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ABSTRACT
Human activities such as trade and transport have increased considerably in the last
decades, greatly facilitating the introduction and spread of non-native species at a
global level. In the Iberian Peninsula, Fundulus heteroclitus, a small euryhaline coastal
fish with short dispersal, was found for the first time in the mid-1970s. Since then,
F. heteroclitus has undergone range expansions, colonizing the southern region of
Portugal, southwestern coast of Spain and the Ebro Delta in the Mediterranean Sea.
Cytochrome b sequences were used to elucidate the species invasion pathway in Iberia.
Three Iberian locations (Faro, Cádiz and Ebro Delta) and 13 other locations along the
native range of F. heteroclitus in North America were sampled. Results revealed a single
haplotype, common to all invasive populations, which can be traced to the northern
region of the species’ native range. We posit that the origin of the founder individuals
is between New York and Nova Scotia. Additionally, the lack of genetic structure
within Iberia is consistent with a recent invasion scenario and a strong founder effect.
We suggest the most probable introduction vector is associated with the aquarium
trade. We further discuss the hypothesis of a second human-mediated introduction
responsible for the establishment of individuals in the Ebro Delta supported by the
absence of adequate muddy habitats linking Cádiz and the Ebro Delta. Although the
species has a high tolerance to salinity and temperature, ecological niche modelling
indicates that benthic habitat constraints prevent along-shore colonisation suggesting
that such expansions would need to be aided by human release.

Subjects Biogeography, Genetics
Keywords Invasive species, Introduction vector, Cytochrome b, Mitochondrial DNA

INTRODUCTION
As a consequence of human activities involving large distance marine transportation and
trade, worldwide marine biological invasion rates have increased dramatically in the last
30 years (e.g., Hulme, 2009). Along the European coasts, there are reports of over 850
invasive species, 237 of which occur along the eastern Atlantic coastal areas, and 680 in the
Mediterranean Sea and the remaining in the Baltic Sea (Galil et al., 2014). Marine invasive
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species pose a significant environmental threat as they are recognized as one of the major
drivers of biodiversity loss (Millennium Ecosystem Assessment, 2005), altering ecosystems
and their dynamics, shifting the community structure and displacing endemic species
(Molnar et al., 2008). Negative impacts may also be registered at the economic and social
levels, affecting fisheries, aquaculture, tourism or human health (Bax et al., 2003). Invasive
species spread and occupy new marine and coastal ecosystems through several maritime
introduction vectors such as ballast water, biofouling of vessels, aquaculture escape or
ornamental species trade (seeWilliams et al., 2013 and references therein).

Reconstructing the invasion pathways and identifying the putative source populations
with historical and contemporary vector records is a difficult task (Estoup & Guillemaud,
2010; Lawson Handley et al., 2011). In this context, molecular genetic data is a powerful
tool to reconstruct invasive history by identifying putative source populations and genetic
bottlenecks (Bock et al., 2015; Cristescu, 2015). Although genetic data does not always allow
for successful identification of these processes, there are three conditions which increase
the probability of accurate reconstruction of the invasive pathway: (1) extensive sampling
along the native range to ensure all the putative source populations are known, (2) the
presence of genetic structure in the native range to narrow down the putative source regions
and (3) a short amount of time passed since the invasion so that processes such as genetic
drift do not increase the genetic differentiation between native and invasive populations
(Geller, Darling & Carlton, 2010).

The advent of ecological niche modelling (ENM) has contributed to the building of
environmental risk maps for biological invasion by allowing formal and quantitative
inclusion of varying environmental characteristics, both in space and time, to be added
to such considerations. Such new approaches to invasion risk monitoring provide useful
insights by predicting both potential colonization routes and the probability of new
invasions occurring (Hulme, 2009;Molnar et al., 2008).

The mummichog, Fundulus heteroclitus (Linnaeus, 1766), is a small teleost fish naturally
occurring almost continuously in saltmarshes of the North American east coast, from
Newfoundland to Florida (Hardy Jr, 1978). This species is extremely resistant to a
wide range of salinities and temperatures, and can be found in freshwater, brackish or
saltwater, inhabiting sheltered coastal areas such as saltmarshes, tidal creeks, estuaries
or bays all year-round (Bigelow & Schroeder, 1953; Hardy Jr, 1978). F. heteroclitus is one
of the most stationary marine species (Bigelow & Schroeder, 1953), with short dispersal
distances (1–2 km, Fritz, Meredith & Lotrich, 1975), high site fidelity closely related to
the presence of saltmarshes (Kneib, 1984) and short home ranges (36–38 m, Lotrich,
1975). Enzyme-coding loci (Powers & Place, 1978; Powers et al., 1986; Ropson, Brown &
Powers, 1990), mitochondrial DNA (Bernardi, Sordino & Powers, 1993; González-Vilaseñor
& Powers, 1990; Smith, Chapman & Powers, 1998), putative neutral nuclear microsatellite
loci (Adams, Lindmeier & Duvernell, 2006; Duvernell et al., 2008), and a variety of nuclear
single-nucleotide polymorphisms (see McKenzie, Dhillon & Schulte, 2016 and references
therein) demonstrated concordance of clinal patterns, where a break is placed between the
meridians 40◦ and 41◦N, along the coast of New Jersey. These studies concur with Morin
& Able (1983), supporting the division into two subspecies: F. heteroclitus macrolepidotus
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(Walbaum, 1792) to the north of the cline and F. heteroclitus heteroclitus (Linnaeus, 1766)
to the south of the cline.

In the Iberian Peninsula, F. heteroclituswas first detected in the 1970s, in theGuadalquivir
and Guadiana saltmarshes (southwestern coast of Spain) (Hernando, 1975) and in the
Guadiana Delta (Coelho, Gomes & Ré, 1976). More recently, its presence was also reported
in the Ebro Delta, northeastern coast of Spain (Gisbert & López, 2007) and in the Ria
Formosa lagoon, south of Portugal (e.g.,Catry et al., 2006) where it can reach high densities
(Gonçalves et al., 2017). The species was probably introduced between 1970 and 1973 in
the Spanish saltmarshes (Fernández-Delgado, 1989) either involuntarily via aquarium trade
(e.g., Elvira & Almodóvar, 2001), ballast water (Fernández-Delgado, 2010; García-Revillo
& Fernández-Delgado, 2009), or intentionally for purposes of biological control (Gozlan,
2010). The EbroDelta individuals were probably caught in the southern Spanish saltmarshes
to be used in aquaculture and the aquarium trade (Gisbert & López, 2007) and were later
released from captivity. Another possibility for the Ebro Delta introduction is an accidental
escape from a research centre nearby, where this species had already been used as a
scientific model (Gisbert & López, 2007). Two previous studies have analysed the origin of
the southwestern Spanish populations using mitochondrial DNA (mtDNA), concluding
the founder individuals were original from the northern native region between Maine and
Nova Scotia where the northern subspecies F. h. macrolepidotus is distributed (Bernardi et
al., 1995; Fernández-Pedrosa, Latorre & González, 1996).

In the present study, we aim to build on previously published studies on the invasive
range of F. heteroclitus by using (1) more sampling locations (one in the Mediterranean
Sea and two locations in the eastern Atlantic, and 13 native locations), (2) a significantly
larger number of individuals (248 in total), and (3) a three times larger fragment of the
mitochondrial DNA cytochrome b gene; and to evaluate the genetic diversity and invasion
pathways. Given that the species was recently reported in the Iberian Peninsula and has
a limited adult dispersal capability, we tested the hypothesis of a human-mediated single
Iberian introduction followed by dispersal promoted along the main oceanographic
currents. and we mapped the environments compatible with the species’ ecological
requirements to evaluate the dispersion potential through suitable continuous habitat.
This hypothesis leads to the expectation of an Iberian invasion based on a few founder
individuals, with consequent lower genetic diversity than the putative identified source
population. Also, the Iberian populations are expected to show no evident genetic structure
given the short time since invasion.

MATERIAL AND METHODS
Sampling
A total of 248 Fundulus heteroclitus individuals from 16 locations: 13 sites in the western
Atlantic, one in the Mediterranean Sea and two locations in the eastern Atlantic (Table 1
and Figs. 1A, 1B) were obtained and stored in 96% ethanol and kept at −20 ◦C. The
populations from the western Atlantic sampled above 40◦N are hereafter referred to as
northern locations (ID 1-8), while samples collected below that latitude are referred to
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Table 1 Sample location, sample abbreviations and summary statistics for a cytochrome b sequence
fragment from Fundulus heteroclitus. ID refers to numbers in Fig. 1.

Location ID Code Latitude/longitude n nh np

Bridgewater 1 HV 44◦22.0′N/64◦31.0′W 15 2 0
Chewonki 2 CM 43◦57.3′N/69◦43.2′W 15 3 1
Wells 3 WM 43◦19.2′N/70◦34.2′W 15 4 2
Woods Hole 4 WH 41◦31.5′N/70◦40.4′W 16 9 4
Jerusalem 5 JR 41◦23.1′N/71◦31.5′W 15 5 4
Clinton 6 CC 41◦15.3′N/72◦32.8′W 16 7 6
Newark Bay 7 NB 40◦41.2′N/74◦06.7′W 15 8 6
Red Bank 8 RE 40◦20.9′N/74◦05.0′W 15 7 5
Tuckerton 9 TN 39◦32.2′N/74◦19.4′W 15 10 8
Speace 10 SP 38◦09.1′N/75◦17.2′W 15 9 6
Suffolk 11 CH 36◦51.8′N/76◦28.7′W 16 7 3
Roanoke Island 12 RI 35◦53.8′N/75◦36.9′W 15 9 7
Skidaway Island 13 SI 31◦56.8′N/81◦04.2′W 16 11 1
Faro 14 RF 37◦00.3′N/07◦58.0′W 16 1 0
Cádiz 15 CD 36◦31.4′N/06◦11.4′W 17 1 0
Ebro Delta 16 ED 40◦37.38′N/0◦39.44′E 16 1 0

Notes.
n, number of individuals; nh, number of haplotypes; np, number of private haplotypes.

as southern locations (ID 9-13). Samples collected from the Mediterranean and eastern
Atlantic are referred to as Iberian (ID 14-16).

DNA extraction, PCR amplification and sequencing
Total genomic DNA was extracted from caudal fin tissue following a standard Chelex
100 protocol (Walsh, Metzger & Higuchi, 1991). Extraction results were checked by
electrophoresis in 0.8% agarose gel stained with GelRed. Polymerase Chain Reactions
(PCR) were conducted in a total volume of 25 µL, with 1X buffer, 10 mM dNTPs, 10mM
of each primer, 1U Taq Advantage 2 Polymerase mix DNA polymerase (CLONTECH-
TaKaRa), 2µL ofDNA andMilli-Qwater to the final volume. A fragment of the cytochrome
b (cyt b) gene (1,000 base pairs) was amplified with the forward primer GludG-L14724
(Palumbi et al., 1991) and the reverse primer cb6b.h (Martin & Bermingham, 1998). PCR
amplification consists of an initial 4 min denaturation step at 95 ◦C, followed by 40 cycles
of 1 min at 94 ◦C (denaturation), 1 min at 50 ◦C (annealing) and 1.5 min at 72 ◦C
(extension), and a 5 min final extension step. When amplification was not successful the
following profile was used: initial 3 min denaturation step at 95 ◦C, followed by 32 cycles
of denaturation for 30 s at 95 ◦C, annealing for 30 s at 54 ◦C and extension for 1 min
at 68 ◦C, and a final extension step for 4 min at 68 ◦C. PCR products were checked
afterwards by electrophoresis in a 1% agarose gel stained with GelRed. Mitochondrial DNA
was purified by ethanol/sodium acetate precipitation (Sambrook & Russel, 2001). Its purity
and quantity were analysed using a NanoDrop1000 spectrophotometer (Thermo Fisher
Scientific, Waltham, MA, USA). Sequencing was performed on an ABI 3130xl capillary
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Figure 1 Distributionmap of localities and haplotypes.Distribution map of localities along the coast
of (A) North America, and (B) Iberian Peninsula of Fundulus heteroclitus. Locations and sample details
can be found in Table 1. (C) Coloured circles display the distribution of the relative proportions of the cy-
tochrome b haplotypes from each location: the four most common haplotypes, the private haplotypes, and
all the other shared, but less frequent haplotypes.

Full-size DOI: 10.7717/peerj.6155/fig-1

sequencer (Applied Biosystems –CCMAR, Portugal) using the forward primer from the
PCR amplification (GludG-L14724).

Genetic analysis
Cyt b sequences were aligned and manually checked using the software Geneious
v4.8.2 (Biomatters, Ltd., Auckland, New Zealand). The number of haplotypes (n),
number of private haplotypes (np), and the haplotype (h) (Nei & Tajima, 1981) and
nucleotide diversities (π) (Nei, 1987) were calculated for each location using the DnaSP
v5.10.1 (Librado & Rozas, 2009). All sequences were uploaded to GenBank (MH809691–
MH809938). To represent the phylogeographic relationships among haplotypes, a
haplotype network was constructed using the Median Joining algorithm implemented
in NETWORK v5.0 (Bandelt, Forster & Röhl, 1999, fluxus-engineering.com).

We used two approaches to infer themost probable source area of the introduced Iberian
populations within the native range of F. heteroclitus: (1) the geographical distribution of
haplotypes in native populations, and (2) the phylogeographical relationships among
haplotypes.

Ecological niche modelling
To explore the potential spread of F. heteroclitus within European waters beyond its
currently known locations we used an ecological niche model. We selected the interactive
AquaMaps system in FISHBASE (http://www.fishbase.org). Using observed locations of
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Table 2 Aquamaps default environmental envelope for F. heteroclitus.

Variable Absolute
minimum

Preferred minimum
(10th percentile)

Preferred maximum
(90th percentile)

Absolute
maximum

Depth [m] 0 0 3 5
Sea Surface Temperature [SST; ◦C] 4.76 6.41 23.53 26.1
Sea Surface Salinity [SSS; psu] 28.96 29.94 35.74 39.6

adults to construct a range of acceptable environmental conditions within which a species
can exist, this model uses a c-squares distribution modelling approach (Rees, 2003) to
predict the probability of occurrence of the adult fish for a particular location, possessing
specific environmental parameters. While this is normally computed just within the
native range of a species it can be extended within the interactive system to consider all
possible locations, and the associated probability of occurrence linked to the location’s
mean environmental state if the species was able to reach that region. The basic statistical
approach is given inKaschner et al. (2006) and the AquaMaps version is described inKesner-
Reyes et al. (2012). Another ecological niche model, based on maximum entropy principles
(MAXENT, Phillips & Dudík, 2008), was also tested using environmental parameters of
sea surface temperature (SST) and sea surface salinity (SSS), but the specialist ecological
substrate niche of F. heteroclitus led to poor solutions for range prediction using ENM.
This latter approach is therefore not considered further here.

A set of favourable and extreme environmental conditions compatible with the native
occurrence of F. heteroclitus is automatically specified by AquaMaps, relying heavily on Page
& Burr (2011). It includes parameter ranges for water depth, SST, SSS, primary production
rates and sea-ice cover, leading to probabilities of occurrence exceeding 0.6 along the
whole eastern seaboard of North America from South Carolina to the Canadian Maritime
Provinces south of the Gulf of St. Lawrence. This matches well to the known range (Page
& Burr, 2011). However, the long-term survival of F. heteroclitus in two Iberian estuaries
has implications for extending the extreme salinity level that this species can tolerate
beyond that automatically specified. The extreme salinity tolerance has therefore been
raised to 39.6 psu, compared to the automatic 36.47 psu initially prescribed by AquaMaps,
consistent with the values found for the Ria Formosa (Cristina et al., 2016). In addition,
the sea-ice variable has been excluded from constraining the AquaMaps solution, as this is
not relevant to the area being considered in this study, and also the primary production
variable, as coastal environments satisfy the automatic requirement almost uniformly.
The environmental variables used for the AquaMaps simulation shown here are given in
Table 2.

AquaMaps was re-run with these environmental constraints and using the combined
occurrence data from the native range, along the North American eastern seaboard, and
the two Iberian sites of Ria Formosa and the Ebro River Delta. There is no change to the
North American predictions, so here we concentrate only on those for European waters.
The occurrence of F. heteroclitus was further constrained to coastal zones with the muddy
benthic habitats in which F. heteroclitus is found. These are defined as the coastal fine
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muds to muddy sands benthic environments of the EMODnet Seabed Habitats project
(http://www.emodnet-seabedhabitats.eu). These environments are formally defined by
Long (2006), but basically include sediments with more than a 10% mud component.

RESULTS
Data analysis on the sampled specimens resulted in cyt b sequences with a final length
of 700 base pairs (bp), which comprised 77 (11%) polymorphic sites and 32 (41.6%)
parsimony-informative sites. These polymorphisms defined 70 haplotypes, of which 62
(88.6%) are private haplotypes (present in one location only) and 55 (78.6%) are singletons
(present in one individual only). Overall haplotype diversity was high (0.74 ± SD 0.03),
ranging from null in Iberia (ID 14-16) to 0.93 in Tuckerton (ID 9) and Roanoke Island
(ID 12), whereas mean nucleotide diversity was low (0.26% ± SD 0.06%) ranging from
null diversity in Iberia to 0.91% in Woods Hole (ID 4) (Table 1 and Fig. 2).

Themost abundant haplotype inNorthAmerican locations is shared by 50.4% (N = 125)
of the individuals and is present in all northern group locations, in one southern location
and in all Iberian locations (Fig. 1C). This is the only haplotype detected in the invasive
range of the species (Faro, Cádiz and Ebro Delta). The second most frequent haplotype in
North American locations is shared by 9.7% (N = 24) individuals in six locations, although
in higher frequency in the southern group locations. Two other haplotypes were found
in 3.2% (N = 8) and in 2.4% (N = 6) of the individuals from two locations. All other
haplotypes were present in five or less individuals and in less than three locations (Fig. 1C).

The cyt b- based haplotype network (Fig. 3) displays two haplogroups separated by
nine mutational steps. Haplogroup A is constituted by all eight northern group locations
(Bridgewater to Red Bank, ID 1-8), two individuals from the southern group (Suffolk, ID
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11) and by the Iberian locations (Faro to Ebro Delta, ID 14-16). Haplogroup B is formed by
all the other individuals fromall southern locations (Tuckerton to Skidaway Island, ID 9-13)
and includes eight individuals from northern locations: one from Bridgewater (ID 1) and
seven fromWoods Hole (ID 4). Overall, both haplogroups display star-like configurations
with different levels of complexity. The northern haplogroup (A) is simpler with 90%
of the haplotypes separated by a single mutation, while the southern haplogroup (B) is
more complex, with three mini-stars interconnected by one mutation each, and haplotypes
separated by up to five mutations. The haplotype found in the Iberian Peninsula belongs
to the northern haplogroup.

The AquaMaps ENM shows that the basic environment for the spread of F. heteroclitus
is fundamentally favourable (probability > 0.75), along much of the Atlantic coastline
of western Europe (Fig. 4). Conditions become less favourable in the Mediterranean,
although the Alboran Sea, east of the Strait of Gibraltar, has an environment that is at
least acceptable (probability > 0.25). There are also a small number of estuaries along the
Balearic Sea coastline of NE Spain and southern France where acceptable conditions are
also found. The main constraint on the spread of F. heteroclitus, however, is the absence of
muddy benthic habitats. The latter are shown by the solid lines in Fig. 4. All the European
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coastlines within the zone where F. heteroclitus is now found have a small number of muddy
estuaries separated by long stretches of unsuitable, rockier, benthic habitats. It is only along
the environmentally unfavourable North African coast that extensive areas of favourable
habitats are found. The ENM shows conclusively that lateral spread of F. heteroclitus along
European shorelines by natural means is very unlikely.

DISCUSSION
Results revealed the presence of a single haplotype common to all individuals in the
Iberian Peninsula. This haplotype is the most abundant in the northern group of the native
distribution, indicating the most probable origin of the invasion. We posit the most likely
introduction vector to be the aquarium trade, and propose, through a combination of
DNA and ENM evidence, that the Ebro Delta colonization results from an independent
human-mediated secondary introduction. Before addressing the main interpretations and
conclusions of these results, one main caveat must be addressed. Successful understanding
of the invasion pathway relies on (1) comparable genetic data retrieved from an adequate
number of sampled individuals throughout the entire native range, (2) presence of genetic
clines within the native populations and (3) the use of adequate molecular markers (Geller,
Darling & Carlton, 2010). While the first two points are fulfilled for F. heteroclitus, the
use of a single mitochondrial DNA marker constitutes the main caveat of this study.
Mitochondrial DNA has been a widely used molecular marker in population genetics
studies (Ballard & Whitlock, 2004). Nevertheless, the use of high variable nuclear markers,
such as microsatellites, provides an opportunity to perform assignment tests based on
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their multiple-locus genotypes, to test for recent reductions in population sizes and to
estimate effective population sizes. However, previously published studies show relatively
low microsatellite genetic variation in the northern group (Duvernell et al., 2008). Single
nucleotide polymorphisms (SNPs, Morin et al., 2004), extend the previously referred
analytical possibilities improving their statistical power because of the sheer number of
existing loci genome wide.

Genetic diversity
The presence of a single haplotype common to all F. heteroclitus sampled in the Iberian
Peninsula lends support to the hypothesis of an extremely recent introduction of the species
which has not allowed the accumulation of mutations at the mtDNA level, and with a single
introduction event composed by a very small number of individuals (Roman & Darling,
2007). Theoretically, invasive species are expected to suffer loss of genetic variation since
the new established populations are often based on a few individuals, which by definition,
have lower genetic diversity than the native source populations (Dlugosch & Parker, 2008).
The single-haplotype characteristic can be found in other invasive species, such as Equulites
elongatus, the slender pony fish (Sakinan, Karahan & Ok, 2017); Cercopagis pengoi, the
fishhook waterflea, a planktonic cladoceran crustacean (Cristescu et al., 2001); Corbicula
fluminea, the Asian clam (Gomes et al., 2016) andDidemnum perlucidum, a sea squirt (Dias
et al., 2016). However, many successful invasive species do not display significant erosion
of genetic diversity (Dlugosch & Parker, 2008). For example, in a recent review of the
literature on European sea invasion genetics, in 54% of studies that compared the genetic
diversity between introduced species and their native range, 74% reported comparable
levels of diversity between them, while only 23% displayed a reduction in the genetic
diversity of introduced species, and the remaining 2% showed an increase in diversity (Rius
et al., 2014).

Population sources
We identified a single Iberian haplotype present in all northern populations in high
frequency (between 47 and 93%) and in two individuals in Suffolk, one of the southern
locations. According to our results, the northern group is the most probable source of
the founder individuals, which corresponds to the natural range of the subspecies F. h.
macrolepidotus. However, we cannot definitely exclude Suffolk as a presumptive population
source. The absence of genetic diversity in the Iberian Peninsula populations prevents the
precise determination of the putative source population. The low spatial resolution of
our data arises from the lack of genetic variability in the invasive range, rather than
insufficient sampling of F. heteroclitus individuals in the Iberian Peninsula or in its native
range (Muirhead et al., 2008).

Nevertheless, our findings are consistent with two previous studies on the origin of
invasive individuals found in the Guadalquivir. First, based onmtDNA restriction fragment
length polymorphisms (RFLP) (Fernández-Pedrosa, Latorre & González, 1996) reported the
presence of two haplotypes: the most abundant corresponding to the northern haplotype
1, dominant between Maine and Nova Scotia in North America; the other haplotype did
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not match any of the sampled native haplotypes and we found no evidence of its presence
in the present study, using a larger number of individuals. It was previously suggested to be
either a native unsampled haplotype or an endemic haplotype from Iberia, which is rather
unlikely due to its recent invasion (Fernández-Pedrosa, Latorre & González, 1996) and total
absence of records in the area. Although there are no reports of hybridization between
F. heteroclitus and any of the Spanish endemic species, the presence of a new haplotype
could nonetheless be due to hybridization (Rius et al., 2014). Secondly, a study based on
cyt b sequences (Bernardi et al., 1995) concluded the individuals from the Guadalquivir
originated in the region between Maine and Nova Scotia. While we cannot discount the
possibility of a few rogues from Suffolk being responsible for the invasion, the weight of
probability falls heavily on the side of Maine to Nova Scotia origin.

Introduction vector
Since it was first recorded in Iberian saltmarshes, several studies linked F. heteroclitus
introduction to different vectors. The aquarium trade has been suggested as the most
important vector responsible for the introduction of this species (e.g., Gozlan, 2010 and
references therein), followed by ballast water (Fernández-Delgado, 2010; García-Revillo
& Fernández-Delgado, 2009), biological control (Gozlan, 2010) and unknown origins
(Fernández-Delgado, 1989; Gutiérrez-Estrada et al., 1998). We posit that the introduction
via the aquarium trade or animal acquisition for scientific purposes is the most probable
scenario responsible for the establishment of the first individuals in Iberia, given the genetic
results obtained.

It is well known that vessels can transport large numbers of organisms from several
species at the same time in their ballast water (Gollasch, 2007). Since there are countless
vessels active around the world (e.g., Kaluza et al., 2010), ballast water-mediated transport
allows the possibility of multiple introduction events, each with large groups of individuals
(Hulme, 2009). Considering such large groups usually comprise higher genetic diversity
than fewer individuals alone, the assemblages transported are likely to display levels of
genetic diversity similar to the levels found within their native range (Wilson et al., 2009).
Our findings, however, suggest that this was not the introduction vector responsible for
the spread of the species; in contrast to the expectation of similar levels of genetic diversity
between the native and invasive range, the Iberian locations display a strong founder effect,
with all samples sharing a single haplotype.

Similarly to ballast water, the aquarium and ornamentals trade transport many species
at a global scale (Padilla & Williams, 2004). For instance, at least 19% of the invasive fishes
found in the Iberian Peninsula were introduced via the aquarium trade (Maceda-Veiga
et al., 2013). However, there are two main differences between introductions that follow
ballast water or the aquarium trade. First, each introduction event after aquarium release is
likely to comprise a small number of individuals (Duggan, Rixon & MacIsaac, 2006). Thus,
even though this vector may be responsible for the establishment of several non-native
species (Padilla & Williams, 2004), multiple introductions would be necessary for an
invasive species to display high genetic diversity (Roman & Darling, 2007). Secondly, the
individuals released by aquarists are usually adults of higher fitness, which makes them
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better adapted to survive in a natural environment (Padilla & Williams, 2004). Thus,
not only are F. heteroclitus’s invasive genetic diversity and structure consistent with an
introduction of a low number of individuals via the aquarium trade, it is also plausible
that a few resistant individuals would manage to survive, reproduce and colonize the
environment in which they were released.

Human mediated introduction in the Ebro Delta
Although the absence of genetic structure within Iberia limits possible insights into the
invasion pathway, our data support the hypothesis of a human-mediated introduction
episode responsible for the establishment of F. heteroclitus in the Ebro Delta, as previously
suggested by Gisbert & López (2007) based on taxonomic identification. The hypothesis of
a long-distance colonization via natural dispersal is quite unlikely, as is strongly shown by
the ENM analysis (Fig. 4).

According to a review of the geographical distribution of Cyprinodontiformes along the
northeastern coast of Spain by García-Berthou & Moreno-Amich (1991), no F. heteroclitus
individuals were found at the Ebro Delta in 1989; the first record of the species was
only registered 16 years later by Gisbert & López (2007). Thus, we estimate the date of
establishment in the Ebro Delta ranges between 12 and 28 years ago. Assuming this
estimate is correct, a natural colonization hypothesis implies individuals would have taken
roughly two decades to travel more than 1,000 km from their southernmost limit located in
the Guadalquivir saltmarshes (Gutiérrez-Estrada et al., 1998) to the Ebro Delta. However,
when compared with the natural colonization of the Ria Formosa, this hypothesis seems
quite improbable. While F. heteroclitus was never collected during sampling events that
happened in the Ria Formosa between 1980 and 2006 (França, Costa & Cabral, 2009;
Ribeiro et al., 2006; Ribeiro et al., 2008), analysis of prey remains left by Little Terns (Sterna
albifrons) in the salt-pans and barrier islands revealed this prey species was present in the
salt-pans and adjacent channels at least since 2002 (Catry et al., 2006). Although this may
sound contradictory, F. heteroclitus could in fact have been present in the Ria Formosa in
specific unsampled locations or at extremely low densities, avoiding capture. Nonetheless,
assuming that colonization happened around 2002, it seems that F. heteroclitus took no
more than ca. 20 years to travel around 50 km from the Guadiana Delta, where it was
first detected in 1976 (Coelho, Gomes & Ré, 1976)}, despite both areas being on a stretch
of coast with a favourable benthic habitat (Fig. 4). This estimate indicates that if the Ebro
colonization happened via natural dispersal, it must have happened 20 times faster than the
natural colonization of the Ria Formosa. Given that F. heteroclitus has very low dispersal
abilities (e.g., Fritz, Meredith & Lotrich, 1975; Lotrich, 1975), the natural colonization
scenario for the Ebro seems unlikely.

Furthermore, if establishment in the Ebro Delta followed a natural range expansion
one would expect to find several established populations between the Barbate marshes in
the Guadalquivir, its southernmost location (Gutiérrez-Estrada et al., 1998), and the Ebro
Delta. However, no invasive individuals were found at Mar Menor, a coastal lagoon with
suitable conditions for successful establishment (Pérez-Ruzafa et al., 2006), located midway
between the Guadalquivir and the Ebro Delta.

Morim et al. (2019), PeerJ, DOI 10.7717/peerj.6155 12/21

https://peerj.com
http://dx.doi.org/10.7717/peerj.6155


Finally, the Strait of Gibraltar would represent a barrier to dispersal and gene flow,
limiting F. heteroclitus natural range expansion towards the Mediterranean Sea (Doadrio,
Carmona & Fernandez-Delgado, 2002) because of the strong currents prevailing in the area
and the absence of suitable habitats. Although uncertain for F. heteroclitus, this movement
has already been documented for two other Iberian toothcarps, where restricted gene flow
in this region led to speciation of the Aphanius iberus in the Mediterranean Iberian coast
and Aphanius baeticus in the southwestern Atlantic Spanish coast (Doadrio, Carmona &
Fernandez-Delgado, 2002).

Ecological niche modelling
Conditions for the spread of F. heteroclitus are limited by the existence of benthic muddy
saltmarsh environments compatible with the species’ ecological requirements. These
habitats are only found near major estuaries or lagoons areas along the Atlantic and
western Mediterranean coastlines. The exception to this is along the North African coast
(Fig. 4), where such environments are more continuous, although other aspects may be
less favourable there, as suggested by the rapid decline in occurrence probability eastwards.
The consequence of this benthic habitat constraint is to make along-shore colonisation
unlikely in most areas, suggesting that any such sudden expansion would need to be aided
by human release.

CONCLUSIONS
Fundulus heteroclitus invasive Iberian populations revealed the presence of a single cyt
b haplotype common to all individuals. This haplotype is predominant in the northern
group of the native distribution, and although we cannot determine which exact location
was at the origin of the introduced individuals, one can identify the northern end of
range as the source of the introduction. The lack of genetic diversity is consistent with a
strong founder effect at the origin of F. heteroclitus in Iberia. Although there is no direct
evidence, we infer that the most likely vector was the aquarium trade, and that the Ebro
Delta colonization results from a human-mediated secondary introduction isolated from
the rest of Iberia. Considering the tolerance of the species to high salinity, its temperature
range, and the significant amount of colonized area in the Iberian southern region, we
predict that F. heteroclituswill most likely keep on expanding its invasive range until it faces
unfavourable environmental conditions. However, natural colonisation in Europe will be
strongly restricted by its restrictive requirement for suitable muddy, benthic habitats and
human-mediated transfer is its most likely means of range expansion.
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