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Abstract 

Grassland afforestation dramatically affects the abiotic, biotic, and ecofunction properties of the 

original ecosystems. Interference from afforestation might disrupt the stasis of soil physicochemical 

properties and the dynamic balance of microbiota, although some studies have suggested low 

sensitivity of soil properties and a small response of bacterial community to afforestation. However, 

this “small response” is probably due to the confounding effects of the generalist habitat and rare 

microbes. In this study, soil physicochemical and prokaryotic properties in a 30-year-old Mongolia 

pine (Pinus sylvestris var. mongolica Litv.) afforested region and adjacent grassland in Inner 

Mongolia were classified and quantified. Our results indicate that the high richness of rare 

microbes accounts for the alpha-diversity of the soil microbiome, whereas generalist (core 

microbiota) and habitat-specialist microbes present in few numbers but high abundance govern the 

beta-diversity of the grassland and afforested land microbiomes. Afforestation has changed the soil 

physicochemical properties, thus indirectly affecting the soil microbial composition rather than 

richness. The contents of soil P, Ca2+, and Fe account for the ecofunctional changes in soil 

microbiomes due to grassland afforestation. We conclude that grassland afforestation has changed 

the physicochemical properties and composition of the soil and ecofunctions of the soil bacterial 

community and that these effects of afforestation on the microbiome have been modulated by 

changes in soil physicochemical properties. 

Keywords: grassland afforestation; microbial composition; microbial ecofunction; soil 

physicochemical properties  
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Introduction 

After a decline in forest coverage in China to only 8.6% due to war, urban construction, and 

reclamation, efforts by the Chinese government in the last 30 years to promote afforestation have 

increased forest coverage to nearly 20% (State Forestry Administration of China 2011). However, 

these plantations are not exclusively located at the original sites of deforestation. Consequently, 

these deforestation and afforestation events have greatly changed the landscape and ecosystems of 

China (Ahrends et al. 2017). Mongolia pine (Pinus sylvestris var. mongolica Litv.), an endemic tree 

in Inner Mongolia, is one of the main forestation species in temperate regions of China. Scots pine 

(P. sylvestris L.), a relative of Mongolia pine that is widespread from Western Europe to Eastern 

Siberia, is also an important tree in forestry (Krakau et al. 2013). Studies of Mongolia pine are 

scarce, but several studies have revealed that Scots pine is genetically and physiologically sensitive 

to environmental pollution (Chudzińska et al. 2014), geographic weather variation (Oleksyn et al. 

2003) and climate change (Hurme et al. 1997; Savolainen et al. 2004). Phenological variation in 

response to climatic adaptation has also been suggested to be linked to quantitative trait loci 

(Hurme et al. 2000). These studies have demonstrated that Scots pine and, by reasonable extension, 

Mongolia pine have broad, plastic adaptability in response to environmental heterogeneity, 

supporting the wide use of these trees in afforestation. 

Grassland afforestation is an artificial and direct change in vegetation that alters both the above- 

and underground ecosystems, including abiotic changes [e.g., land surface temperature (Li et al. 

2016; Peng et al. 2014), hydrological connectivity, litterfall and litter decomposition (Khamzina et 

al. 2016; Lafleur et al. 2015), and soil physicochemical properties (Chen et al. 2008; Lafleur et al. 

2015; Wang et al. 2016; Zheng et al. 2017)], biotic changes [e.g., flora (Ma et al. 2013) and fauna 

compositions (Márquez et al. 2015; Pedley et al. 2014) and soil microbiota (Gunina et al. 2017; 

Šnajdr et al. 2013; Xiao et al. 2017)], and ecofunctional changes [e.g., plant-soil and plant-microbe 

interactions (Lu et al. 2017; Ren et al. 2016) and functional diversity of communities (Cibils et al. 



2015)]. Land use is a significant determinant of runoff and soil redistribution processes (Arnáez et 

al. 2015), and biotic responses could be sensitive to compositional changes in both species and 

ecofunctions (Xiao et al. 2017). Therefore, changes in microbial composition and function in soil 

can be quantified as indicators to monitor microenvironmental changes due to afforestation or 

reforestation. 

 

The afforestation process may alter the original environment. Although the environmental 

microbial composition may be sensitive to environmental variation, the effects of these microbial 

compositional changes on ecofunction remain unclear. A comprehensive review demonstrated that 

the soil microbial composition varies to alter acquisition, metabolism, and degradation processes in 

response to changes in soil P due to grassland afforestation (Chen et al. 2008). The C:N:P ratio of 

soils with different vegetation types also reflect different transformation processes and rates 

between plant and soil organic matter, and these biogeochemical processes are mediated by soil 

microbial community structure and functions (Zechmeister-Boltenstern et al. 2015). More 

importantly, environmental conditions and existing microbial diversity determine the ecological 

function and nutrient transformation efficiency of soil microbiota (Zechmeister-Boltenstern et al. 

2015). Therefore, quantifying the effects of afforestation on changes in soil properties, microbial 

composition, and ecofunctions would accelerate the understanding of plant-soil-microbe 

interactions. 

Afforestation has been suggested to have a greater impact on soil biological properties than soil 

chemical properties (Gunina et al. 2017; Jangid et al. 2011). These underground biological changes 

are mainly ascribed to changes in litter amount and chemistry, which stimulate the development of 

the fungal community rather than the bacterial community (Klein et al. 1995). The response of the 

prokaryotic microbiome to changes in vegetation type is small, likely because microbial assemblies 
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are based mainly on functional genes rather than species (Burke et al. 2011), and the changes in soil 

properties due to afforestation are relatively small and occur slowly (Gunina et al. 2017; Jangid et 

al. 2011). In addition, abundant microbial "core species" with highly conserved core functions 

(Falkowski et al. 2008) and rarely occurring species (Ai et al. 2013) may act as confounders in 

statistical analyses of the effects of afforestation or soil properties on microbiome change. 

Therefore, habitat generalists (core species) and specialists (divergent species) in microbial 

communities must be classified before analysis, particularly when using high-throughput 

sequencing (HTS) technology (e.g., 16S rRNA metagenomic sequencing), which can generate huge 

amounts of data, to outline the composition and structure of microbial communities (Székely & 

Langenheder 2014). 

In this study, to quantify the effect of afforestation on soil properties and soil microbial composition 

and functions, the soil physicochemical and microbial compositions were measured in an afforested 

region and adjacent grassland. Based on previous studies that have demonstrated functional 

assembly of bacterial communities (Burke et al. 2011) and a small response of bacterial 

communities to afforestation, with low sensitivity to soil properties (Gunina et al. 2017; Jangid et al. 

2011; Klein et al. 1995), we hypothesized that (1) the soil prokaryotic microbiome is indirectly 

affected by afforestation mediated by soil physicochemical properties and (2) soil microbial 

ecofunctions are more sensitive to changes in vegetation type than changes in soil microbial 

composition. To test these hypotheses, the 16S rRNA metagenomes of the afforested and adjacent 

grassland soil microbiomes were sequenced, and the relative abundances of microorganisms and 

predicted ecophysiological functions were quantified by multivariate and regression analyses. 

Based on these analyses, we provide a possible explanation of the link between soil 

physicochemical properties and microbiome changes in grassland afforestation. 

 



 

Materials and Methods 

Study sites and sampling 

Mongolia pine is native to Honghua'erji in Inner Mongolia in China and is widely planted as a 

forestation tree in temperate Asia. The study site was located 6 km west of the town of Honghua'erji, 

in an artificial forest produced by seedling afforestation in a large area of thin grassland (savanna). 

Field experiments were approved by the Honghuaerji Nature Reserve (permit number 

200/66150221). The tree ages of the Mongolian pines in this afforestation forest ranged from 27 to 

33 years, with a DBH of 21.21±4.19 cm (12.09~32.10 cm) and tree height of 12.86±0.86 

(11.2~14.6 m). In this seedling afforestation area, almost no seedlings were found (personal 

observation), implying that this region lacks naturally symbiotic fungi to assist the germination and 

growth of Mongolian pines except in the planted soils. Although the lack of fungal symbionts of 

Mongolian pines requires further investigation and confirmation, the absence of seedlings suggests 

that this afforestation area was likely not a Mongolian pine forest in the past. 

At the study site, we collected soil samples from 20 quadrants, including 10 inside the forest (i.e., 

forest soils) and 10 in the adjacent grassland (i.e., grassland soils). At each location, soil samples 

were collected at a depth of 50 cm from 10 quadrants located 10 to 100 m from each other. The soil 

samples were separated into two parts: one part was dried for quantification of the soil 

physicochemical properties, and the other was used to quantify the microbiome. The latter samples 

were stored in RNAlater stabilization solution on ice immediately after collection until transfer to 

the laboratory, where the samples were stored at -20 °C before metagenomic DNA extraction. 

 

Quantifying soil physicochemical properties 
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Organic carbon (C) was measured by the external-heat potassium dichromate oxidation method, 

and total nitrogen content (N) was measured by the Kjeldahl distillation method. The inductively 

coupled plasma (ICP) method was used with soils digested in a mixture of HF–HClO4–HNO3 to 

quantify the contents of the soil elements K+, P, Ca2+, Fe, Mg2+, and Na. Soil pH was determined 

using a Sartorius pH meter PB-10 (Germany). All soil properties were determined and quantified 

by the State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese 

Academy Sciences. 

 

16S rRNA metagenome sequencing 

Microbial metagenomic DNA was extracted with an EZNA® Soil DNA Kit (Qiagen, Valencia, CA, 

USA), and the concentration was adjusted to 50 ng/μL. The metagenomic DNA was quantified 

using Qubit® 2.0 (Invitrogen, Life Technologies, CA, USA). Primers 341F and 805R were used to 

amplify the V3-V4 hypervariable 16S rRNA region, and the PCR products were used to construct a 

DNA library with the Roche GS FLX Titanium emPCR kit (Roche Applied Science). The DNA 

libraries were then sequenced by Sangon Biotech Co. (Shanghai, China) on an Illumina MiSeq 

2X300. The sequencing procedures followed the manufacturer's instructions.  

Before analysis, the raw HTS data were cleaned by removing sequence fragments shorter than 200 

bp or with missing barcodes or polyN or polyA/T in Ribosomal Database Project (RDP) (Cole et al. 

2007). We also discarded reads with PHRED quality scores <Q25 (Ewing & Green 1998; Ewing et 

al. 1998). The Mothur package was used to remove non-prokaryotic sequences and de-noise and 

trim the sequences (Mothur ver. 1.30.1, http://www.mothur.org/wiki/MiSeq_SOP (Schloss et al. 

2009)). Chimeric sequences were removed using Uchime (Edgar et al. 2011). After quality filtering, 

we clustered sequences using a criterion of >97% sequence similarity as operational taxonomic 

units (OTUs) defined as representing the same species by the RDP classifier (Cole et al. 2007). The 
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rarefied OTU table was generated using Qiime (Caporaso et al. 2010) and deposit in Mendeley 

(doi:10.17632/gjskh8wswz.1). Each OTU was annotated and classified according to the RDP 

classifier and SILVA database. The raw sequence data were deposited in NCBI GenBank under 

Bioproject PRJNA317430 (Accession number: SAMN04607375). 

 

Predictive functional profiling of microbial communities 

PICRUSt v. 1.0.0, a functional prediction tool for estimating shared gene content according to the 

corresponding microbiome phylogeny, was used to predict the molecular functions of each sample 

(Langille et al. 2013). PICRUSt generates the composition of gene families for each metagenome 

using an extended ancestral-state reconstruction algorithm. The online version of PICRUSt 

implemented in Galaxy (https://huttenhower.sph.harvard.edu/galaxy/) was used to assist the 

algorithms. The quality-filtered sequences were assigned to a closed reference OTU table against the 

Greengenes v. 13.5 OTU database (DeSantis et al. 2006) for PICRUSt prediction implemented in 

QIIME v. 1.8.0 (Caporaso et al. 2010). Each OTU was normalized by its copy number. The 

functional contribution of each OTU member was reconstructed and predicted by mapping the 16S 

sequences to their nearest reference genome. ‘Virtual’ metagenomes with gene content abundance 

were then generated using the Kyoto Encyclopedia of Genes and Genomes (KEGG) Ortholog and 

Clusters of Orthologous Groups (COGs) databases. 

 

Statistical analyses 

This study included two types of measurements, the soil physicochemical properties and soil 

microbiomes (i.e., relative abundances of microbial OTUs), and one treatment, the grassland 

afforestation (i.e., vegetation type). We first assessed the differences in soil properties between 

vegetation types by the Kruskal-Wallis (KW) test. A logistic regression model was further used to 

https://huttenhower.sph.harvard.edu/galaxy/


determine if the soil properties predicted the grassland-afforestation treatment. The likelihood ratio 

test (LRT) was performed to identify the best-fitting model of the logistic regression. To test the 

hypotheses of a stochastic process of microbial assembly (random distribution model) or 

resource-governed assembly (niche-based mechanism), we used Rank-Abundance Dominance 

(RAD) analysis to display logarithmic species abundances against species rank order (McGill et al. 

2007). Bray-Curtis distance-based redundancy analysis (dbRDA) was used to examine the 

explanatory proportions of the treatment for these two measurements. Because soil 

physicochemical properties can also affect the soil microbiome (Stutter & Richards 2012), we 

further performed a partial dbRDA to assess the effects of grassland afforestation on the soil 

microbiome conditioned by soil physicochemical properties and the effects of the soil 

physicochemical properties on the soil microbiome conditioned by vegetation type. Type II 

ANOVA was used to evaluate the fit of the model of each constraint factor. We further identified 

divergent microbes (i.e., forest and grassland specialists) using the supermajority rule (>2/3 

difference in abundance) with the assistance of the multinomial species classification method 

(CLAM) test (Chazdon et al. 2011). The soil elements that significantly explained the soil 

microbiome by partial dbRDA were then used as independent factors to predict the abundance of 

microbial specialists by the generalized linear model (GLM). Because the ecophysiological 

functions (COGs and KEGG modules) of the soil microbiomes were also predicted, all tests were 

repeated by replacing the soil microbial OTUs with the COGs and KEGG modules.  

 

Results 

Effects of afforestation on soil physicochemical properties 

To characterize the soil physicochemical properties, the contents of eight elements (organic C, total 

N, P, K, Ca, Mg, Fe, and Na) and the pH value of each soil sample were determined (Table 1). 



Among these soil variables, the contents of C, P, Ca, Mg, and Fe were significantly higher in the 

forest soils than in the grassland soils (P = 0.0003, 0.008, 0.003, 0.0004, and 0.00006, respectively), 

and the pH of the grassland soils was significantly higher than the pH of the forest soils (P = 0.004) 

(Fig. 1). To estimate the explanatory proportions of the afforestation effect on the variance of soil 

properties, we performed dbRDA using vegetation type (i.e., forest and grassland) as the 

independent factor. Vegetation type significantly explained 50.18% of the variance of soil 

properties (P = 0.002, Table 2), indicating that afforestation has changed the soil properties.  

To determine if the contents of soil elements can predict the vegetation type (i.e., afforestation 

effect), we compared the simple logistic regression (SLR) model using a single soil element as the 

independent factor and the multivariate logistic regression (MLR) model using all soil elements as 

independent factors (i.e. the full model M1) to the empty (null) model M0. Most of the SLR models 

and M1 rejected the null model M0 (P < 0.005), except the SLR models with K (LRT: P = 0.084) 

or Na (LRT: P = 0.108) as the independent factor. We further compared the SLR models with each 

single soil element (C, N, P, Ca, Mg, Fe, and pH) as the independent factor to the MLR model 

using all C, N, P, Ca, Mg, Fe, and pH as independent factors (full model M2) by LRT. The SLR 

models with Mg or Fe as the independent factor could not be rejected by M2 (P = 0.278 and 0.130, 

respectively, Fig. 2). Although the other SLR models with C, N, P, Ca, or pH as the independent 

factor were rejected by M2, none of the independent factors in M2 could significantly predict the 

presence of forestation (Z < 10-6, P > 0.9999 in each term). These results indicated that the contents 

of Mg (0.456±0.099 and 0.313±0.035 g/kg in forest and grassland soils, respectively) and Fe 

(8.355±1.047 and 5.607±1.308 g/kg in forest and grassland soils, respectively) could singly reflect 

the changes in soil properties due to afforestation (Table 1 and Fig. 2). 

 

Afforestation effects on the relative abundances of soil microorganisms 
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We further examined how afforestation affected the biological properties of soils. We estimated the 

relative abundances (RAs) of the soil microbiome according to 16S rRNA metagenome sequencing. 

The RAs of microbial OTUs were estimated from the reads of the 16S rRNA gene with >97% 

similarity. Divergence of the soil microbiome was inferred by significant or marginal differences in 

the diversity indices (Shannon–Wiener index H, KWχ2 = 3.291, P = 0.070; Reciprocal Simpson's 

index 1/D: KWχ2 = 4.166, P = 0.041; Pielou's evenness J: KWχ2 = 9.864, P = 0.002, Table 3). 

However, no difference was estimated in the species richness of the soil microbiome between forest 

and grassland (KWχ2 = 0, P = 1, Table 3). The significant differences in H, 1/D, and J but not 

richness between the grassland and forest soil microbiomes suggest that the change in the soil 

microbiome is species composition (RA) rather than species number. Hence, we used RA as an 

indicator to compare the microbiomes of the soil samples. Hierarchical cluster analysis (H-cluster) 

and DAPC (five first PCs of PCA used, which conserved 70% of the variance of the microbial RA) 

presented similar patterns of clear divergence of soil microbiomes between the forest and grassland 

(Fig. 3). These results confirm that the soil microbial composition has changed due to grassland 

afforestation despite no change in microbial richness. 

Because most of the 16S rRNA sequences with <97% sequence identity and hence assigned as 

different OTUs were rarely found among different samples, we performed the CLAM test 

(Chazdon et al. 2011) to classify these OTUs as four types of microbes using the supermajority (2/3) 

rule: too-rare microbes, generalist microbes, and grassland- and forest-specialist microbes. In this 

classification, a large proportion of OTUs (95.46%) belonged to the too-rare microbes, which 

accounted for 38.42% and 36.73% of the abundance of grassland and forest soil microbes, 

respectively; only 2.98% of the OTUs were generalists, but they accounted for 35.55% and 35.88% 

of the abundance of grassland and forest soil microbes, respectively. Only 1.56% of the OTUs 

belonged to specialists, of which 1061 (0.7%) and 1224 (0.8%) microbial OTUs were identified as 

forest and grassland specialists, respectively. The RA of grassland-specialist microbes was 22.84% 
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in grassland soils and 2.84% in forest soils, while the RA of forest-specialist microbes was 3.19% 

in grassland soils and 24.55% in forest soils. 

We further used the RAs of the microbial OTUs as the dependent response to access the impact of 

afforestation on the soil microbiome. When vegetation type was used as the categorical 

independent factor, 16.3% of the variance of microbial RA was explained significantly (P = 0.001). 

However, the significant explanatory effect of vegetation type was lost after removing 

(conditioning on) soil properties (P = 0.466, Table 2). When soil properties were used as a 

constraint factor, 64.4% of the variance of microbial RA was explained by soil properties, in which 

the organic C (11.4% explanation), P (10.0%), Ca (9.0%), Mg (7.1%), and Fe (10.5%) significantly 

fit the model by type II ANOVA (Table 2). Similar significant explanations by C (6.7%), P (9.5%), 

Ca (8.8%), Mg (6.7%), and Fe (5.4%) were obtained when the effect of vegetation type was 

removed (i.e., partial dbRDA, Table 2). These analyses suggested that afforestation has changed the 

soil physicochemical properties, which has indirectly affected the soil microbiome. 

 

Effects of soil properties on the divergence of microbial phyla between forest and grassland 

soils 

To identify the divergent soil microorganisms, the habitat-specialist microbial phyla were classified 

under the supermajority rule (i.e., 2/3 majority). At the phylum level, five phyla were habitat 

specialists, including one forest specialist (Thaumarchaeota, 2.3%) and four grassland specialists 

(Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria, 9.3%). The forest-specialist phylum 

Thaumarchaeota belongs to Archaea, while the four grassland specialists are Eubacteria. 

We further tested the effects of soil properties on the abundance of these habitat specialists by 

GLM. Because organic C, P, Ca, Mg, and Fe significantly explained the RA of soil microbes in 

dbRDA, these five soil variables were used as independent predictors in GLM. The variances of the 



microbial abundance of the sampled soils were significantly or marginally significantly greater than 

the means, suggesting overdispersion of these responses (P = 0.056, 0.001, 0.051, 0.002, and 0.002; 

alpha = 52.675, 25.871, 1.065, 23.101, and 76.612 in Thaumarchaeota, Chloroflexi, Fibrobacteres, 

Nitrospirae, and Parcubacteria, respectively). Hence, we used the quasi-Poisson model for GLM, 

which led to the same coefficient estimates as the standard Poisson model but with adjustment of 

the dispersion parameter for overdispersion. Under the quasi-Poisson model, Fe content was 

marginally correlated with the abundance of the forest specialist Thaumarchaeota; for the grassland 

specialists, the P content was correlated with the abundances of all four phyla (Table 4). In addition, 

C, Ca, and Mg were significantly correlated with Chloroflexi, Fe was significantly correlated with 

Nitrospirae, and Ca and Mg were marginally correlated with Parcubacteria (Table 4).  

 

Afforestation effects on the soil ecophysiological functions predicted by soil microbiome 

To understand the ecophysiological functions of the soil microbiomes, we predicted their functional 

composition using 16S rRNA gene and databases of reference genomes. A total of 4659 clusters of 

orthologous groups (COGs) and 306 KEGG modules (Level-3 KEGG orthology) were identified. 

Similar to the analyses for testing the effects of afforestation and soil properties on the soil 

microbiome, we used vegetation type and soil elements as predictors to test the explanatory 

proportion and significance of each predictor on the RAs of the COGs and KEGG modules. dbRDA 

indicated that 22.0% and 21.2% of the variation of COGs and KEGG modules was significantly 

explained by vegetation type, respectively, whereas the explanatory proportion decreased to 3.4% 

and 4.5% when conditioning the soil-property effect (Table 5). Soil properties explained 83.0% and 

82.4% of the variation of the COGs and KEGG modules in dbRDA, respectively, in which C, P, Ca, 

Mg, Fe, and N significantly or marginally fit the model according to type II ANOVA (Table 5). 

When conditioned on vegetation type, the explanatory proportion decreased slightly to 64.4% and 

65.8% for the COGs and KEGG modules, respectively, and the remaining significant fitting factors 



were P, Ca, and Fe (Table 5).  

Among all COGs, 44 and 21 were identified as forest and grassland specialists, respectively, 

whereas among all KEGG modules, only two forest specialists and no grassland specialists were 

identified. Further testing of the correlation of soil elements with these specialist COGs and KEGG 

modules revealed that 50 of the 65 COGs and both KEGG modules were significantly correlated 

with at least one soil element under Poisson or quasi-Poisson regression. These significant 

correlations indicate that soil properties, particularly P, Ca, and Fe, account for the changes in 

ecophysiological functional due to grassland afforestation. 

 

Discussion 

The closure of the tree canopy and increased litter accumulation that accompany the ecosystem 

change from grassland to forest may directly alter the soil environment (Bond & Midgley 2012; 

Cunningham et al. 2015). The significantly higher contents of soil physicochemical factors (C, P, 

Ca, Mg, Fe, and pH) in the Mongolian pine plantation areas than in the unplanted region suggest a 

great influence of grassland afforestation on secondary salinization. Soil mineral elements are 

usually increased in tree-plantation regions where groundwater is insufficient to meet water 

requirements (Nosetto et al. 2008). High contents of soil elements in a forest suggest not only a 

larger amount of litter biomass but also a rapid decomposition rate of pine litters compared to other 

broadleaf flora (Berger et al. 2015). However, despite significant differences in the contents of soil 

elements between forest and grassland, these soil elements, except Mg and Fe (Fig. 2), could not 

singly predict the ecosystem change due to afforestation by logistic regression analysis. 

Significantly high predictable contents of Fe and Mg in forest soils reflect the characteristics of 

litter and humus accumulation in forests (Song et al. 2008). Litter decomposition accelerates the 

conversion and accumulation of soil non-organic elements (Fenchel et al. 2012b). In 2nd-to-3rd-year 



needle litters of P. sylvestris L., a decrease in the rate of biomass loss but an increase in the release 

of Fe and Mg were recorded (De Marco et al. 2007). Consequently, we suggest that the high 

contents of Fe and Mg in the forest soils of our study sites are due to the long, steady accumulation 

and decomposition of needle litter. The soil element cycling affects and is affected by the 

composition of the soil microbiota (Fenchel et al. 2012b). For example, the iron bacteria 

Siderocapsa (Siderocapsaceae) and Leptothrix (Comamonadaceae), which are able to deposit iron 

metal oxides under natural conditions, can grow rapidly in iron-rich and acidic substrates (Fenchel 

et al. 2012a; Hanert 2006). The distributions of the soil microbial abundances in our samples best 

fit to Zipf and Zipf–Mandelbrot rank abundance models (Table S1 and Fig. 4). The Zipf and Zipf–

Mandelbrot rank abundance models belong to the family of random-branching processes; these 

models suggest that individuals are always derived from ancestor individuals (McGill et al. 2007) 

and that microbial community assembly is explained by the niche-based mechanism (McGill et al. 

2007; Mendes et al. 2014). These models indicate that decades of grassland afforestation have 

generated soil properties that provide a divergent but stable resource supply for the soil microbial 

community. 

Classification by the supermajority rule revealed that generalist microbes represented more than 1/3 

of the RA but only <3% of microbial OTUs. The low richness but relatively high abundance of 

generalists suggests that a great proportion of residents utilize broad resources or are highly tolerant 

of the environment (Verberk 2011). It has been suggested that microbes that are present in all or the 

majority of microbial communities with high abundance represent the core set of genes responsible 

for key elements of most metabolic pathways (Falkowski et al. 2008). Similarly, specialist microbes 

exhibited <1% richness but accounted for approximately 1/5 to 1/4 of the RA in the grassland and 

forest soils. These specialist OTUs with low richness and high abundance are probably more 

susceptible than generalists to environmental change. Since the original vegetation was scattered 

grasses, the grassland specialists rarely found in forest soils were those selected against by the 



afforestation effect; by contrast, forest specialists should be enriched after forestation. The 

environmental differences (e.g., the contents of soil C, P, Ca, Mg, and Fe, Table 2) could result in 

resource (niche) divergence to differentiate the microbial composition descended from the original 

microbiome, reflecting the microbial abundance distribution in the Zipf and Zipf–Mandelbrot 

models (Table S1).  

In particular, the Fe content was significantly correlated with the abundance of the forest-specialist 

Archaea phylum Thaumarchaeota, and P was correlated with the four grassland-specialist 

Eubacteria phyla Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria (Table 4), suggesting 

that these two soil elements are key factors differentiating soil microbial composition. encodes the 

genes ammonia monooxygenase A (amoA, encoding subunit A of AMO) and amoB, which are 

distantly related to one another (Stieglmeier et al. 2014). The high abundance of amoA and its 

transcripts suggests that ammonia-oxidizing Archaea (AOA) outnumber ammonia-oxidizing 

bacteria (Shen et al. 2008) and that nitrogen cycling is enhanced in the forest (Konneke et al. 2005; 

Stieglmeier et al. 2014). A high abundance of AOA with a high content of Fe (e.g., ferrate, an 

ammonia oxidation reagent) could accelerate ammonia oxidation (Sharma et al. 1998). 

Soil P is closely related to plant growth (Shen et al. 2011). However, much of soil P is stable and 

insoluble and hence recalcitrant to uptake by plants (Holford 1997). Microbes transform P to 

improve uptake by plants, which is also influenced by a combination of factors, including plant 

species and soil type (Chen et al. 2008). However, the specialists that were correlated with soil P 

content were primarily not responsible for P transformation but were light and aerobic thermophiles 

(e.g., Chloroflexi), symbionts with ruminant animals (e.g., Fibrobacteres), or involved in the 

nitrogen cycle (e.g., Nitrospirae). Although not directly linked to P content, these microbial 

ecofunctions reflect the differences between grassland and forest ecosystems. The major changes in 

the canopy, amounts of litterfall, plant composition, and root-microbe interactions due to grassland 

afforestation may explain the differences in soil P content as well as the abundances of these 
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microbial phyla (Chen et al. 2008; Li et al. 2004). 

By contrast, a high proportion of “too-rare” microbial OTUs (95% richness) occupied roughly >1/3 

of the RA of soil microbes, reflecting transient changes in microorganisms in the environments. 

This rarity could result from stochasticity (Ai et al. 2013), fitness trade-off (Gobet et al. 2012; 

Gudelj et al. 2010), or biological interactions (García-Fernández et al. 2004; Narisawa et al. 2008; 

Schluter et al. 2015). These rare microbes are still relevant in ecological functions, including 

microbiome assembly and function and biogeochemical cycling (Jousset et al. 2017). The high 

richness of rare microbes contributes to the alpha-diversity of the soil microbiome. Although the 

ecological functions of these rare species in grassland or forest are not known, the high rarity 

provides adequate options for selection under environmental change, and these species may play an 

important role in maintaining fundamental ecosystem functions. 

Based on the dbRDA of the relationships among vegetation type, soil properties, and microbial 

composition, we concluded that the grassland afforestation affected the soil physicochemical 

properties (Table 2) and soil microbiome composition and ecofunctions. In addition, these effects of 

afforestation on the microbiome were modulated by changes in soil physicochemical properties 

(Table 2 and Table 5). This conclusion was reached because the explanation of soil microbiome by 

vegetation type decreased or was even lost when conditioned on soil properties (Table 2). Albeit 

indirectly, afforestation indeed altered the ecofunction of the soil microbiome (Table 5). 

As discussed above, soil physicochemical properties interact with the soil microbiome. Because the 

original vegetation before forestation was grassland, the changes in the soil properties are probably 

attributable to the vegetation changes produced by afforestation. Several studies have suggested 

that afforestation can influence biotic and abiotic changes in micro- and macro-ecosystems (Jousset 

et al. 2017; Nosetto et al. 2008; Wang et al. 2016; Zheng et al. 2017). Here, we suggest that the 

underground biotic change was indirectly affected by forestation mediated by soil property changes 



(Table 2), especially the contents of soil P, Ca, and Fe, which are further related to ecofunctional 

changes in soil microbiomes for different vegetation types (Table 5 and Table S2). These results are 

similar to the bacterial abundance changes and compositional shifts reported for a long-term poplar 

plantation, which were suggested to be highly correlated with the changes in soil properties caused 

by afforestation (Zheng et al. 2017). Soil bacterial composition has been suggested to be more 

closely related to plant diversity-controlled abiotic soil properties because of the highly resilient 

characteristics of bacterial communities due to their fast life cycle (de Vries et al. 2012; Lange et al. 

2014). 

Conclusions 

The change in vegetation type was linked, at least in part, to ecofunctional changes in the soil 

microbiome, despite an indirect impact on microbial composition. Aboveground changes in the 

canopy, the composition and abundance of litterfall, and biotic activities (e.g., succession rate, 

fauna activity, and root-microbe interactions) may be responsible for these changes in underground 

ecofunctions. However, the relatively small proportion of microbial specialists and high proportion 

of microbial generalists with respect to ecofunction compared to microbial OTUs indicates that the 

vegetation change still preserved a high proportion of the core functions of the soils (Li et al. 2004). 

This preservation occurred because the core functional genes were distributed widely across a 

variety of microbial taxa. However, the high proportion of functions that were correlated with 

changes in soil properties indicates that microbial ecofunctions are highly sensitive to 

environmental change. 
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Figure legend 

Fig. 1. Tukey's Honest Significant Differences (HSD) test revealing significant differences in soil properties, i.e., 

contents of organic C, P, Ca, Mg, and Fe and pH, between the forest (Fr) and grassland (Gr) soils. 

Fig. 2. A simple logistic regression model revealing significant prediction of the absence (0) and presence (1) of 

forestation based on the contents of the soil elements (a) Fe and (b) Mg. 

Fig. 3. Divergence of the microbiome between the forest and grassland soils as revealed by (a) hierarchical cluster 

analysis and (b) discriminant analysis of principal components (DAPC). 

Fig. 4. Rank-abundance dominance (RAD) model tests showing that the sampled microbial communities were best fit 

to the Zipf or Zipf–Mandelbrot model. The blue dots and the line in each panel are the observed values and the 

expectations simulated from the observed data, respectively. Gr and Fr indicate samples from the grassland and forest 

soils, respectively. The Zipf and Zipf–Mandelbrot models are both niche-based models. Rejection of the null model 

indicates rejection of the hypothesis of a stochastic process of microbial assembly. 

 

 

 


