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Grassland afforestation dramatically affects the abiotic, biotic, and ecofunction properties

of the original ecosystems. Interference from afforestation might disrupt the stasis of soil

physicochemical properties and the dynamic balance of microbiota, although some studies

have suggested low sensitivity of soil properties and a small response of bacterial

community to afforestation. However, this “small response” is probably due to the

confounding effects of the generalist habitat and rare microbes. In this study, soil

physicochemical and prokaryotic properties in a 30-year-old Mongolia pine (Pinus sylvestris

var. mongolica Litv.) afforested region and adjacent grassland in Inner Mongolia were

classified and quantified. Our results indicate that the high richness of rare microbes

accounts for the alpha-diversity of the soil microbiome, whereas generalist (core

microbiota) and habitat-specialist microbes present in few numbers but high abundance

govern the beta-diversity of the grassland and afforested land microbiomes. Afforestation

has changed the soil physicochemical properties, thus indirectly affecting the soil microbial

composition rather than richness. The contents of soil P, Ca, and Fe account for the

ecofunctional changes in soil microbiomes due to grassland afforestation. We conclude

that grassland afforestation has changed the physicochemical properties and composition

of the soil and ecofunctions of the soil bacterial community and that these effects of

afforestation on the microbiome have been modulated by changes in soil physicochemical

properties.
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28 Abstract

29 Grassland afforestation dramatically affects the abiotic, biotic, and ecofunction properties of the 

30 original ecosystems. Interference from afforestation might disrupt the stasis of soil 

31 physicochemical properties and the dynamic balance of microbiota, although some studies have 

32 suggested low sensitivity of soil properties and a small response of bacterial community to 

33 afforestation. However, this “small response” is probably due to the confounding effects of the 

34 generalist habitat and rare microbes. In this study, soil physicochemical and prokaryotic 

35 properties in a 30-year-old Mongolia pine (Pinus sylvestris var. mongolica Litv.) afforested 

36 region and adjacent grassland in Inner Mongolia were classified and quantified. Our results 

37 indicate that the high richness of rare microbes accounts for the alpha-diversity of the soil 

38 microbiome, whereas generalist (core microbiota) and habitat-specialist microbes present in few 

39 numbers but high abundance govern the beta-diversity of the grassland and afforested land 

40 microbiomes. Afforestation has changed the soil physicochemical properties, thus indirectly 

41 affecting the soil microbial composition rather than richness. The contents of soil P, Ca, and Fe 

42 account for the ecofunctional changes in soil microbiomes due to grassland afforestation. We 

43 conclude that grassland afforestation has changed the physicochemical properties and 

44 composition of the soil and ecofunctions of the soil bacterial community and that these effects of 

45 afforestation on the microbiome have been modulated by changes in soil physicochemical 

46 properties.

47 Keywords: grassland afforestation; microbial composition; microbial ecofunction; soil 

48 physicochemical properties
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49 Introduction

50 After a decline in forest coverage in China to only 8.6% due to war, urban construction, and 

51 reclamation, efforts by the Chinese government in the last 30 years to promote afforestation have 

52 increased forest coverage to nearly 20% (State Forestry Administration of China 2011). However, 

53 these plantations are not exclusively located at the original sites of deforestation. Consequently, 

54 these deforestation and afforestation events have greatly changed the landscape and ecosystems 

55 of China (Ahrends et al. 2017). Mongolia pine (Pinus sylvestris var. mongolica Litv.), an 

56 endemic tree in Inner Mongolia, is one of the main forestation species in temperate regions of 

57 China. Scots pine (P. sylvestris L.), a relative of Mongolia pine that is widespread from Western 

58 Europe to Eastern Siberia, is also an important tree in forestry (Krakau et al. 2013). Studies of 

59 Mongolia pine are scarce, but several studies have revealed that Scots pine is genetically and 

60 physiologically sensitive to environmental pollution (Chudzińska et al. 2014), geographic 

61 weather variation (Oleksyn et al. 2003) and climate change (Hurme et al. 1997; Savolainen et al. 

62 2004). Phenological variation in response to climatic adaptation has also been suggested to be 

63 linked to quantitative trait loci (Hurme et al. 2000). These studies have demonstrated that Scots 

64 pine and, by reasonable extension, Mongolia pine have broad, plastic adaptability in response to 

65 environmental heterogeneity, supporting the wide use of these trees in afforestation.

66 Grassland afforestation is an artificial and direct change in vegetation that alters both the above- 

67 and underground ecosystems, including abiotic changes [e.g., land surface temperature (Li et al. 

68 2016; Peng et al. 2014), hydrological connectivity, litterfall and litter decomposition (Khamzina 

69 et al. 2016; Lafleur et al. 2015), and soil physicochemical properties (Chen et al. 2008; Lafleur et 

70 al. 2015; Wang et al. 2016; Zheng et al. 2017)], biotic changes [e.g., flora(Ma et al. 2013) and 

71 fauna compositions(Márquez et al. 2015; Pedley et al. 2014) and soil microbiota (Gunina et al. 
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72 2017; Šnajdr et al. 2013; Xiao et al. 2017)], and ecofunctional changes [e.g., plant-soil and plant-

73 microbe interactions (Lu et al. 2017; Ren et al. 2016) and functional diversity of communities 

74 (Cibils et al. 2015)]. Land use is a significant determinant of runoff and soil redistribution 

75 processes (Arnáez et al. 2015), and biotic responses could be sensitive to compositional changes 

76 in both species and ecofunctions (Xiao et al. 2017). Therefore, changes in microbial composition 

77 and function in soil can be quantified as indicators to monitor microenvironmental changes due 

78 to afforestation or reforestation.

79

80 The afforestation process may alter the original environment. Although the environmental 

81 microbial composition may be sensitive to environmental variation, the effects of these microbial 

82 compositional changes on ecofunction remain unclear. A comprehensive review demonstrated 

83 that the soil microbial composition varies to alter acquisition, metabolism, and degradation 

84 processes in response to changes in soil P due to grassland afforestation (Chen et al. 2008). The 

85 C:N:P ratio of soils with different vegetation types also reflect different transformation processes 

86 and rates between plant and soil organic matter, and these biogeochemical processes are 

87 mediated by soil microbial community structure and functions (Zechmeister-Boltenstern et al. 

88 2015). More importantly, environmental conditions and existing microbial diversity determine 

89 the ecological function and nutrient transformation efficiency of soil microbiota (Zechmeister-

90 Boltenstern et al. 2015). Therefore, quantifying the effects of afforestation on changes in soil 

91 properties, microbial composition, and ecofunctions would accelerate the understanding of plant-

92 soil-microbe interactions.

93 Afforestation has been suggested to have a greater impact on soil biological properties than soil 

94 chemical properties (Gunina et al. 2017; Jangid et al. 2011). These underground biological 
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95 changes are mainly ascribed to changes in litter amount and chemistry, which stimulate the 

96 development of the fungal community rather than the bacterial community (Klein et al. 1995). 

97 The response of the prokaryotic microbiome to changes in vegetation type is small, likely 

98 because microbial assemblies are based mainly on functional genes rather than species (Burke et 

99 al. 2011), and the changes in soil properties due to afforestation are relatively small and occur 

100 slowly (Gunina et al. 2017; Jangid et al. 2011). In addition, abundant microbial "core species" 

101 with highly conserved core functions (Falkowski et al. 2008) and rarely occurring species (Ai et 

102 al. 2013) may act as confounders in statistical analyses of the effects of afforestation or soil 

103 properties on microbiome change. Therefore, habitat generalists (core species) and specialists 

104 (divergent species) in microbial communities must be classified before analysis, particularly 

105 when using high-throughput sequencing (HTS) technology (e.g., 16S rRNA metagenomic 

106 sequencing), which can generate huge amounts of data, to outline the composition and structure 

107 of microbial communities (Székely & Langenheder 2014).

108 In this study, to quantify the effect of afforestation on soil properties and soil microbial 

109 composition and functions, the soil physicochemical and microbial compositions were measured 

110 in an afforested region and adjacent grassland. Based on previous studies that have demonstrated 

111 functional assembly of bacterial communities (Burke et al. 2011) and a small response of 

112 bacterial communities to afforestation, with low sensitivity to soil properties (Gunina et al. 2017; 

113 Jangid et al. 2011; Klein et al. 1995), we hypothesized that (1) the soil prokaryotic microbiome is 

114 indirectly affected by afforestation mediated by soil physicochemical properties and (2) soil 

115 microbial ecofunctions are more sensitive to changes in vegetation type than changes in soil 

116 microbial composition. To test these hypotheses, the 16S rRNA metagenomes of the afforested 

117 and adjacent grassland soil microbiomes were sequenced, and the relative abundances of 
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118 microorganisms and predicted ecophysiological functions were quantified by multivariate and 

119 regression analyses. Based on these analyses, we provide a possible explanation of the link 

120 between soil physicochemical properties and microbiome changes in grassland afforestation.

121

122

123 Materials and Methods

124 Study sites and sampling

125 Mongolia pine is native to Honghua'erji in Inner Mongolia in China and is widely planted as a 

126 forestation tree in temperate Asia. The study site was located 6 km west of the town of 

127 Honghua'erji, in an artificial forest produced by seedling afforestation in a large area of thin 

128 grassland (savanna). Field experiments were approved by the Honghuaerji Nature Reserve 

129 (permit number 200/66150221). The tree ages of the Mongolian pines in this afforestation forest 

130 ranged from 27 to 33 years, with a DBH of 21.21±4.19 cm (12.09~32.10 cm) and tree height of 

131 12.86±0.86 (11.2~14.6 m). In this seedling afforestation area, almost no seedlings were found 

132 (personal observation), implying that this region lacks naturally symbiotic fungi to assist the 

133 germination and growth of Mongolian pines except in the planted soils. Although the lack of 

134 fungal symbionts of Mongolian pines requires further investigation and confirmation, the 

135 absence of seedlings suggests that this afforestation area was likely not a Mongolian pine forest 

136 in the past.

137 At the study site, we collected soil samples from 20 quadrants, including 10 inside the forest (i.e., 

138 forest soils) and 10 in the adjacent grassland (i.e., grassland soils). At each location, soil samples 

139 were collected at a depth of 50 cm from 10 quadrants located 10 to 100 m from each other. The 
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140 soil samples were separated into two parts: one part was dried for quantification of the soil 

141 physicochemical properties, and the other was used to quantify the microbiome. The latter 

142 samples were stored in RNAlater stabilization solution on ice immediately after collection until 

143 transfer to the laboratory, where the samples were stored at -20 °C before metagenomic DNA 

144 extraction.

145

146 Quantifying soil physicochemical properties

147 Organic carbon (C) was measured by the external-heat potassium dichromate oxidation method, 

148 and total nitrogen content (N) was measured by the Kjeldahl distillation method. The inductively 

149 coupled plasma (ICP) method was used with soils digested in a mixture of HF–HClO4–HNO3 to 

150 quantify the contents of the soil elements K, P, Ca, Fe, Mg, and Na. Soil pH was determined 

151 using a Sartorius pH meter PB-10 (Germany). All soil properties were determined and quantified 

152 by the State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, 

153 Chinese Academy Sciences.

154

155 16S rRNA metagenome sequencing

156 Microbial metagenomic DNA was extracted with an EZNA® Soil DNA Kit (Qiagen, Valencia, 

157 CA, USA), and the concentration was adjusted to 50 ng/μL. The metagenomic DNA was 

158 quantified using Qubit® 2.0 (Invitrogen, Life Technologies, CA, USA). Primers 341F and 805R 

159 were used to amplify the V3-V4 hypervariable 16S rRNA region, and the PCR products were 

160 used to construct a DNA library with the Roche GS FLX Titanium emPCR kit (Roche Applied 

161 Science). The DNA libraries were then sequenced by Sangon Biotech Co. (Shanghai, China) on 
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162 an Illumina MiSeq 2X300. The sequencing procedures followed the manufacturer's instructions. 

163 Before analysis, the raw HTS data were cleaned by removing sequence fragments shorter than 

164 200 bp or with missing barcodes or polyN or polyA/T in Ribosomal Database Project (RDP) 

165 (Cole et al. 2007). We also discarded reads with PHRED quality scores <Q25 (Ewing & Green 

166 1998; Ewing et al. 1998). The Mothur package was used to remove non-prokaryotic sequences 

167 and de-noise and trim the sequences (Mothur ver. 1.30.1, 

168 http://www.mothur.org/wiki/MiSeq_SOP (Schloss et al. 2009)). Chimeric sequences were 

169 removed using Uchime (Edgar et al. 2011). After quality filtering, we clustered sequences using 

170 a criterion of >97% sequence similarity as operational taxonomic units (OTUs) defined as 

171 representing the same species by the RDP classifier (Cole et al. 2007). The rarefied OTU table 

172 was generated using Qiime (Caporaso et al. 2010) and deposit in Mendeley 

173 (doi:10.17632/gjskh8wswz.1). Each OTU was annotated and classified according to the RDP 

174 classifier and SILVA database. The raw sequence data were deposited in NCBI GenBank under 

175 Bioproject PRJNA317430 (Accession number: SAMN04607375).

176

177 Predictive functional profiling of microbial communities

178 PICRUSt v. 1.0.0, a functional prediction tool for estimating shared gene content according to 

179 the corresponding microbiome phylogeny, was used to predict the molecular functions of each 

180 sample (Langille et al. 2013). PICRUSt generates the composition of gene families for each 

181 metagenome using an extended ancestral-state reconstruction algorithm. The online version of 

182 PICRUSt implemented in Galaxy (https://huttenhower.sph.harvard.edu/galaxy/) was used to 

183 assist the algorithms. The quality-filtered sequences were assigned to a closed reference OTU 

184 table against the Greengenes v. 13.5 OTU database (DeSantis et al. 2006) for PICRUSt 
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185 prediction implemented in QIIME v. 1.8.0 (Caporaso et al. 2010). Each OTU was normalized by 

186 its copy number. The functional contribution of each OTU member was reconstructed and 

187 predicted by mapping the 16S sequences to their nearest reference genome. ‘Virtual’ 

188 metagenomes with gene content abundance were then generated using the Kyoto Encyclopedia 

189 of Genes and Genomes (KEGG) Ortholog and Clusters of Orthologous Groups (COGs) 

190 databases.

191

192 Statistical analyses

193 This study included two types of measurements, the soil physicochemical properties and soil 

194 microbiomes (i.e., relative abundances of microbial OTUs), and one treatment, the grassland 

195 afforestation (i.e., vegetation type). We first assessed the differences in soil properties between 

196 vegetation types by the Kruskal-Wallis (KW) test. A logistic regression model was further used 

197 to determine if the soil properties predicted the grassland-afforestation treatment. The likelihood 

198 ratio test (LRT) was performed to identify the best-fitting model of the logistic regression. To 

199 test the hypotheses of a stochastic process of microbial assembly (random distribution model) or 

200 resource-governed assembly (niche-based mechanism), we used Rank-Abundance Dominance 

201 (RAD) analysis to display logarithmic species abundances against species rank order (McGill et 

202 al. 2007). Bray-Curtis distance-based redundancy analysis (dbRDA) was used to examine the 

203 explanatory proportions of the treatment for these two measurements. Because soil 

204 physicochemical properties can also affect the soil microbiome (Stutter & Richards 2012), we 

205 further performed a partial dbRDA to assess the effects of grassland afforestation on the soil 

206 microbiome conditioned by soil physicochemical properties and the effects of the soil 

207 physicochemical properties on the soil microbiome conditioned by vegetation type. Type II 
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208 ANOVA was used to evaluate the fit of the model of each constraint factor. We further identified 

209 divergent microbes (i.e., forest and grassland specialists) using the supermajority rule (>2/3 

210 difference in abundance) with the assistance of the multinomial species classification method 

211 (CLAM) test (Chazdon et al. 2011). The soil elements that significantly explained the soil 

212 microbiome by partial dbRDA were then used as independent factors to predict the abundance of 

213 microbial specialists by the generalized linear model (GLM). Because the ecophysiological 

214 functions (COGs and KEGG modules) of the soil microbiomes were also predicted, all tests were 

215 repeated by replacing the soil microbial OTUs with the COGs and KEGG modules. 

216

217 Results

218 Effects of afforestation on soil physicochemical properties

219 To characterize the soil physicochemical properties, the contents of eight elements (organic C, 

220 total N, P, K, Ca, Mg, Fe, and Na) and the pH value of each soil sample were determined (Table 

221 1). Among these soil variables, the contents of C, P, Ca, Mg, and Fe were significantly higher in 

222 the forest soils than in the grassland soils (P = 0.0003, 0.008, 0.003, 0.0004, and 0.00006, 

223 respectively), and the pH of the grassland soils was significantly higher than the pH of the forest 

224 soils (P = 0.004) (Fig. 1). To estimate the explanatory proportions of the afforestation effect on 

225 the variance of soil properties, we performed dbRDA using vegetation type (i.e., forest and 

226 grassland) as the independent factor. Vegetation type significantly explained 50.18% of the 

227 variance of soil properties (P = 0.002, Table 2), indicating that afforestation has changed the soil 

228 properties. 

229 To determine if the contents of soil elements can predict the vegetation type (i.e., afforestation 
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230 effect), we compared the simple logistic regression (SLR) model using a single soil element as 

231 the independent factor and the multivariate logistic regression (MLR) model using all soil 

232 elements as independent factors (i.e. the full model M1) to the empty (null) model M0. Most of 

233 the SLR models and M1 rejected the null model M0 (P < 0.005), except the SLR models with K 

234 (LRT: P = 0.084) or Na (LRT: P = 0.108) as the independent factor. We further compared the 

235 SLR models with each single soil element (C, N, P, Ca, Mg, Fe, and pH) as the independent 

236 factor to the MLR model using all C, N, P, Ca, Mg, Fe, and pH as independent factors (full 

237 model M2) by LRT. The SLR models with Mg or Fe as the independent factor could not be 

238 rejected by M2 (P = 0.278 and 0.130, respectively, Fig. 2). Although the other SLR models with 

239 C, N, P, Ca, or pH as the independent factor were rejected by M2, none of the independent 

240 factors in M2 could significantly predict the presence of forestation (Z < 10-6, P > 0.9999 in each 

241 term). These results indicated that the contents of Mg (0.456±0.099 and 0.313±0.035 g/kg in 

242 forest and grassland soils, respectively) and Fe (8.355±1.047 and 5.607±1.308 g/kg in forest and 

243 grassland soils, respectively) could singly reflect the changes in soil properties due to 

244 afforestation (Table 1 and Fig. 2).

245

246 Afforestation effects on the relative abundances of soil microorganisms

247 We further examined how afforestation affected the biological properties of soils. We estimated 

248 the relative abundances (RAs) of the soil microbiome according to 16S rRNA metagenome 

249 sequencing. The RAs of microbial OTUs were estimated from the reads of the 16S rRNA gene 

250 with >97% similarity. Divergence of the soil microbiome was inferred by significant or marginal 

251 differences in the diversity indices (Shannon–Wiener index H, KWχ2 = 3.291, P = 0.070; 

252 Reciprocal Simpson's index 1/D: KWχ2 = 4.166, P = 0.041; Pielou's evenness J: KWχ2 = 9.864, 
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253 P = 0.002, Table 3). However, no difference was estimated in the species richness of the soil 

254 microbiome between forest and grassland (KWχ2 = 0, P = 1, Table 3). The significant 

255 differences in H, 1/D, and J but not richness between the grassland and forest soil microbiomes 

256 suggest that the change in the soil microbiome is species composition (RA) rather than species 

257 number. Hence, we used RA as an indicator to compare the microbiomes of the soil samples. 

258 Hierarchical cluster analysis (H-cluster) and DAPC (five first PCs of PCA used, which 

259 conserved 70% of the variance of the microbial RA) presented similar patterns of clear 

260 divergence of soil microbiomes between the forest and grassland (Fig. 3). These results confirm 

261 that the soil microbial composition has changed due to grassland afforestation despite no change 

262 in microbial richness.

263 Because most of the 16S rRNA sequences with <97% sequence identity and hence assigned as 

264 different OTUs were rarely found among different samples, we performed the CLAM test 

265 (Chazdon et al. 2011) to classify these OTUs as four types of microbes using the supermajority 

266 (2/3) rule: too-rare microbes, generalist microbes, and grassland- and forest-specialist microbes. 

267 In this classification, a large proportion of OTUs (95.46%) belonged to the too-rare microbes, 

268 which accounted for 38.42% and 36.73% of the abundance of grassland and forest soil microbes, 

269 respectively; only 2.98% of the OTUs were generalists, but they accounted for 35.55% and 

270 35.88% of the abundance of grassland and forest soil microbes, respectively. Only 1.56% of the 

271 OTUs belonged to specialists, of which 1061 (0.7%) and 1224 (0.8%) microbial OTUs were 

272 identified as forest and grassland specialists, respectively. The RA of grassland-specialist 

273 microbes was 22.84% in grassland soils and 2.84% in forest soils, while the RA of forest-

274 specialist microbes was 3.19% in grassland soils and 24.55% in forest soils.

275 We further used the RAs of the microbial OTUs as the dependent response to access the impact 
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276 of afforestation on the soil microbiome. When vegetation type was used as the categorical 

277 independent factor, 16.3% of the variance of microbial RA was explained significantly (P = 

278 0.001). However, the significant explanatory effect of vegetation type was lost after removing 

279 (conditioning on) soil properties (P = 0.466, Table 2). When soil properties were used as a 

280 constraint factor, 64.4% of the variance of microbial RA was explained by soil properties, in 

281 which the organic C (11.4% explanation), P (10.0%), Ca (9.0%), Mg (7.1%), and Fe (10.5%) 

282 significantly fit the model by type II ANOVA (Table 2). Similar significant explanations by C 

283 (6.7%), P (9.5%), Ca (8.8%), Mg (6.7%), and Fe (5.4%) were obtained when the effect of 

284 vegetation type was removed (i.e., partial dbRDA, Table 2). These analyses suggested that 

285 afforestation has changed the soil physicochemical properties, which has indirectly affected the 

286 soil microbiome.

287

288 Effects of soil properties on the divergence of microbial phyla between forest and grassland 

289 soils

290 To identify the divergent soil microorganisms, the habitat-specialist microbial phyla were 

291 classified under the supermajority rule (i.e., 2/3 majority). At the phylum level, five phyla were 

292 habitat specialists, including one forest specialist (Thaumarchaeota, 2.3%) and four grassland 

293 specialists (Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria, 9.3%). The forest-

294 specialist phylum Thaumarchaeota belongs to Archaea, while the four grassland specialists are 

295 Eubacteria.

296 We further tested the effects of soil properties on the abundance of these habitat specialists by 

297 GLM. Because organic C, P, Ca, Mg, and Fe significantly explained the RA of soil microbes in 
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298 dbRDA, these five soil variables were used as independent predictors in GLM. The variances of 

299 the microbial abundance of the sampled soils were significantly or marginally significantly 

300 greater than the means, suggesting overdispersion of these responses (P = 0.056, 0.001, 0.051, 

301 0.002, and 0.002; alpha = 52.675, 25.871, 1.065, 23.101, and 76.612 in Thaumarchaeota, 

302 Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria, respectively). Hence, we used the 

303 quasi-Poisson model for GLM, which led to the same coefficient estimates as the standard 

304 Poisson model but with adjustment of the dispersion parameter for overdispersion. Under the 

305 quasi-Poisson model, Fe content was marginally correlated with the abundance of the forest 

306 specialist Thaumarchaeota; for the grassland specialists, the P content was correlated with the 

307 abundances of all four phyla (Table 4). In addition, C, Ca, and Mg were significantly correlated 

308 with Chloroflexi, Fe was significantly correlated with Nitrospirae, and Ca and Mg were 

309 marginally correlated with Parcubacteria (Table 4). 

310

311 Afforestation effects on the soil ecophysiological functions predicted by soil microbiome

312 To understand the ecophysiological functions of the soil microbiomes, we predicted their 

313 functional composition using 16S rRNA gene and databases of reference genomes. A total of 

314 4659 clusters of orthologous groups (COGs) and 306 KEGG modules (Level-3 KEGG orthology) 

315 were identified. Similar to the analyses for testing the effects of afforestation and soil properties 

316 on the soil microbiome, we used vegetation type and soil elements as predictors to test the 

317 explanatory proportion and significance of each predictor on the RAs of the COGs and KEGG 

318 modules. dbRDA indicated that 22.0% and 21.2% of the variation of COGs and KEGG modules 

319 was significantly explained by vegetation type, respectively, whereas the explanatory proportion 

320 decreased to 3.4% and 4.5% when conditioning the soil-property effect (Table 5). Soil properties 
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321 explained 83.0% and 82.4% of the variation of the COGs and KEGG modules in dbRDA, 

322 respectively, in which C, P, Ca, Mg, Fe, and N significantly or marginally fit the model 

323 according to type II ANOVA (Table 5). When conditioned on vegetation type, the explanatory 

324 proportion decreased slightly to 64.4% and 65.8% for the COGs and KEGG modules, 

325 respectively, and the remaining significant fitting factors were P, Ca, and Fe (Table 5). 

326 Among all COGs, 44 and 21 were identified as forest and grassland specialists, respectively, 

327 whereas among all KEGG modules, only two forest specialists and no grassland specialists were 

328 identified. Further testing of the correlation of soil elements with these specialist COGs and 

329 KEGG modules revealed that 50 of the 65 COGs and both KEGG modules were significantly 

330 correlated with at least one soil element under Poisson or quasi-Poisson regression. These 

331 significant correlations indicate that soil properties, particularly P, Ca, and Fe, account for the 

332 changes in ecophysiological functional due to grassland afforestation.

333

334 Discussion

335 The closure of the tree canopy and increased litter accumulation that accompany the ecosystem 

336 change from grassland to forest may directly alter the soil environment (Bond & Midgley 2012; 

337 Cunningham et al. 2015). The significantly higher contents of soil physicochemical factors (C, P, 

338 Ca, Mg, Fe, and pH) in the Mongolian pine plantation areas than in the unplanted region suggest 

339 a great influence of grassland afforestation on secondary salinization. Soil mineral elements are 

340 usually increased in tree-plantation regions where groundwater is insufficient to meet water 

341 requirements (Nosetto et al. 2008). High contents of soil elements in a forest suggest not only a 

342 larger amount of litter biomass but also a rapid decomposition rate of pine litters compared to 
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343 other broadleaf flora (Berger et al. 2015). However, despite significant differences in the 

344 contents of soil elements between forest and grassland, these soil elements, except Mg and Fe 

345 (Fig. 2), could not singly predict the ecosystem change due to afforestation by logistic regression 

346 analysis.

347 Significantly high predictable contents of Fe and Mg in forest soils reflect the characteristics of 

348 litter and humus accumulation in forests (Song et al. 2008). Litter decomposition accelerates the 

349 conversion and accumulation of soil non-organic elements (Fenchel et al. 2012b). In 2nd-to-3rd-

350 year needle litters of P. sylvestris L., a decrease in the rate of biomass loss but an increase in the 

351 release of Fe and Mg were recorded (De Marco et al. 2007). Consequently, we suggest that the 

352 high contents of Fe and Mg in the forest soils of our study sites are due to the long, steady 

353 accumulation and decomposition of needle litter. The soil element cycling affects and is affected 

354 by the composition of the soil microbiota (Fenchel et al. 2012b). For example, the iron bacteria 

355 Siderocapsa (Siderocapsaceae) and Leptothrix (Comamonadaceae), which are able to deposit 

356 iron metal oxides under natural conditions, can grow rapidly in iron-rich and acidic substrates 

357 (Fenchel et al. 2012a; Hanert 2006). The distributions of the soil microbial abundances in our 

358 samples best fit to Zipf and Zipf–Mandelbrot rank abundance models (Table S1 and Fig. 4). The 

359 Zipf and Zipf–Mandelbrot rank abundance models belong to the family of random-branching 

360 processes; these models suggest that individuals are always derived from ancestor individuals 

361 (McGill et al. 2007) and that microbial community assembly is explained by the niche-based 

362 mechanism (McGill et al. 2007; Mendes et al. 2014). These models indicate that decades of 

363 grassland afforestation have generated soil properties that provide a divergent but stable resource 

364 supply for the soil microbial community.

365 Classification by the supermajority rule revealed that generalist microbes represented more than 
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366 1/3 of the RA but only <3% of microbial OTUs. The low richness but relatively high abundance 

367 of generalists suggests that a great proportion of residents utilize broad resources or are highly 

368 tolerant of the environment (Verberk 2011). It has been suggested that microbes that are present 

369 in all or the majority of microbial communities with high abundance represent the core set of 

370 genes responsible for key elements of most metabolic pathways (Falkowski et al. 2008). 

371 Similarly, specialist microbes exhibited <1% richness but accounted for approximately 1/5 to 1/4 

372 of the RA in the grassland and forest soils. These specialist OTUs with low richness and high 

373 abundance are probably more susceptible than generalists to environmental change. Since the 

374 original vegetation was scattered grasses, the grassland specialists rarely found in forest soils 

375 were those selected against by the afforestation effect; by contrast, forest specialists should be 

376 enriched after forestation. The environmental differences (e.g., the contents of soil C, P, Ca, Mg, 

377 and Fe, Table 2) could result in resource (niche) divergence to differentiate the microbial 

378 composition descended from the original microbiome, reflecting the microbial abundance 

379 distribution in the Zipf and Zipf–Mandelbrot models (Table S1). 

380 In particular, the Fe content was significantly correlated with the abundance of the forest-

381 specialist Archaea phylum Thaumarchaeota, and P was correlated with the four grassland-

382 specialist Eubacteria phyla Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria (Table 4), 

383 suggesting that these two soil elements are key factors differentiating soil microbial composition. 

384 encodes the genes ammonia monooxygenase A (amoA, encoding subunit A of AMO) and amoB, 

385 which are distantly related to one another (Stieglmeier et al. 2014). The high abundance of amoA 

386 and its transcripts suggests that ammonia-oxidizing Archaea (AOA) outnumber ammonia-

387 oxidizing bacteria (Shen et al. 2008) and that nitrogen cycling is enhanced in the forest (Konneke 

388 et al. 2005; Stieglmeier et al. 2014). A high abundance of AOA with a high content of Fe (e.g., 
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389 ferrate, an ammonia oxidation reagent) could accelerate ammonia oxidation (Sharma et al. 1998).

390 Soil P is closely related to plant growth (Shen et al. 2011). However, much of soil P is stable and 

391 insoluble and hence recalcitrant to uptake by plants (Holford 1997). Microbes transform P to 

392 improve uptake by plants, which is also influenced by a combination of factors, including plant 

393 species and soil type (Chen et al. 2008). However, the specialists that were correlated with soil P 

394 content were primarily not responsible for P transformation but were light and aerobic 

395 thermophiles (e.g., Chloroflexi), symbionts with ruminant animals (e.g., Fibrobacteres), or 

396 involved in the nitrogen cycle (e.g., Nitrospirae). Although not directly linked to P content, these 

397 microbial ecofunctions reflect the differences between grassland and forest ecosystems. The 

398 major changes in the canopy, amounts of litterfall, plant composition, and root-microbe 

399 interactions due to grassland afforestation may explain the differences in soil P content as well as 

400 the abundances of these microbial phyla (Chen et al. 2008; Li et al. 2004).

401 By contrast, a high proportion of “too-rare” microbial OTUs (95% richness) occupied roughly 

402 >1/3 of the RA of soil microbes, reflecting transient changes in microorganisms in the 

403 environments. This rarity could result from stochasticity (Ai et al. 2013), fitness trade-off (Gobet 

404 et al. 2012; Gudelj et al. 2010), or biological interactions (García-Fernández et al. 2004; 

405 Narisawa et al. 2008; Schluter et al. 2015). These rare microbes are still relevant in ecological 

406 functions, including microbiome assembly and function and biogeochemical cycling (Jousset et 

407 al. 2017). The high richness of rare microbes contributes to the alpha-diversity of the soil 

408 microbiome. Although the ecological functions of these rare species in grassland or forest are not 

409 known, the high rarity provides adequate options for selection under environmental change, and 

410 these species may play an important role in maintaining fundamental ecosystem functions.

411 Based on the dbRDA of the relationships among vegetation type, soil properties, and microbial 
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412 composition, we concluded that the grassland afforestation affected the soil physicochemical 

413 properties (Table 2) and soil microbiome composition and ecofunctions. In addition, these effects 

414 of afforestation on the microbiome were modulated by changes in soil physicochemical 

415 properties (Table 2 and Table 5). This conclusion was reached because the explanation of soil 

416 microbiome by vegetation type decreased or was even lost when conditioned on soil properties 

417 (Table 2). Albeit indirectly, afforestation indeed altered the ecofunction of the soil microbiome 

418 (Table 5).

419 As discussed above, soil physicochemical properties interact with the soil microbiome. Because 

420 the original vegetation before forestation was grassland, the changes in the soil properties are 

421 probably attributable to the vegetation changes produced by afforestation. Several studies have 

422 suggested that afforestation can influence biotic and abiotic changes in micro- and macro-

423 ecosystems (Jousset et al. 2017; Nosetto et al. 2008; Wang et al. 2016; Zheng et al. 2017). Here, 

424 we suggest that the underground biotic change was indirectly affected by forestation mediated by 

425 soil property changes (Table 2), especially the contents of soil P, Ca, and Fe, which are further 

426 related to ecofunctional changes in soil microbiomes for different vegetation types (Table 5 and 

427 Table S2). These results are similar to the bacterial abundance changes and compositional shifts 

428 reported for a long-term poplar plantation, which were suggested to be highly correlated with the 

429 changes in soil properties caused by afforestation (Zheng et al. 2017). Soil bacterial composition 

430 has been suggested to be more closely related to plant diversity-controlled abiotic soil properties 

431 because of the highly resilient characteristics of bacterial communities due to their fast life cycle 

432 (de Vries et al. 2012; Lange et al. 2014).

433 Conclusions

434 The change in vegetation type was linked, at least in part, to ecofunctional changes in the soil 
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435 microbiome, despite an indirect impact on microbial composition. Aboveground changes in the 

436 canopy, the composition and abundance of litterfall, and biotic activities (e.g., succession rate, 

437 fauna activity, and root-microbe interactions) may be responsible for these changes in 

438 underground ecofunctions. However, the relatively small proportion of microbial specialists and 

439 high proportion of microbial generalists with respect to ecofunction compared to microbial 

440 OTUs indicates that the vegetation change still preserved a high proportion of the core functions 

441 of the soils (Li et al. 2004). This preservation occurred because the core functional genes were 

442 distributed widely across a variety of microbial taxa. However, the high proportion of functions 

443 that were correlated with changes in soil properties indicates that microbial ecofunctions are 

444 highly sensitive to environmental change.

445
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649

650 Figure legend

651 Fig. 1. Tukey's Honest Significant Differences (HSD) test revealing significant differences in soil properties, i.e., 
652 contents of organic C, P, Ca, Mg, and Fe and pH, between the forest (Fr) and grassland (Gr) soils.

653 Fig. 2. A simple logistic regression model revealing significant prediction of the absence (0) and presence (1) of 
654 forestation based on the contents of the soil elements (a) Fe and (b) Mg.

655 Fig. 3. Divergence of the microbiome between the forest and grassland soils as revealed by (a) hierarchical cluster 
656 analysis and (b) discriminant analysis of principal components (DAPC).

657 Fig. 4. Rank-abundance dominance (RAD) model tests showing that the sampled microbial communities were best 
658 fit to the Zipf or Zipf–Mandelbrot model. The blue dots and the line in each panel are the observed values and the 
659 expectations simulated from the observed data, respectively. Gr and Fr indicate samples from the grassland and 
660 forest soils, respectively. The Zipf and Zipf–Mandelbrot models are both niche-based models. Rejection of the null 
661 model indicates rejection of the hypothesis of a stochastic process of microbial assembly.

662

663

664
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Figure 1

Tukey's Honest Significant Differences (HSD) test
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Figure 2

A simple logistic regression model revealing significant prediction of the absence (0)

and presence (1) of forestation based on the contents of the soil elements (a) Fe and (b)

Mg.
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Figure 3

Divergence of the microbiome between the forest and grassland soils as revealed by (a)

hierarchical cluster analysis and (b) discriminant analysis of principal components

(DAPC).
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Figure 4

Rank-abundance dominance (RAD) model tests showing that the sampled microbial

communities were best fit to the Zipf or Zipf–Mandelbrot model.

The blue dots and the line in each panel are the observed values and the expectations

simulated from the observed data, respectively. Gr and Fr indicate samples from the

grassland and forest soils, respectively. The Zipf and Zipf–Mandelbrot models are both niche-

based models. Rejection of the null model indicates rejection of the hypothesis of a

stochastic process of microbial assembly.
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Contents of soil elements (g/kg) and pH of the forest and grassland soils
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1 Table 1. Contents of soil elements (g/kg) and pH of the forest and grassland soils

Group C* N P* K Ca* Mg* Fe* Na pH*

Forest
12.358±1.95

0

0.835±0.11

6

1.469±0.19

9

26.303±0.34

1

1.424±0.22

2

0.456±0.09

9

8.355±1.04

7

11.665±0.53

1

6.216±0.09

5

Grasslan

d
7.339±3.025

0.627±0.29

2

0.990±0.46

3

26.269±0.56

3

1.183±0.03

1

0.313±0.03

5

5.607±1.30

8

11.960±0.24

3

6.318±0.02

9

2 * Significant difference between the forest and grassland soils
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Table 2(on next page)

Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation

type) on soil properties and on the relative abundance (RA) of soil microbes.

The effect of soil properties on the microbial RA was also tested. Type II ANOVA was used to

test the model fitting for each independent variable.
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1 Table 2. Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation type) on soil properties 

2 and on the relative abundance (RA) of soil microbes. The effect of soil properties on the microbial RA was also 

3 tested. Type II ANOVA was used to test the model fitting for each independent variable.

　 dbRDA 　 ANOVA

　 S.S. Proportion 　 F P

Soil property ~ Vegetation type

Constrained 0.027 0.502 18.13 0.002

Unconstrained 0.027 0.498

Microbial RA ~ Vegetation type

Constrained 0.849 0.163 3.504 0.001

Unconstrained 4.362 0.837

Microbial RA ~ Vegetation type + Condition (Soil property)

Conditional 3.356 0.644

Constrained 0.194 0.037 1.053 0.466

Unconstrained 1.661 0.319

Microbial RA ~ Soil property

Constrained 3.356 0.644

C 0.595 0.114 3.210 0.001

P 0.524 0.100 2.823 0.001

Ca 0.467 0.090 2.516 0.001

Mg 0.368 0.071 1.986 0.003

Fe 0.546 0.105 2.940 0.001

pH 0.228 0.044 1.232 0.145

N 0.249 0.048 1.343 0.070

K 0.188 0.036 1.012 0.438

Na 0.190 0.037 1.026 0.365

Unconstrained 1.855 0.356

Microbial RA ~ Soil property + Condition (Vegetation type)

Conditional 0.849 0.163

Constrained 2.701 0.518

C 0.350 0.067 1.899 0.005

P 0.493 0.095 2.673 0.001

Ca 0.457 0.088 2.477 0.001

Mg 0.350 0.067 1.896 0.004

Fe 0.283 0.054 1.534 0.009

pH 0.203 0.039 1.102 0.238

N 0.183 0.035 0.994 0.490

K 0.190 0.037 1.031 0.362

Na 0.190 0.036 1.029 0.378

Unconstrained 1.661 0.319 　 　

4
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Table 3(on next page)

Diversity indices of soil microbiomes

PeerJ reviewing PDF | (2018:05:28346:0:1:NEW 30 May 2018)

Manuscript to be reviewed



1 Table 3. Diversity indices of soil microbiomes

Forest (mean ± SD)
Grassland (mean ± 

SD)
KW χ2 P

Shannon-Wiener H 8.429±0.244 8.612±0.174 3.291 0.070

Reciprocal Simpson's index 

1/D
877.783±281.326 1190.206±364.143 4.166 0.041

Species richness (S) 14685.0±4846.82 13664.6±2107.68 0 1

Pielou's evenness (J) 0.883±0.017 0.905±0.008 9.864 0.002

2
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Table 4(on next page)

Effect of soil properties on the abundance of divergent soil microbial phyla inferred by

the generalized linear model (GLM)
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1 Table 4. Effect of soil properties on the abundance of divergent soil microbial phyla inferred by the generalized 

2 linear model (GLM)

　 Thaumarchaeota Chloroflexi Fibrobacteres Nitrospirae Parcubacteria

　 t value P t value P t value P t value P t value P

Intercept 0.068 0.947 -3.280 0.005 -1.087 0.295 -1.176 0.259 -1.590 0.134

C -0.288 0.778 3.501 0.004 0.632 0.538 1.471 0.164 1.714 0.109

P -0.420 0.681 4.848 0.0003 3.735 0.002 4.108 0.001 3.326 0.005

Ca -0.083 0.935 3.857 0.002 1.267 0.226 1.667 0.118 2.007 0.065

Mg 0.031 0.976 -3.727 0.002 -1.174 0.260 -1.374 0.191 -1.934 0.074

Fe 2.088 0.056 -0.332 0.745 -1.263 0.227 -2.900 0.012 -0.575 0.574

3

4
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Table 5(on next page)

Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation

type) and soil-property effect on the COGs and KEGG modules estimated from the soil

microbiome.

Type II ANOVA was used to test the model fitting for each independent variable. The soil

properties include the soil elements C, P, Ca, Mg, Fe, N, K, and Na and the pH value.
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1 Table 5. Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation type) and soil-property 

2 effect on the COGs and KEGG modules estimated from the soil microbiome. Type II ANOVA was used to test the 

3 model fitting for each independent variable. The soil properties include the soil elements C, P, Ca, Mg, Fe, N, K, 

4 and Na and the pH value.

　 dbRDA 　 ANOVA 　 dbRDA 　 ANOVA

　 S.S. Proportion 　 F P S.S. Proportion 　 F P

COGs ~ Vegetation type KEGG ~ Vegetation type

Constrained 0.005 0.220 5.081 0.001 0.001 0.212 4.834 0.001

Unconstrained 0.016 0.780 0.002 0.788

COGs ~ Vegetation type + Condition (Soil property)
KEGG ~ Vegetation type + Condition (Soil 

property)

Conditional 0.017 0.830 0.003 0.824

Constrained 0.001 0.034 2.267 0.078 1E-04 0.045 3.140 0.038

Unconstrained 0.003 0.136 4E-04 0.130

COGs ~ Soil property KEGG ~ Soil property

Constrained 0.017 0.830 0.003 0.824

C 0.002 0.094 5.541 0.001 3E-04 0.097 5.5051 0.001

P 0.003 0.140 8.234 0.001 0.001 0.165 9.3958 0.001

Ca 0.003 0.140 8.247 0.001 3E-04 0.107 6.0938 0.001

Mg 0.002 0.072 4.252 0.005 1E-04 0.042 2.4047 0.063

Fe 0.002 0.073 4.273 0.010 2E-04 0.066 3.738 0.013

pH 5E-04 0.023 1.347 0.283 9E-05 0.028 1.5886 0.177

N 0.005 0.258 15.157 0.001 0.001 0.292 16.615 0.001

K 2E-04 0.010 0.575 0.653 4E-05 0.012 0.6817 0.580

Na 4E-04 0.020 1.174 0.312 5E-05 0.016 0.914 0.453

Unconstrained 0.004 0.170 0.001 0.176

COGs ~ Soil property + Condition (Vegetation type)
KEGG ~ Soil property + Condition (Vegetation 

type)

Conditional 0.005 0.220 0.001 0.212

Constrained 0.013 0.644 0.002 0.658

C 0.001 0.027 1.776 0.152 7E-05 0.021 1.478 0.257

P 0.004 0.172 11.371 0.001 5E-04 0.157 10.877 0.001

Ca 0.001 0.071 4.723 0.006 2E-04 0.061 4.226 0.018

Mg 0.001 0.030 1.963 0.133 8E-05 0.027 1.869 0.175

Fe 0.005 0.251 16.630 0.001 0.001 0.264 18.238 0.001

pH 0.001 0.032 2.094 0.110 1E-04 0.038 2.650 0.066

N 4E-04 0.018 1.162 0.302 9E-05 0.028 1.946 0.130

K 3E-04 0.014 0.928 0.406 7E-05 0.022 1.510 0.223

Na 0.001 0.030 2.017 0.141 1E-04 0.039 2.691 0.070

Unconstrained 0.003 0.136 　 　 　 　 4E-04 0.130 　 　 　

5
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