicate expression in ceratohyal and hyosymplectic cartilages. I:

560 Schematic of skeletal elements, ventral view for J-L. J-L: expression of hdac4 and

561 sox9a, arrows indicate expression in the posterior pharyngeal arches. Abbreviations: bb
562 = basibranchial, ch = ceratohyal, hs = hyosymplectic, ih = interhyal, m = Meckel’s

563 cartilage, op = opercle, pa3-7 = posterior pharyngeal arches, pq = palatoquadrate.

564 Scale bar = 50 microns.

565

566 Figure 4: Expression of runx2a, runx2b, and sp7 mRNA in the pharyngeal skeleton of
567 wild-type and hdac4@k%aik3mutant larvae at 4 dpf. A, C, E, G, |, K: Schematic view of
568 skeletal elements, ventral view, blue indicates cartilage, red indicates bone. B and D:
569 expression of runx2a in wild type (B) and mutant (D), arrows indicate expression in the
570 ceratohyal. F and H: expression of runx2b in wild type (F) and mutant (H), arrows

571 indicate expression in the ceratohyal. J and L: expression of sp7 in wild type (J) and
572 mutant (L), arrows indicate expression in the ceratohyal. M: schematic showing

573 overlapping domains of expression of runx2a, runx2b, and sp7 in wild type larvae. N:
574 schematic showing expanded runx2a and sp7 domains in mutant larvae. Abbreviations:
575 ch = ceratohyal, bsr = branchiostegal ray, pa3 = pharyngeal arch 3, pq =

576 palatoquadrate. Scale bar = 50 microns.

577

578 Figure 5: Analysis of maternal-zygote mutant and heterozygote skeletal patterning. A:

579 Wild type (non-sibling) larval pharyngeal skeleton at 7 dpf. B-D: maternal-zygotic mutant
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(B and C) and heterozygote (D) pharyngeal skeletons at 7 dpf showing precocious
angular articular bone (aa, indicated in B and C), dorsal hypohyal (hhd, indicated in B
and D), ossification of the symplectic of the hyosymplectic (indicated by asterisk in B).
E: Wild type posterior pharyngeal arches 3 and 4 showing first and second
ceratobranchial cartilages (cb1, cb2), ventral view, 7 dpf. F: maternal-zygotic mutant
showing ossification of the ceratobranchial cartilages, indicated by arrows (also in C). G:
Total scores of maternal zygotic mutants and heterozygotes for first arch (M, Pq defect),
neurocranium, and early ossification defects. H: Maternal-zygotic heterozygote at 72
hpf, lateral view. |: Maternal-zygotic mutant at 72 hpf, lateral view. J: Maternal-zygotic
mutant showing loss of first arch cartilage, a small remnant entopterygoid bone (en) and
quadrate (q) associated with the palatoquadrate are present (see Fig. 2A for reference).
K and L: Maternal-zygotic heterozygote neurocrania, ventral view, 7 dpf. L: Maternal-
zygotic mutant neurocranium, ventral view, 7 dpf. A-D, H-M: Scale bar = 200 microns, E
and F: Scale bar = 50 microns. Cartilage is stained blue (Alcian Blue), bone is stained

red (Alizarin Red).

Figure 6: RNA-seq mRNA levels of hdac4 transcripts from zygotic to larval day 5 stage.
Bars indicate numbers of hdac4 transcripts per million transcripts read at each stage.
Between the 128 and 256-cell stage, maternal transcripts degrade and zygotic
transcripts become predominant. See http://www.ebi.ac.uk/gxa/experiments/E-ERAD-

475 for Expression Atlas data.
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Figure 1

Overview of CRISPR strategy and generation of hdac4 mutant lines.

A: Genomic structure of hdac4 showing gRNA target associated with the protospacer
adjacent motif (5'-NGG, PAM) upstream of the Mef2c binding domain sequence. The histone
deacetylase domain sequence is at the 3’ end of the gene. Green arrows indicate forward
(exon 3F) and reverse (exon 6R) primers for RT-PCR and sequencing of cDNA. Red arrows
indicate intronic genotyping primers (hdac4 F6, hdac4 R6) flanking exon 5. Intron 2/3 and 3/4
not to scale, indicated by hash marks. B: Alignment of wild type (hdac4**) with mutant cDNA
sequence showing nucleotide insertions (blue) in hdac4°*##*? and hdac4®*”** mutants in exon
5. C and D: Insertion of nucleotides results in reading frame shifts causing aberrant protein
sequences (magenta in C, grey boxes in D), loss of the Mef2c binding domain (indicated in
yellow in C), and premature termination of the protein sequence (asterisk in C indicates stop
codon). E and F: RT-PCR showing hdac4 cDNA is spliced correctly in mutants and there is no
evidence of splice variants. The wild type cDNA product is expected to be 535 bp and mutant
bands are 554 bp (hdac4°****2in E) and 571 bp (hdac4?****3in F). The larger band in
hdac4?% mutants (indicated by white asterisk in F) was sequenced and determined to be
identical to the lower band. G and H: Genomic DNA samples were genotyped by PCR and
show differences in band sizes indicating mutant (841 bp hdac4*°*2, 858 bp hdac4*3~*3),
wild type (822bp), and heterozygous fish (mutant and wild type bands). | and J: At 7dpf,
mutant hdac4®**fish (J) appear normal compared to wild type siblings (I). H,0 = negative

control. 100 bp ladder.
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Figure 2

Analysis of ossification of the pharyngeal skeleton of hdac4 zygotic mutants.

A: Schematic showing elements of the 7 dpf larvae pharyngeal skeleton. Cartilage is
indicated in blue, bone is indicated in red. B and C: Total scores assigned to 7 dpf larvae
scored for aik2 and aik3 lines, respectively. D and D’: wild type larval pharyngeal skeleton
and enlarged view of ceratohyal. E and E": hdac4®*?*? mutant larvae showing “mild” increase
of ossification of ceratohyal. Arrow indicates irreqular border of ossification and asterisk
indicates bone collar on dorsal surface of ceratohyal. Lower arrow indicates spread of
ossification to ventral aspect of ceratohyal. F and F': hdac4®*?**? mutant showing “moderate”
increase of ossification of ceratohyal. Asterisks indicate bone collar on dorsal and ventral
surfaces of the ceratohyal. G and H: Bar graphs comparing ratios of bone to total area of the
ceratohyal for aik2 and aik3. | and J: Bar graphs comparing ratios of bone to total area of the
hyosymplectic for aik2 and aik3. Abbreviations: ch = ceratohyal, bsr = branchiostegal ray, de
= dentary, en = entopterygoid, hs = hyosymplectic, ih = interhyal, m = Meckel’s cartilage,
op = opercle, pq = palatoquadrate, g = quadrate. * p < 0.05, * p < 0.01, ** p < 0.001.
Scale bar = 100 microns. Cartilage is stained blue (Alcian Blue), bone is stained red (Alizarin

Red).
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Figure 3

Expression of hdac4 and sox9a mRNA in the pharyngeal skeleton of wild type embryos
at 72 hpf.

A: Schematic of skeletal elements, lateral view for B-D, blue indicates cartilage, red indicates
bone. B-D: expression of hdac4 and sox9a, arrows indicate expression in hyosymplectic,
ceratohyal, and palatoquadrate cartilages. E: Schematic of skeletal elements, lateral view for
F-H. F-H: expression of hdac4 and sox9a, arrows indicate expression in ceratohyal and
hyosymplectic cartilages. I: Schematic of skeletal elements, ventral view for J-L. J-L:
expression of hdac4 and sox9a, arrows indicate expression in the posterior pharyngeal
arches. Abbreviations: bb = basibranchial, ch = ceratohyal, hs = hyosymplectic, ih =
interhyal, m = Meckel’s cartilage, op = opercle, pa3-7 = posterior pharyngeal arches, pq =

palatoquadrate. Scale bar = 50 microns.

*Note: Auto Gamma Correction was used for the image. This only affects the reviewing manuscript. See original source image if needed for review.
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Figure 4

Expression of runx2a, runx2b, and sp7 mRNA in the pharyngeal skeleton of wild-type
and hdac4°* mutant larvae at 4 dpf.

A, C, E, G, |, K: Schematic view of skeletal elements, ventral view, blue indicates cartilage,
red indicates bone. B and D: expression of runx2a in wild type (B) and mutant (D), arrows
indicate expression in the ceratohyal. F and H: expression of runx2b in wild type (F) and
mutant (H), arrows indicate expression in the ceratohyal. ] and L: expression of sp7 in wild
type (J) and mutant (L), arrows indicate expression in the ceratohyal. M: schematic showing
overlapping domains of expression of runx2a, runx2b, and sp7 in wild type larvae. N:
schematic showing expanded runx2a and sp7 domains in mutant larvae. Abbreviations: ch =
ceratohyal, bsr = branchiostegal ray, pa3 = pharyngeal arch 3, pg = palatoquadrate. Scale

bar = 50 microns.
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Figure 5

Analysis of maternal-zygote mutant and heterozygote skeletal patterning

A: Wild type (non-sibling) larval pharyngeal skeleton at 7 dpf. B-D: maternal-zygotic mutant
(B and C) and heterozygote (D) pharyngeal skeletons at 7 dpf showing precocious angular
articular bone (aa, indicated in B and C), dorsal hypohyal (hhd, indicated in B and D),
ossification of the symplectic of the hyosymplectic (indicated by asterisk in B). E: Wild type
posterior pharyngeal arches 3 and 4 showing first and second ceratobranchial cartilages
(cbl, cb2), ventral view, 7 dpf. F: maternal-zygotic mutant showing ossification of the
ceratobranchial cartilages, indicated by arrows (also in C). G: Total scores of maternal zygotic
mutants and heterozygotes for first arch (M, Pq defect), neurocranium, and early ossification
defects. H: Maternal-zygotic heterozygote at 72 hpf, lateral view. I: Maternal-zygotic mutant
at 72 hpf, lateral view. J: Maternal-zygotic mutant showing loss of first arch cartilage, a small
remnant entopterygoid bone (en) and quadrate (q) associated with the palatoquadrate are
present (see Fig. 2A for reference). K and L: Maternal-zygotic heterozygote neurocrania,
ventral view, 7 dpf. L: Maternal-zygotic mutant neurocranium, ventral view, 7 dpf. A-D, H-M:
Scale bar = 200 microns, E and F: Scale bar = 50 microns. Cartilage is stained blue (Alcian

Blue), bone is stained red (Alizarin Red).
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Figure 6

RNA-seq mRNA levels of hdac4 transcripts from zygotic to larval day 5 stage.

Bars indicate numbers of hdac4 transcripts per million transcripts read at each stage.

Between the 128 and 256-cell stage, maternal transcripts degrade and zygotic transcripts

become predominant. See http://www.ebi.ac.uk/gxa/experiments/E-ERAD-475 for Expression

Atlas data.
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