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ABSTRACT
Precipitation change and nitrogen deposition are not only hot topics of current global
change but also the main environmental factors affecting plant growth in desert
ecosystems. Thus, we performed an experiment of increased precipitation, nitrogen,
and precipitation plus nitrogen on the ephemeral annual species Nepeta micrantha
and Eremopyrum distans in the Gurbantunggut Desert. We aimed to determine the
life history responses of N. micrantha and E. distans to environment changes, and the
germination percentage of the offspring (seeds) was also tested in the laboratory. The
results showed that increased nitrogen and precipitation plus nitrogen increased the
growth of both plant species, whereas increased precipitation inhibited the growth of
N. micrantha but increased the growth of E. distans. This differential response of these
two species to precipitation andnitrogen also affected the germinationof their offspring.
In response to increased nitrogen and precipitation plus nitrogen, the germination
percentage of the offspring produced by two species decreased in conjunction with
the plants exhibiting high reproduction, which may prevent overcrowding during the
following year; however, theN. micrantha plants producedmore nondormant offspring
in conjunctionwith low reproduction under relatively greater amounts of precipitation,
andN. micrantha offspring could occupy their habitat via rapid germination in suitable
environments. Therefore, with increased precipitation and nitrogen deposition, these
differences in offspring dormancy may affect their ecological niche in the community.

Subjects Ecology, Plant Science, Climate Change Biology
Keywords Climate change, Ephemeral plant, Eremopyrum distans, Gurbantunggut Desert,
Increased precipitation, Interaction, Nepeta micrantha, Nitrogen deposition

INTRODUCTION
Anthropogenic activity and climate change have a continuing effect on global and regional
environments, including widespread changes in precipitation and nitrogen deposition
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(Stocker et al., 2013). Plants are an important component of terrestrial ecosystems and
play an important role in their regulation. Therefore, understanding plant responses
to precipitation and nitrogen deposition is important for maintaining ecosystem stability
(Cabaço & Rui, 2012). Especially in arid and semiarid areaswhere environmental conditions
are extremely harsh, slight disturbances are likely to cause a severe changes in plant growth
(Knapp & Smith, 2001; Huxman et al., 2004; Diffenbaugh, Giorgi & Pal, 2008). Moisture is
the most important limiting factor for plant growth in arid and semiarid regions, and
precipitation is the primary source of soil moisture (Dube & Pickup, 2001; Cheng et al.,
2006). In the Gurbantunggut Desert of northwestern China, the annual precipitation is
predicted to increase by 30% during the next 30 years (Bai et al., 2008; Liu et al., 2010;
Huang et al., 2017). Nitrogen deposition from the nearest city to the study area is 35.4
kg ha−1 yr−1, and the nitrogen deposition in the Gurbantunggut Desert is predicted to
double in the future (Liu et al., 2013;Xu et al., 2015). Therefore, researching plant responses
to precipitation and nitrogen deposition in this desert ecosystem is highly necessary to
adapt to climate change.

Precipitation is a key climate factor that affects plant growth, especially in desert
ecosystems (Hsu, Powell & Adler, 2012; Beer et al., 2010). During the seedling stage,
seedling emergence of desert annual plants increased significantly and exhibited faster
germination time with increased precipitation in the Mu Us Desert (Zheng et al., 2005),
but the contrary was the case with the decreasing of soil moisture (Liu et al., 2018). During
the growth stage, increased precipitation not only promoted the production of new leaves
and branches (Zhang et al., 2015), but also increased biomass accumulation in desert annual
species (Shemtov & Gutterman, 2003). But the promotion of precipitation often intensify
competition among species. Small-stature plants can be overshadowed by taller plants and
the ground cover by small-stature plants decreases with increased precipitation (Harpole,
Potts & Suding, 2007; Zavaleta et al., 2003). The moisture requirement for non-native
annual grasses is typically lower than that of native plants leading to an increased advantage
in non-native annual grass competition in the Mojave Deserts (Horn, Nettles & Clair,
2015). Thus, desert annual herbs respond very rapidly to precipitation changes throughout
the whole growth period and species show differential responses to increased precipitation
in the community.

Although desert plants are primarily limited by precipitation, previous studies have
indicated the potential for co-limitation by nitrogen in desert ecosystems (Hall et al., 2011).
Hence, nitrogen fertilization is commonly used to improve plant growth in semiarid/arid
ecosystems (Frink, Waggoner & Ausubel, 1999). In theMojave Desert, soil nitrogen addition
increased the dominance of alien annual plants, but inhibited the growth of natives (Jordan,
1996). At the Sevilleta, the cover of two dominant species (black grama and blue grama)
is not changing directionally by changes in nitrogen deposition, but are likely caused by
other factors (Baez et al., 2007). In the Chihuahuan Desert grassland, nitrogen limitation
only becomes evident on plant growth following periods of above average precipitation
(Ladwig et al., 2012). Therefore, these different responses of desert plants to nitrogen likely
derive from the variations in species specificity and other factors, especially in precipitation
regime.
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Water is not only a material for photosynthesis (Maberly, 2014), but also a solvent for
nitrogen (Gebauer & Ehleringer, 2000; Lloret, Casanovas & Penuelas, 2010). Similarly, the
effects of precipitation plus nitrogen on plants have been reported largely in terms of plant
richness (McHugh et al., 2017; Simkin et al., 2016), diversity (Bobbink et al., 2010; McHugh
et al., 2017), community coverage (McHugh et al., 2017), community biomass (Xu et al.,
2018), and plant-plant interactions (Wang et al., 2016a; Wang et al., 2016b). However, the
effects of precipitation plus nitrogen on whole life history have rarely been reported. The
only reports to date have focused on certain aspects of plant life history; for example, the
nitrogen plus precipitation significantly advanced the onset of the flowering and fruiting
times (Huang, Li & Li, 2018) and was shown to increase root growth (Zhang et al., 2017),
leaf number (Barker et al., 2006; Huang, Li & Li, 2018), seed yield (Altenbach et al., 2003;
Fuertes-Mendizabal et al., 2010), and biomass accumulation (Al-Solaimani et al., 2017).
No research on the entire life history has been performed with respect to the effect of
precipitation plus nitrogen deposition.

Ephemeral plants are a unique group of plants and widely distributed in the
Gurbantunggut Desert (Lu et al., 2014). Ephemeral plant coverage can reach 40% of this
area in May, while coverage by shrubs and long-living herbs on the surface of the dunes
reaches less than 10% (Wang et al., 2003). Therefore, ephemeral plants are the primary
contributors to the stabilization of the sand surface during early spring. By utilizing winter
snowmelt and spring rainfall, ephemeral plants complete their life cycle quickly (Lu et al.,
2016). Compared with other annual and perennial herbs, ephemeral plants grow more
quickly and exhibit greater light use efficiency, and they allocate a greater percentage of
their biomass to reproduction (Yuan & Tang, 2010). Thus, ephemeral plants are extremely
sensitive to climate change. Previous research on the effects of precipitation and nitrogen
on ephemeral plants has focused primarily on plant survival, biomass accumulation (Lu
et al., 2014) and nutrient use (Wang et al., 2016a; Wang et al., 2016b). The information
about plant responses to climate change throughout the entire life history is lacking.

The importance of root traits as drivers of ecosystem function has attracted widespread
concern (Bardgett, Mommer & De Vries, 2014). In arid-semiarid ecosystems, the root
morphology can influence the ability of the plants to regulate their own growth in
response to environmental change (Ogle & Reynolds, 2004; Shen, Reynolds & Hui, 2010;
Griffin-Nolan et al., 2018). For example, Paz, Pinedagarcía & Pinzónpérez (2015) reported
that 23 species exhibit wide variation in their root morphology, which ultimately governs
plant mass by absorbing water and nutrients. Two common annual ephemeral plants in
the Gurbantunggut Desert during early spring include Eremopyrum distans and Nepeta
micrantha (Wang et al., 2010; Ding et al., 2016). E. distans is a member of the Gramineae
and has a fibrous root system (Wang et al., 2010).N. micrantha is a member of the Labiatae
and has a taproot system (field observations by the first author from 2014 to 2016).
Therefore, the root morphology forms of E. distans and N. micrantha are significantly
different. On the basis of the sensitivity response of ephemeral plants to environmental
change, the effects of roots in regulate the response of plant to environmental change
and the significant differences in root morphology of E. distans and N. micrantha, we
hypothesized that the life histories of E. distans and N. micrantha differ in response to
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increased precipitation and nitrogen and precipitation plus nitrogen in the field. To test
this hypothesis, we compared the phenology, morphological traits, biomass accumulation
and allocation, and offspring (seed) germination of E. distans and N. micrantha plants
during the life history.

MATERIALS AND METHODS
Study site
The study site is located on the southern edge of the Gurbantunggut Desert, which is
the second largest desert in China (Wang et al., 2004). This desert has a typical temperate
continental climate with hot summers and cold winters; the highest annual temperature
is 42.6 ◦C, the lowest annual temperature is −41.6 ◦C, and the annual precipitation is
generally 70–100 mm. The evapotranspiration can reach approximately 2,000 mm, which
is 20–30 times the precipitation (Ji, Ye & Wei, 2000). During the winter, the Gurbantunggut
Desert has a stable snow layer and a maximum snow depth of more than 20 cm, which
lasts from three to five months (Zhou, Zhou & Dai, 2009; Li et al., 2010). During the early
spring, the snow melts rapidly and provides sufficient water for the growth of ephemeral
plants (Wang et al., 2003).

Experimental design
Increased precipitation and nitrogen treatments
To simulate the current precipitation amounts in the Gurbantunggut Desert as well as
the future and extreme amounts expected, an experiment was established to simulate
precipitation increases of +0%, +30%, and +50% based on empirical precipitation data
from the study area during the spring and summer. Owing to the rapid development of
the economy, the Gurbantunggut Desert has been surrounded by farmland and factories;
therefore, it receives a large exogenous input of nitrogen. The nitrogen deposition from a
nearby city (Urumqi) has reached 35.4 kg ha−1 yr−1(Wei, 2015). According to Galloway
et al. (2008), global nitrogen deposition will increase rapidly doubling the amount recorded
in 1990 within 30 years. Thus, we simulated three N deposition levels in the experiment: N0
(control treatment, no additional nitrogen input, the value is the current actual nitrogen
input), N1 (the current deposition rate in a polluted area, 3 g N m−2 yr−1), and N2 (the
predicted future rate of 6 g N m−2 yr−1). The field experiment consisted of three levels of
precipitation (+0%, +30%, and +50%; CK, W1, andW2, respectively), three levels of N (0,
3, and 6 g N m−2 yr−1; CK, N1, and N2, respectively), and the precipitation plus nitrogen
(W1N1 andW2N1). A total of seven treatments (CK,W1,W2, N1, N2,W1N1, andW2N1)
were set up with eight replicates for per treatment for a total of 56 plots. The plots were
distributed at the bottom of the flat dunes, and the size of each plot was 1 m ×1 m and
encompassed 12 plants. To avoid interference, we removed other species from the plots
in November 2016 and again in April 2017. We installed plastic film around the plots to
avoid affecting the environment. Furthermore, in order to collect rainfall for the increased
precipitation experiments, four precipitation collection vessels were installed in the field.
Each precipitation collection vessel was assembled fromplastic boards (4m× 4m) and iron
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poles. Each board was installed at an angle of 30◦ from the ground to collect precipitation,
and one bucket was placed on the lower corner of the board.

On September 1, 2014, we installed a weather and soil moisture monitoring device
(Caipos GmbH, Schiller Strasse Gleisdorf, Austria) to monitor the precipitation,
temperature, and soil moisture. When a precipitation event occurred, the monitoring
device collected data from wireless sensors, uploading the measurements directly to a
web-based platform every hour. We conducted an increased precipitation experiment on
the second day after each natural precipitation events (including some snow fall in early
spring). We used a watering can to apply rainwater on the plots designated for testing
increased precipitation.

With respect to nitrogen applications, we referred to the methods of Zhou et al.’s (2011)
and applied nitrogen twice per year in late March (snowmelt) and late October (before
snowfall). When the nitrogen was applied, NH4NO3 and NH4Cl were dissolved in the
water at NH4:NO3 = 2:1, and the solution was manually applied evenly on the sample
surface area; the same amount of water was applied on the control soils.

Experimental material
We sowed seeds in the designated plots in the beginning of October, 2016. One hundred
E. distans and N. micrantha seeds were evenly sown each 1 m ×1 m plot. On March 10,
2017, 12 of the largest plants in each 1 m ×1 m plot were marked, after which excess
seedlings and other species were removed.

Measurements and sampling
Phenology
We followed the methods of Lu et al. (2014) and observed the experimental plots every 3
days from germination until death, and we recorded the emergence date (the number of
days until all the seeds in each treatment had emerged), flowering date (the number of days
until all the plants in each treatment had flowered), fruiting date (the number of days until
the occurrence of the first green fruit on all the plants in each treatment) and maturation
date (the number of days until the first fruits of all the individuals plants in each treatment
had turned a khaki color and were ready to disperse naturally) were determined. The post
germination life span (the interval from the emergence of the first individual to the death
of the last individual in each treatment) was then determined.

Plant traits
When the plants reached maturity, their traits (plant height; leaf area; root length; and the
numbers of flowers, fruits, and seeds) were measured. We measured the leaf area of fresh
leaves using a LI-COR 3000 leaf area meter directly. However, we measured the leaf area
of the curling leaves after they were rehydrated. The total leaf area was calculated as the
area of the fresh leaves plus that of the curled leaves. The root of N. micrantha has a tap
root system and consists mainly of the main root and a small number of lateral roots that
are growing on the main root, so, we measured the length of main root to represent the
root length. However, root of E. distans has a fibrous root system, and it consists of many
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fibrous roots. Therefore, the root length of E. distans is expressed by taking the average of
the fibrous roots.

Dry mass accumulation and allocation
After the plant traits were measured, the plants in all the treatments were harvested and
separated into roots, stems, leaves, and reproductive organs (flowers, fruits, and seeds), and
the roots were carefully washed free of soil. We harvested the seeds or fruits at maturity,
i.e., when the fruits were dry, yellow, and dehiscing. As a result of the different precipitation
and nitrogen treatments, the seeds or fruits reached maturity at different times. Thus, we
harvested the plants as soon as their seeds or fruits had turned yellow. Various organs
(fruits, leaves, stems, and roots) from the plants were weighed separately using a Sartorius
BS210S electronic balance (0.0001 g) after they were dried at 75 ◦C for 48 h. The total
biomass was calculated as the masses of the various organs (roots, stems, leaves, fruits
and seeds) per plant. The biomass allocation of the roots, stems, leaves, and reproductive
organs (flowers, fruits, and seeds) was expressed as a percentage as follows:

Root percentage= (roots mass)/(total mass)×100%;

Stem percentage= (stems mass)/(total mass)×100%;

Leaf percentage= (leaves mass)/(total mass)×100%;

Reproductive percentage= (reproductive mass)/(total mass)×100%.

Offspring(seed) germination
Mature fruits from the different treatments were collected on May 21 and June 1, 2017.
We removed the shells and retained the seeds from E. distans and N. micrantha for the
germination experiment. With respect to E. distans, germination tests were conducted at
an alternating temperature regimen of 25 ◦C/10 ◦C (12 h of light/12 h of darkness) starting
on June 20, 2017. With respect to N. micrantha, germination tests were conducted at a
constant temperature regime of 14 ◦C (24 h of darkness) starting on June 20, 2017 (these
temperature and light settings were determined via another germination experiment on
E. distans and N. micrantha; Y Chen, 2019, unpublished data). Twenty-five seeds were
placed on two layers of Whatman No. 1 filter paper that was moistened with 3 mL of
distilled water in each of the four 7 cm Petri dishes. Water was added as needed to keep the
filter paper moist during the test period. A seed was considered to have germinated when
its radicle had emerged. The germinated seeds were counted and removed daily for 30
days. The final percentage of germination (FPG) was estimated as follows: FPG=GN/SN,
where GN is the total number of germinated seeds and SN is the number of viable seeds.
If the intact seeds did not germinate after the germination experiment, their viability was
tested by using a 1% triphenyltetrazolium chloride TTC solution (Baskin & Baskin, 2014).
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Figure 1 Precipitation, temperature (A), and soil water content (B) of study area fromOctober 1, 2016
to June 1, 2017. Red lowercase letter a indicates that precipitation amount exceed 5 cm, red lowercase let-
ter b indicates precipitation amount exceed 10 cm, and red lowercase letter c indicates soil water content
above 8%.

Full-size DOI: 10.7717/peerj.6158/fig-1

Statistical analyses
Data collation and analysis were performed using Microsoft Excel and SPSS 16.0 (SPSS
Inc., Chicago, Illinois, USA) software, respectively, and figures were constructed with
Origin 8.0 software (Origin Lab, Northampton, MA). Plant traits (plant height, leaf area,
leaf number, root length and seed number), dry mass accumulation and allocation (total
dry mass and proportion allocated to roots, stems, leaves and reproductive organs) and
the final percentage of germination were analyzed as dependent variables, and increased
precipitation, nitrogen and precipitation plus nitrogen were considered as fixed effects with
a one-way ANOVA. Tukey’s test was performed for multiple comparisons to determine
significant differences among treatments, and we performed a Bonferroni correction
to avoid type I error problems. The allocation results for the roots, stems, leaves and
reproductive organs (percentage data) were transformed (log10) before a one-way ANOVA
was conducted. Pearson correlations were calculated for data involving the phenology, plant
traits, and biomass accumulation and allocation from all treatments.

RESULTS
Precipitation and temperature
From October 2016 to June 2017, the average daily temperature decreased first and then
increased, with a minimum of−24.48 ◦C on January 17, 2017 and a high of 26.6 ◦C onMay
25, 2017 (Fig. 1A). The snow thickness was 20.23± 0.40 cm on February 16, 2017, and the
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snow began to melt on March 20, 2017. Water from the snowmelt caused a sharp increase
in soil moisture at the end of March. The soil moisture content remained at approximately
8% from late March until late April (Fig. 1B).

Phenology
Increased precipitation (W1 and W2), nitrogen (N1 and N2), and precipitation plus
nitrogen (W1N1 and W2N1) delayed the flowering date, fruiting date, and withering
date and prolonged the life cycles of N. micrantha and E. distans significantly (P < 0.01)
(Table 1).

Plant traits
Increased precipitation (W1 andW2) significantly decreased the height, root length and leaf
area (P < 0.01) ofN. micrantha but had nearly no effect on leaf number; Increased nitrogen
and precipitation plus nitrogen have almost no effect on the height, root length and leaf
number, but N1 significantly increased the leaf area and leaf number of N. micrantha
(P < 0.01, Figs. 2A, 2C, 2E, 2G), and W1N1 significantly decreased the leaf area of
N. micrantha (P < 0.01, Fig. 2E). Conversely, increased precipitation, increased nitrogen,
and precipitation plus nitrogen treatments significantly increased the height, leaf area, leaf
number of E. distans (P < 0.01), with the exception of W2 significantly inhibited the root
length of E. distans (P < 0.01, Figs. 2B, 2D, 2F, 2H).

To N. micrantha, W1, N2, W1N1 and W2N1 had nearly no effect on the seed number,
but N1 significantly increased seed number (P < 0.01, Fig. 3A); however, W2 significantly
reduced seed number (P < 0.01). To E. distans, increased precipitation, increased nitrogen
and precipitation plus nitrogen significantly increased fruit number, and the increase of
W1N1 in fruit number was the greatest (P < 0.01, Fig. 3B).

Biomass accumulation and allocation
Increased precipitation (W1 and W2) decreased the total biomass of N. micrantha
(P < 0.01, Fig. 4A), and the decrease ofW2 is more significant thanW1. The effect of N1 on
the total biomass ofN. micrantha is not significant (P = 0.98), butN2 significantly increased
the total biomass of N. micrantha (P < 0.01), and precipitation plus nitrogen (W1N1 and
W2N1) also significantly increased the total biomass of N. micrantha (P < 0.01, Fig. 4A).
Increased precipitation, increased nitrogen and precipitation plus nitrogen significantly
increased the total biomass of E. distans, and the increase of W1N1 in the total biomass is
more significant than other treatments (P < 0.01, Fig. 4B).

The correlation analysis also revealed a positive correlation between plant traits (height,
root length, leaf area, number of leaves, and number of seeds) and the total biomass
accumulation of E. distans and N. micrantha, with the exception of the height of N.
micrantha (Table 2). Increased precipitation, nitrogen, and precipitation plus nitrogen
significantly increased the reproduction percentage of E. distans (P < 0.01), but N2, W1N1
andW2N1 slightly decreased the reproductive percentage ofN. micrantha andW1,W2 and
N1 slightly increased the reproductive percentage of N. micrantha (Fig. 5A). W1, W2 and
N1 decreased the leaf percentage of N. micrantha (P < 0.01), but N2, W1N1 and W2N1
increased the leaf percentage of N. micrantha (P < 0.01). Increased precipitation, nitrogen,
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Table 1 Effects of increased precipitation and nitrogen and precipitation plus nitrogen treatments on the phenology ofNepeta micrantha and Eremopyum orientale
(mean± 1s.e).

Phenology CK W1 W2 N1 N2 W1N1 W2N1

Emergence date 16 April 16 April 16 April 16 April 16 April 16 April 16 April
Four-leaf rosette
date

20 April 20 April 20 April 19 April 20 April 19 April 19 April

Flowering date 6 May 6 May 6 May 9 May 5 May 8 May 7 May
Fruiting date 14 May 15 May 15 May 15 May 14 May 15 May 15 May
Withering date 24 May 25 May 25 May 25 May 24 May 25 May 25 May

Nepeta
micrantha

Life cycle (d) 47.80± 0.006b 48.80± 0.467ab 49.40± 0.340a 49.30± 0.300a 48.40± 0.340ab 48.70± 0.396ab 49.20± 0.442a

Emergence date 10 Oct 10 Oct 10 Oct 10 Oct 10 Oct 10 Oct 10 Oct
Four-leaf rosette
date

23 April 23 April 23 April 23 April 23April 23April 23 April

Flowering date ∼ ∼ ∼ ∼ ∼ ∼ ∼

Fruiting date 13 May 14 May 13 May 13 May 13 May 14 May 14 May
Withering date 21 May 21 May 22 May 22 May 22 May 22 May 22 May

Eremopyrum
orientale

Life cycle (d) 224± 0.008b 224± 0.009b 225± 0.011a 225± 0.008b 225± 0.007b 225± 0.008a 225± 0.011a

Notes.
CK; W1, increase 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g N m−2 yr−1; N2, increase 6 g N m−2 yr−1; precipitation plus nitrogen : W1N1, W1 + N1; W2N1, W2 + N1.
Oct, October. Different lowercase letters indicate significant differences (P < 0.05) among increased precipitation and nitrogen and precipitation plus nitrogen.
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Figure 2 Effects of increased precipitation and nitrogen and precipitation plus nitrogen treatments on
plant traits (mean± 1s.e.) of Nepeta micrantha (A, C, E, G) and Eremopyrum distans (B, D, F, H). CK,
control treatment; W1, increase 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g
nitrogen m−2 yr−1; N2, increase 6 g nitrogen m−2 yr−1; precipitation plus nitrogen: W1 + N1, W1N1; W2
+ N1, W2N1. Different lowercase letters indicate significant differences among increased precipitation and
nitrogen and precipitation plus nitrogen treatments.

Full-size DOI: 10.7717/peerj.6158/fig-2

and precipitation plus nitrogen decreased the leaf percentage of E. distans (Fig. 5B).
Increased precipitation, nitrogen, and precipitation plus nitrogen had little effect on the
stem percentage of N. micrantha and E. distans, with the exception of precipitation plus
nitrogen increased the stem percentage of E. distans. The root percentage of N. micrantha
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 Figure 3 Effects of increased precipitation and nitrogen and precipitation plus nitrogen on seed num-
ber per plant (mean± 1s.e) ofNepeta micrantha (A) and Eremopyrum distans (B). CK, control treat-
ment; W1, increase 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g nitrogen
m−2 yr−1; N2, increase 6 g nitrogen m−2 yr−1; precipitation plus nitrogen: W1 + N1, W1N1; W2 + N1,
W2N1. Different lowercase letters indicate significant differences among increased precipitation and ni-
trogen and precipitation plus nitrogen treatments.

Full-size DOI: 10.7717/peerj.6158/fig-3

increased significantly with increased precipitation, nitrogen, and precipitation plus
nitrogen (P < 0.01), and increased nitrogen increased the root percentage of E. distans, but
W2 treatment decreased the root percentage of E. distans; however, the other treatments
(W1, W1N1, and W2N1) had little effect on the root percentage of E. distans.

Seed germination of the offspring
W1, W2, N1, W1N1 and W2N1 significantly increased the germination percentage of
seeds produced by N. micrantha plants (P < 0.01), and the increase of W2 is more
significant than W1, but N2 significantly reduced the germination percentage of seeds
produced by N. micrantha plants (P < 0.01, Fig. 6A). Increased precipitation, nitrogen,
and precipitation plus nitrogen significantly reduced the germination percentage of seeds
produced by E. distans plants, and the reduce of W1N1 is more significant than W2N1
(P < 0.01, Fig. 6B).

DISCUSSION
Increased precipitation, nitrogen, and precipitation plus nitrogen prolonged the life cycle
of both N. micrantha and E. distans, which allows plants to absorb water and nitrogen
for a longer period of time and promoted vegetative growth (Cleland et al., 2006; Sherry
et al., 2007; Han et al., 2016). Plant traits are external manifestations of plants and are
easily affected by environmental factors (Jones, 1985). W2 significantly inhibited the root
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 Figure 4 Effects of increased precipitation and nitrogen and precipitation plus nitrogen on dry mass
accumulation (mean± 1s.e) ofNepeta micrantha (A) and Eremopyrum distans (B). CK, control treat-
ment; W1, increase 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g nitrogen
m−2 yr−1; N2, increase 6 g nitrogen m−2 yr−1; precipitation plus nitrogen: W1 + N1, W1N1; W2 + N1,
W2N1. ReM, Reproduction mass; LeM, Leaf mass; StM, Stem mass; RoM, Root mass. Different lowercase
letters indicate significant differences among increased precipitation and nitrogen and precipitation plus
nitrogen treatments.

Full-size DOI: 10.7717/peerj.6158/fig-4

length of N. micrantha and E. distans compared to the control, this indicates that increased
precipitation in the upper soil profile stimulated roots to stop growing into the deeper
layers of soil. However, the relatively dry soil of the control promoted root growth into
deeper soil. Studies on Stipa bungeana in the desertified grasslands of the Ordos Plateau
in Inner Mongolia (China) also have found that root length corresponded to depth of
water in the soil profile (Cheng et al., 2006). Thus, root is probably the sensitive organ
to be affected by precipitation, and significant differences of plant traits in response to
increased precipitation and nitrogen are most likely related to the roots (Eviner & Chapin,
2003; Griffin-Nolan et al., 2018). E. distans has a fibrous root system and a sand traps
around the roots, it expanding the contact range between the root system and the soil
(Verma et al., 2005), which are very beneficial for moisture-holding and nitrogen uptake
(Wang &Wang, 2009). Thus, increased precipitation, nitrogen, and precipitation plus
nitrogen significantly increased the height, leaf area, leaf number and seed number of
E. distans. By contrast, N. micrantha has a taproot system consisting of a fixed main root
and few lateral roots (Ding et al., 2016). Fibrous root systems are more efficient than
taproot system at capturing mobile ions from spatially and temporally heterogeneous soils
(Dunbabin, Rengel & Diggle, 2004). Therefore, most plant traits ofN. micrantha showed no
or negative response to increased precipitation. The reason is the loss of nitrogen caused
by the increased precipitation. A previous study on soil nitrogen at the same field site also
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Table 2 Pearson correlations among life history traits of Nepeta micrantha and Eremopyum orientale.

He Rl Nl Ns La Rom Sm Lm Rem Tm

He 1
Rl −.302* 1
Nl 0.097 .500** 1
Ns 0.217 .465** .836** 1
La .255* .349** .881** .890** 1
Rom 0.121 .529** .769** .858** .808** 1
Sm .368** .336** .850** .889** .929** .784** 1
Lm 0.165 .279* .790** .778** .882** .736** .850** 1
Rem 0.145 .255* .545** .683** .605** .588** .611** .583** 1

Nepeta
micrantha

Tm 0.233 .331** .757** .857** .834** .767** .853** .810** .928** 1
He 1
Rl 0.015 1
Nl .596** 0.182 1
Ns .685** .311** .594** 1
La .560** .309** .650** .591** 1
Rom .489** .360** .614** .604** .623** 1
Sm .703** .308** .798** .765** .762** .772** 1
Lm .525** 0.216 .842** .550** .812** .737** .850** 1
Rem .667** .342** .625** .884** .699** .638** .860** .667** 1

Eremopyum
orientale

Tm .663** .317** .821** .763** .817** .829** .970** .925** .873** 1

Notes.
He, height; Rl, root length; Nl, number of leaves; Ns, number of seeds; La, leaf area; Rom, root mass; Sm, stem mass; Lm, leaf mass; Rem, reproductive mass; Tm, total
mass. N = 120.
*P < 0.05.
**P < 0.01.

found that increased nitrogen leaching in the rhizosphere under increased precipitation
(Huang et al., 2016). For E. distans, increased nitrogen and precipitation plus nitrogen
treatments significantly increased the height, leaf area, leaf number and seed number,
which also supports the role played by the roots of E. distans in strong water uptake and
soil fertility retention. Thus, roots probably determine the difference of plants in response
to environmental changes. Future increased precipitation and nitrogen deposition are
likely to promote the growth of fibrous root system species, but it have a negative impact
on taproot system species.

Biomass is the primary manifestation of plant energy accumulation (Eisenhauer &
Scheu, 2008; Sherry et al., 2010). A positive correlation between plant traits and biomass
accumulation has been confirmed (Lu et al., 2014). In this study, the correlation analysis
also revealed a positive correlation between plant traits and the total biomass accumulation
of N. micrantha and E. distans, with the exception of the height of E. distans. The reason
for the lack of correlation between the height and biomass accumulation is likely related
to the growth characteristics of E. distans. We observed that plants of E. distans grow to a
certain height (about 20 cm), and turn into growing branches (Y Chen, pers. obs., 2017),
instead of increasing the height. Thus, the biomass accumulation of E. distans shows a
nonsignificant correlation with the height. Our results also showed that the effect of N1 on
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 Figure 5 Effects of increased precipitation and nitrogen and precipitation plus nitrogen on biomass
allocation (mean± 1s.e) ofNepeta micrantha (A) and Eremopyrum distans (B). CK, control treatment;
W1, increase 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g nitrogen m−2 yr−1;
N2, increase 6 g nitrogen m−2 yr−1; precipitation plus nitrogen: W1 + N1, W1N1; W2 + N1, W2N1. Dif-
ferent lowercase letters indicate significant differences among increased precipitation and nitrogen and
precipitation plus nitrogen treatments.

Full-size DOI: 10.7717/peerj.6158/fig-5

the total biomass of N. micrantha is not significant, but N2 significantly increased the total
biomass of N. micrantha. This is probably related to the nitrogen utilization percentage
of N. micrantha. In the same study area, Cui et al.’s (2017) 15N tracer experiment found
that total nitrogen recovery percentage of herb was <10%, for one species, the nitrogen
utilization percentage is much lower. Thus, we speculated that the amount of nitrogen
(N1) was too less to be utilized by N. micrantha, and only when the amount of nitrogen
(N2) reached a certain amount can promote plant growth. Therefore, our results indicate
that future increased nitrogen deposition will not have a significant impact on plant growth
of species levels in the short term, whereas this promotion will be more significant with
enhancing nitrogen deposition.

The biomass allocation reflects the response of plant to the environment (Sugiura, Kojima
& Sakakibara, 2016). With increased precipitation, the root and reproductive percentage of
N. micrantha showed an increasing trend. The possible explanation is that plants allocated
more biomass to the root to facilitate water and nutrient uptake and allocatedmore biomass
to reproductive organs to maintain the population. Similar conclusions have been drawn
about Ceratocarpus arenarius and Erodium oxyrrhynchum under drought stress (Zhang,
Sun & Tian, 2007). By contrast, increased nitrogen improves the poor soil and provides
nutrients for plant growth, hence, N. micrantha allocated more biomass to vegetative
organs (stems and leaves), in order to maximize the light capture. For E. distans, increased
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Figure 6 Effects of increased precipitation and nitrogen and precipitation plus nitrogen on offspring
(seeds)germination (mean± 1s.e) ofNepeta micrantha (A) and Eremopyrum distans (B). CK; W1, in-
crease 30% in precipitation; W2, increase 50% in precipitation; N1, increase 3 g m−2 yr−1 in nitrogen; N2,
increase 6 g m−2 yr−1 in nitrogen; precipitation plus nitrogen: W1N1, W1 + N1; W2N1, W2 + N1. Differ-
ent lowercase letters indicate significant differences among increased precipitation and nitrogen and pre-
cipitation plus nitrogen treatments.

Full-size DOI: 10.7717/peerj.6158/fig-6

precipitation and nitrogen increased the total biomass accumulation, which is consistent
with many species in the Gramineae, such as Setarria viridis, Pennisetum centrasiaticum
(Mao et al., 2016), Glyceria spiculosa (Chen et al., 2016), and Leymus chinensis (Yu, Yan
& Jie, 2011). Increased nitrogen reduced or eliminated the nitrogen limitation on the
growth of E. distans, and it improved the light use efficiency, accelerated plant growth with
sufficient precipitation, and then increased its dominance in the community (Borer et al.,
2014; Rajaniemi, 2002). Therefore, in the context of climate change, increased nitrogen
deposition is likely to promote plant growth, but different species showed a differential
response to increased precipitation.

The seed stage is themost tolerant stage of life history to the environment, and dormancy
is beneficial for allowing the seeds to germinate under suitable conditions (Qu & Huang,
2005). Previous research found that under appropriate environmental conditions, plants
increased proportion of seeds remaining dormant but with high reproduction may prevent
overcrowding during the following year (Katja & Martina, 2010; Tielborger & Petru, 2010).
Our results showed that the number of E. distans seeds that remained dormant increased
with increased precipitation and nitrogen. Thus, an increase in dormancy reduces not
only the competition caused by siblings, but also the risk of population extinction via bet-
hedging strategies (Venable, 2007), and this strategy has been a sensible practice throughout
the course of evolution (Evans et al., 2007). However, we found that the number of
N. micrantha seeds that remained dormant generally decreasedwith increased precipitation.
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This finding is consistent with the conclusion that the maternal plants produced
more non-dormant seeds when faced with environmental stress (Huang et al., 2016),
and it provides a competitive advantage for the next generations. In addition, the decrease
of W2N1 in the germination percentage of seeds produced by E. distans plants is more
significant than W1N1. This is mainly related to increased precipitation improved the
utilization percentage of nitrogen by herb (Cui et al., 2017), and showed an increase in
the dormancy of offspring. Thus, the ability of plants to sense environmental changes can
be passed on to the next generation by seed dormancy, which in turn affects population
dynamics in the following year.

CONCLUSIONS
Ephemeral plants are a special group of plants that are extremely sensitive to environmental
changes. Future increased precipitation and nitrogen deposition in the Gurbantunggut
Desert may particularly affect the life history of ephemeral plants. N. micrantha and
E. distans are two common ephemeral plants species in the study area.Most of the life history
traits of these two species responded similarly to increased nitrogen and precipitation plus
nitrogen but responded differently to increased precipitation. These differential responses
are related primarily to species characteristics and the amount of precipitation and nitrogen
in the experiment. In response to increased nitrogen and precipitation plus nitrogen,
the N. micrantha and E. distans plants produced greater amounts of dormant seeds in
conjunction high reproduction, which can also prevent overcrowding in the following
year. However, the N. micrantha and E. distans plants produced more nondormant seeds
in conjunction with increased precipitation, and these plants could occupy their habitat
via the rapid seed germination in the future. Therefore, the differential responses of N.
micrantha and E. distans to increased precipitation and nitrogen may affect their ecological
niches in the community.
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