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ABSTRACT
Grassland afforestation dramatically affects the abiotic, biotic, and ecological function
properties of the original ecosystems. Interference from afforestation might disrupt
the stasis of soil physicochemical properties and the dynamic balance of microbiota.
Some studies have suggested low sensitivity of soil properties and bacterial community
to afforestation, but the apparent lack of a significant relationship is probably due
to the confounding effects of the generalist habitat and rare bacterial communities.
In this study, soil chemical and prokaryotic properties in a 30-year-old Mongolia
pine (Pinus sylvestris var. mongolica Litv.) afforested region and adjacent grassland
in Inner Mongolia were classified and quantified. Our results indicate that the high
richness of rare microbes accounts for the alpha-diversity of the soil microbiome. Few
OTUs of generalist (core bacteria) and habitat-specialist bacteria are present. However,
the high abundance of this small number of OTUs governs the beta-diversity of the
grassland and afforested land bacterial communities. Afforestation has changed the
soil chemical properties, thus indirectly affecting the soil bacterial composition rather
than richness. The contents of soil P, Ca2+, and Fe3+ account for differentially abundant
OTUs such as Planctomycetes and subsequent changes in the ecologically functional
potential of soil bacterial communities due to grassland afforestation. We conclude
that grassland afforestation has changed the chemical properties and composition of
the soil and ecological functions of the soil bacterial community and that these effects
of afforestation on the microbiome have been modulated by changes in soil chemical
properties.

Subjects Agricultural Science, Conservation Biology, Ecology, Microbiology, Forestry
Keywords Grassland afforestation, Microbial composition, Microbial ecological function, Soil
chemical properties

INTRODUCTION
After a decline in forest coverage in China from roughly 40–60% in remote antiquity (He et
al., 2008) to only 8.6% due to war, urban construction, and reclamation, efforts in the last
30 years by the Chinese government to promote afforestation have increased forest coverage
to nearly 20% (State Forestry Administration of China, 2011). However, these plantations
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are not exclusively located at the original sites of deforestation, and consequently, these
deforestation and afforestation events have greatly changed the landscape and ecosystems
of China (Ahrends et al., 2017). Mongolia pine (Pinus sylvestris var. mongolica Litv.), an
endemic tree in Inner Mongolia including in Honghua’erji, is one of the main forestation
species in temperate regions of China. Scots pine (P. sylvestris L.), a relative of Mongolia
pine that is widespread from Western Europe to Eastern Siberia, is also an important
tree in forestry (Krakau et al., 2013) and is physiologically sensitive to environmental
pollution (Chudzińska & Diatta, 2014), geographic weather variation (Oleksyn et al., 2003)
and climate change (Hurme et al., 1997; Savolainen et al., 2004). Studies have demonstrated
that Scots pine and, by reasonable extension,Mongolia pine have broad, plastic adaptability
in response to environmental heterogeneity, supporting the wide use of these trees in
afforestation.

Grassland afforestation is an artificial and direct change in vegetation that alters both
the above- and underground ecosystems, including abiotic changes (Li et al., 2016; Peng
et al., 2014; Khamzina, Lamers & Martius, 2016; Lafleur et al., 2015), biotic changes (Ma
et al., 2013; Márquez et al., 2015; Pedley et al., 2014; Gunina et al., 2017; Šnajdr et al., 2013;
Xiao et al., 2017), and ecological function changes (Lu et al., 2017; Ren et al., 2016; Cibils et
al., 2015). Land use is a significant determinant of runoff and soil redistribution processes
(Arnáez et al., 2015), and soil microbial species responses may be sensitive to compositional
changes in both species and ecological functions (Xiao et al., 2017). However, these
underground biological changes are sometimes ascribed to changes in litter amount
and chemistry that stimulate the development of the fungal community rather than the
bacterial community (Klein et al., 1995). The response of the prokaryotic microbiome to
changes in vegetation type is small, likely because bacterial assemblies are based mainly on
functional genes rather than species (Burke et al., 2011), and the changes in soil properties
due to afforestation are relatively small and occur slowly (Gunina et al., 2017; Jangid et al.,
2011). In addition, abundant bacterial ‘‘core species’’ with highly conserved core functions
(Falkowski, Fenchel & Delong, 2008) and rarely occurring species (Ai et al., 2013) may act
as confounders in statistical analyses of the effects of afforestation or soil properties on
prokaryoticmicrobiome change. Therefore, habitat generalists (core species) and specialists
(divergent species) in bacterial communities must be classified before analysis, particularly
when using high-throughput sequencing (HTS) technology (e.g., 16S rRNA metagenomic
sequencing), which can generate huge amounts of data, to outline the composition and
structure of bacterial communities (Székely & Langenheder, 2014).

Although the environmental bacterial composition may be sensitive to environmental
variation, the effects of these bacterial composition changes on ecofunction remain
unclear. A comprehensive review demonstrated that the soil microbial composition varies
to alter acquisition, metabolism, and degradation processes in response to changes in
soil phosphorus (P) due to grassland afforestation (Chen, Condron & Xu, 2008). More
importantly, environmental conditions and existing microbial diversity determine the
ecological function and nutrient transformation efficiency of soil microbiota (Zechmeister-
Boltenstern et al., 2015). Therefore, quantifying the effects of afforestation on changes in soil
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properties, bacterial composition, and ecofunctions would accelerate the understanding of
plant-soil-microbe interactions.

In this study, to quantify the effect of afforestation on soil properties and soil bacterial
composition and functions, soil chemical and bacterial compositions were measured in an
afforested region and adjacent grassland. Based on previous studies that have demonstrated
functional assembly of bacterial communities (Burke et al., 2011) and a small response of
bacterial communities to afforestation, with low sensitivity to soil properties (Gunina et
al., 2017; Jangid et al., 2011; Klein et al., 1995), we hypothesized the following: (1) The soil
prokaryotic microbiome is indirectly affected by afforestation mediated by soil chemical
properties. If so, soil chemical properties should differ significantly between afforested
and grassland sites and should be correlated with the composition of the soil prokaryotic
microbiome. (2) Soil bacterial ecological functions are more sensitive to changes in
vegetation type than changes in soil bacterial composition. If so, significant differentiation
of the predicted ecologically functional potential should be observed between afforested and
grassland sites. To test these hypotheses, the 16S rRNA metagenomes of the afforested and
adjacent grassland soil bacterial communities were sequenced, and the relative abundances
of bacteria and predicted ecophysiological functions were quantified by multivariate and
regression analyses. Since root exudates did not significantly affect the bacterial assemblages
in a previous study (Wu et al., 2018), we excluded the effect of root exudates in this study.
Based on these analyses, we provide a possible explanation of the link between soil chemical
properties and bacterial community change in grassland afforestation.

MATERIALS AND METHODS
Study sites and sampling
The study site was located 6 km west of the town of Honghua’erji in an artificial forest
produced by seedling afforestation in a large area of thin grassland (savanna, N48.257443◦

E119.996448◦). The annual precipitation is approximately 390 mm, and the mean annual
temperature is roughly −2.4 ◦C. The elevation is approximately 740–1,100 m. The
forest coverage is as high as 69.8% in the forest regions of the nature reserve, while
the Honghua’erji grassland is a bare grassland ecosystem that is mainly composed of weedy
species such as Stipa baicalensis, Festuca ovina, and Carex pediformis (Wen et al., 2002). The
field experiments were approved by the Honghua’erji Nature Reserve (permit number
200/66150221). The tree ages of the Mongolian pines in this afforestation forest range from
27 to 33 years, with a diameter at breast height (DBH) of 21.21 ± 4.19 cm (12.09∼32.10
cm) and tree height of 12.86 ± 0.86 (11.2∼14.6 m).

At the study site, we collected soil pit samples from 20 quadrants, including 10 inside the
forest (i.e., forest soils) and 10 in the adjacent grassland (i.e., grassland soils). Each surface
area of quadrant was roughly 100 m2. At each location, 1-kg soil samples were collected
at a depth of 50 cm in permeable bags of nylon mesh from 10 quadrants located 10 to
100 m from each other (Fig. S1). This depth was chosen because the major microbiome
composition and the major transition of soil physicochemical characteristics are located
at a soil depth of approximately 50 cm (Fierer, Schimel & Holden, 2003). All equipment
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was sterilized by an autoclave. The soil samples were separated into two parts: one part
was dried for quantification of soil physicochemical properties, and the other was used
to quantify the microbiome. The latter samples were stored in RNAguardian stabilization
solution (MBGEN Biosciences, Taipei, Taiwan) on ice immediately after collection until
transfer to the laboratory, where the samples were stored at −20 ◦C before metagenomic
DNA extraction.

Quantifying soil chemical properties
Organic carbon (C) was measured by the external-heat potassium dichromate oxidation
method, and total nitrogen content (N) was measured by the Kjeldahl distillation method.
The inductively coupled plasma (ICP) method was used with soils digested in a mixture of
HF–HClO4–HNO3 to quantify the contents of the soil elements K+, P, Ca2+, Fe 3+, Mg2+,
and Na+. Soil pH was determined using a Sartorius pH meter PB-10 (Germany) with a
soil:water ratio of 1:2.5. All soil properties were determined and quantified by the State
Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese
Academy Sciences.

16S rRNA metagenome sequencing
Bacterial metagenomic DNA was extracted with an EZNA R© Soil DNA Kit (Qiagen,
Valencia, CA, USA), and the concentration was adjusted to 50 ng ml−1 via dilution. The
metagenomic DNA was quantified using Qubit R© 2.0 (Invitrogen, Life Technologies,
CA, USA). The primers 341F (5′-CCTACGGGNGGCWGCAG-3′) and 805R (5′-
GACTACHVGGGTATCTAATCC-3′) were used to amplify the V3-V4 hypervariable 16S
rRNA region (Mizrahi-Man, Davenport & Gilad, 2013), and the PCR products were used
to construct a DNA library with the Roche GS FLX Titanium emPCR kit (Roche Applied
Science). The DNA libraries were then sequenced by Sangon Biotech Co. (Shanghai, China)
on an Illumina MiSeq 2X300. The sequencing procedures followed the manufacturer’s
instructions.

Before analysis, the raw HTS data were cleaned by removing sequence fragments
shorter than 200 bp or with missing barcodes or polyN or polyA/T in the Ribosomal
Database Project (RDP) (Cole et al., 2007). We also discarded reads with PHRED quality
scores <Q25 (Ewing & Green, 1998; Ewing et al., 1998). The Mothur package was used
to remove non-prokaryotic sequences and de-noise and trim the sequences (Mothur
ver. 1.30.1, http://www.mothur.org/wiki/MiSeq_SOP (Schloss et al., 2009). Chimeric
sequences were removed using Uchime (Edgar et al., 2011). After quality filtering,
we clustered sequences using a criterion of >97% sequence similarity as operational
taxonomic units (OTUs) defined as representing the same species by the UPARSE
pipeline (http://drive5.com/uparse/) (Edgar, 2013) and closed-reference OTU picking.
We estimated the relative abundances (RAs) of the soil microbiome according to 16S
rRNA metagenome sequencing. The rarefied OTU table was generated using Qiime
(Caporaso et al., 2010) and deposited in Mendeley (doi: 10.17632/gjskh8wswz.1). All steps
were conducted by Sangon Biotech Co. (Shanghai, China) according to their pipeline
(https://www.sangon.com/services_ngs_metseq.html). Each OTU was annotated and
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classified according to the RDP classifier and SILVA database. The raw sequence data
were deposited in NCBI GenBank under Bioproject PRJNA317430 (accession number:
SAMN04607375).

Predictive functional profiling of bacterial communities
PICRUSt v. 1.0.0, a functional prediction tool for estimating shared gene content according
to the corresponding bacterial phylogeny, was used to predict the functional potential of
each sample (Langille et al., 2013). PICRUSt generates the composition of gene families for
each metagenome using an extended ancestral-state reconstruction algorithm. The online
version of PICRUSt implemented in Galaxy (http://huttenhower.sph.harvard.edu/galaxy/)
was used to assist the algorithms. The quality-filtered sequences were assigned to an
OTU table against the Greengenes v. 13.5 OTU database (DeSantis et al., 2006) for
PICRUSt prediction implemented in QIIME v. 1.8.0 (Caporaso et al., 2010). Each OTU
was normalized by its copy number. The functional contribution of each OTU member
was reconstructed and predicted by mapping the 16S sequences to their nearest reference
genome. ‘Virtual’metagenomeswith gene content abundancewere then generated using the
Kyoto Encyclopedia of Genes and Genomes (KEGG)Ortholog and Clusters of Orthologous
Groups (COGs) databases.

Statistical analyses
All statistical analyses were conducted in R (R Core Team, 2013). This study included
two types of measurements, the soil chemical properties and soil bacterial communities
(i.e., relative abundances of bacterial OTUs), and one treatment, grassland afforestation
(i.e., vegetation type: grassland vs forest). Due to inequality of variance (certain factors
such as Na+ and Ca2+ deviated from equal variance in Levene’s test), we first assessed the
differences in soil properties between vegetation types by the nonparametric Mann–
Whitney U (MW) test using R. In addition, to determine whether the diversity of
prokaryotic microbiome differs after afforestation, we calculated diversity indexes
such as the Shannon-Wiener H, reciprocal Simpson’s index 1/D, species richness, and
Pielou’s evenness for each of the soil bacterial communities and compared them between
afforested and grassland sites by the Mann–WhitneyU test. We also adopted the R package
DESeq2 (Love, Huber & Anders, 2014) to identify OTUs that were differentially abundant
between the afforested and grassland sites. A logistic regression model was further used
to determine if each of the soil properties predicted the grassland-afforestation treatment.
The likelihood ratio test (LRT) was performed to identify the best-fitting model of the
logistic regression. To test the hypotheses of a stochastic process of bacterial assembly
(random distribution model) or resource-governed assembly (niche-based mechanism),
we usedRank-AbundanceDominance (RAD) analysis to display logarithmic relative species
abundances against species rank order (McGill et al., 2007). Bray–Curtis distance-based
redundancy analysis (dbRDA) implemented in the R package vegan (Dixon & Palmer,
2003) was used to examine the explanatory proportions of the treatment (vegetation type)
for these two measurements (soil properties and microbiomes). Because soil chemical
properties can also affect the soil bacterial communities (Stutter & Richards, 2012), we
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further performed a partial dbRDA to assess the effects of grassland afforestation on the
soil bacterial communities conditioned by soil chemical properties and the effects of the soil
chemical properties on the soil bacterial communities conditioned by vegetation type using
the Bray-Curtis distance. The best model were chosen via forward selection by the ordistep
function implemented in the R package vegan (Dixon & Palmer, 2003). Type II ANOVA
was used to evaluate the fit of the model of each constraint factor. We further identified
divergent bacteria (i.e., forest and grassland specialists) using the supermajority rule (>2/3
difference in abundance) with the assistance of the multinomial species classification
method (CLAM) test (Chazdon et al., 2011). The soil elements that significantly explained
the soil bacterial communities by partial dbRDA were then used as independent factors
to predict the abundance of bacterial specialists by the generalized linear model (GLM).
We also performed hierarchical cluster analysis (H-cluster) and discriminant analysis of
principal components (DAPC) to illustrate the grouping patterns between afforested and
grassland sites using the R package adegenet (Jombart, 2008). Because the ecophysiological
functions (COGs and KEGG modules) of the soil microbiomes were also predicted, all
tests were repeated by replacing the soil bacterial OTUs with the relative abundances of the
COGs and KEGG modules. All R codes and input files have been deposited as Mendeley
data (https://data.mendeley.com/datasets/gjskh8wswz/1).

RESULTS
Effects of afforestation on soil chemical properties
To characterize the soil chemical properties, the contents of eight elements (organic C,
total N, P, K+, Ca2+, Mg2+, Fe3+, and Na+) and the pH value of each soil sample were
determined (Table 1). Among these soil variables, the contents of C, P, Ca2+, Mg2+, and
Fe3+ were significantly higher in the forest soils than in the grassland soils (P < 0.01),
and the pH of the grassland soils was significantly higher than the pH of the forest soils
(P = 0.031) (Fig. 1). To estimate the explanatory proportions of the afforestation effect on
the variance of soil properties, we performed dbRDA using vegetation type (i.e., forest and
grassland) as the independent factor. Vegetation type significantly explained 50.18% of the
variance of soil properties (P = 0.002, Table 2 and Fig. S2), indicating that afforestation
has changed the soil properties.

If the soil elements are altered after afforestation, the contents of soil elements will
predict the vegetation type (i.e., afforestation effect). To test this hypothesis, we compared
the simple logistic regression (SLR) model using a single soil element as the independent
factor and the multivariate logistic regression (MLR) model using all soil elements as
independent factors (i.e., the full model M1) to the empty (null) model M0. Most of the
SLRmodels andM1 rejected the null model M0 (P < 0.005), except the SLRmodels with K
(LRT: P = 0.084) or Na (LRT: P = 0.108) as the independent factor. We further compared
the SLR models with each single soil element (C, N, P, Ca2+, Mg2+, Fe3+, and pH) as the
independent factor with the MLR model using all C, N, P, Ca2+, Mg2+, Fe3+, and pH as
independent factors (full model M2) by LRT to determine which individual factors might
be related to afforestation. The SLR models with Mg or Fe as the independent factor could
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Table 1 Contents of soil elements (g kg−1) and pH of the forest and grassland soils reported in format of average± standard deviation.

Group C* N P* K+ Ca2+* Mg2+* Fe3+* Na+ pH*

Forest 12.358± 1.950 0.835± 0.116 1.469± 0.199 26.303± 0.341 1.424± 0.222 0.456± 0.099 8.355± 1.047 11.665± 0.531 6.216± 0.095
Grassland 7.339± 3.025 0.627± 0.292 0.990± 0.463 26.269± 0.563 1.183± 0.031 0.313± 0.035 5.607± 1.308 11.960± 0.243 6.318± 0.029

Notes.
*Significant difference between the forest and grassland soils,
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Figure 1 Mann–WhitneyU test revealing significant differences in soil properties, i.e., contents of or-
ganic C, P, Ca2+, Mg2+ and Fe2+ and pH, between the forest (Fr) and grassland (Gr) soils.

Full-size DOI: 10.7717/peerj.6147/fig-1

not be rejected by M2 (P = 0.278 and 0.130, respectively, Fig. 2). Although the other SLR
models with C, N, P, Ca2+, or pH as the independent factor were rejected by M2, none
of the independent factors in M2 could significantly predict the presence of forestation
(Z < 10−6, P > 0.9999 in each term). These results indicated that the contents of Mg2+

(0.456 ± 0.099 and 0.313 ± 0.035 g. kg−1 in forest and grassland soils, respectively) and
Fe3+ (8.355 ±1.047 and 5.607 ± 1.308 g. kg−1 in forest and grassland soils, respectively)
could singly reflect the changes in soil properties due to afforestation (Table 1 and Fig. 2).

Afforestation effects on the relative abundances of soil bacteria
Overall, a total of 694,993 sequences were obtained after rarefaction analysis (314,923
for grassland and 380,070 for forest). Divergence of the soil microbiome was inferred
by significant or marginal differences in the diversity indices (Shannon–Wiener index
H, W = 26, P = 0.0753; Reciprocal Simpson’s index 1/D: W = 23, P = 0.0432; Pielou’s
evenness J : W = 8.5, P = 0.0019, Table 3). However, no difference was estimated in the
species richness of the soil microbiome between forest and grassland (W = 50, P = 1,
Table 3). Hence, we used RA as an indicator to compare the microbiomes of the soil
samples (Fig. S3). H-cluster and DAPC (five first PCs of PCA used, which conserved
70% of the variance of the bacterial RA) presented similar patterns of clear divergence of
soil microbiomes between the forest and grassland (Fig. 3). A total of 350 OTUs with an
adjusted P-value <0.01 exhibited twofold changes between forest and grassland vegetation
(178 OTUs were higher in grassland, while 172 were higher in forest). The differentially
abundant OTUs were only from the most abundant phyla (Proteobacteria, Acidobacteria,
and Verrucomicrobia) and Planctomycetes. These results confirm that the soil bacterial
composition has changed due to grassland afforestation despite no change in bacterial
richness.

Because the close-reference OTUpicking strategy discards samples that do not bin with
97% similarity, assignments of different OTUs were rarely found among different samples.
We performed the CLAM test (Chazdon et al., 2011) to classify these OTUs as four types
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Table 2 Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation type) on
soil properties and on the relative abundance (RA) of soil bacteria. The effect of soil properties on the
bacterial RA was also tested. Type II ANOVA was used to test the model fitting for each independent vari-
able. Significant P values (<0.05) are in bold.

dbRDA ANOVA

S.S. Proportion F P

Soil property∼Vegetation type
Constrained 0.027 0.+ 18.13 0.002
Unconstrained 0.027 0.498

Microbial RA∼Vegetation type
Constrained 0.849 0.163 3.504 0.001
Unconstrained 4.362 0.837

Microbial RA∼Vegetation type + Condition (Soil property)
Conditional 3.356 0.644
Constrained 0.194 0.037 1.053 0.466
Unconstrained 1.661 0.319

Microbial RA∼ Soil property
Constrained 3.356 0.644
C 0.595 0.114 3.210 0.001
P 0.524 0.100 2.823 0.001
Ca2+ 0.467 0.090 2.516 0.001
Mg2+ 0.368 0.071 1.986 0.003
Fe3+ 0.546 0.105 2.940 0.001
pH 0.228 0.044 1.232 0.145
N 0.249 0.048 1.343 0.070
K+ 0.188 0.036 1.012 0.438
Na+ 0.190 0.037 1.026 0.365
Unconstrained 1.855 0.356

Microbial RA∼ Soil property + Condition (Vegetation type)
Conditional 0.849 0.163
Constrained 2.701 0.518
C 0.350 0.067 1.899 0.005
P 0.493 0.095 2.673 0.001
Ca2+ 0.457 0.088 2.477 0.001
Mg2+ 0.350 0.067 1.896 0.004
Fe3+ 0.283 0.054 1.534 0.009
pH 0.203 0.039 1.102 0.238
N 0.183 0.035 0.994 0.490
K+ 0.190 0.037 1.031 0.362
Na+ 0.190 0.036 1.029 0.378
Unconstrained 1.661 0.319

of bacteria using the supermajority (2/3) rule: too-rare bacteria, generalist bacteria, and
grassland- and forest-specialist bacteria. In this classification, a large proportion of OTUs
(95.46%) belonged to the too-rare bacteria, which accounted for 38.42% and 36.73% of
the abundance of grassland and forest soil bacteria, respectively; only 2.98% of the OTUs
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Figure 2 A simple logistic regressionmodel revealing significant prediction of the absence (0) and
presence (1) of forestation based on the contents of the soil elements (A–H) and pH (I). (A) Organic C;
(B) N; (C) P; (D) K; (E) Ca; (F) Fe; (G) Mg; (H) Na); (I) pH.

Full-size DOI: 10.7717/peerj.6147/fig-2

Table 3 Diversity indices comparisons of soil bacterial communities.

Forest
(mean± SD)

Grassland
(mean± SD)

KW χ2 P

Shannon–Wiener H 8.429± 0.244 8.612± 0.174 3.291 0.070
Reciprocal Simpson’s index 1/D 877.783± 281.326 1,190.206± 364.143 4.166 0.041
Species richness (S) 14,685.0± 4,846.82 13,664.6± 2,107.68 0 1
Pielou’s evenness (J ) 0.883± 0.017 0.905± 0.008 9.864 0.002

were generalists, but they accounted for 35.55% and 35.88% of the abundance of grassland
and forest soil bacteria, respectively. Only 1.56% of the OTUs belonged to specialists, of
which 1061 (0.7%) and 1224 (0.8%) bacterial OTUs were identified as forest and grassland
specialists, respectively. The RA of grassland-specialist bacteria was 22.84% in grassland
soils and 2.84% in forest soils, while the RA of forest-specialist bacteria was 3.19% in
grassland soils and 24.55% in forest soils.
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Figure 3 Divergence of the microbiome between the forest and grassland soils as revealed by (A) hier-
archical cluster analysis and (B) discriminant analysis of principal components (DAPC).

Full-size DOI: 10.7717/peerj.6147/fig-3

We further used the RAs of the bacterial OTUs as the dependent response to access the
impact of afforestation on the soil bacterial communities. When vegetation type was used
as the categorical independent factor, 16.3% of the variance of bacterial RA was explained
significantly (P = 0.001). However, the significant explanatory effect of vegetation type
was lost after removing (conditioning on) soil properties (P = 0.466, Table 2). When soil
properties were used as a constraint factor, 64.4% of the variance of bacterial RA was
explained by soil properties, in which organic C (11.4% explanation), P (10.0%), Ca2+

(9.0%), Mg2+ (7.1%), and Fe3+ (10.5%) significantly fit the model by type II ANOVA
(Table 2). Similar significant explanations by C (6.7%), P (9.5%), Ca2+ (8.8%), Mg2+

(6.7%), and Fe3+ (5.4%) were obtained when the effect of vegetation type was removed
(i.e., partial dbRDA, Table 2). In addition, when conducting forward model selection, the
bacterial RA was best explained by vegetation type, Ca2+, Mg2+, Na+ and pH (constrained
proportion: 48.07%). However, although pH is important in shaping the soil microbiome
at continental scales (Lauber et al., 2009), the pH did not vary among vegetation types
(forest: 6.3–6.36, grassland: 6.13–6.35) in our fine-scale study. There was no collinearity of
pH with other factors [variance inflation factor (VIF): 1.125]. Therefore, we do not discuss
the importance of pH in our study. These analyses suggested that afforestation has changed
the soil chemical properties, with changes in at least Ca2+ and Mg2+ in all analyses, thus
indirectly affecting the soil bacterial communities (Figs. S2 and S3).

Effects of soil properties on the divergence of bacterial phyla between
forest and grassland soils
To identify the divergent soil bacteria, the habitat-specialist bacterial phyla were classified
under the supermajority rule (i.e., 2/3 majority). At the phylum level, five phyla were
habitat specialists, including one forest specialist (Thaumarchaeota, phylum RA: 2.3%)
and four grassland specialists (Chloroflexi, Fibrobacteres, Nitrospirae, and Parcubacteria,
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Table 4 Effect of soil properties on the abundance of divergent soil microbial phyla inferred by the generalized linear model (GLM).

Thaumarchaeota Chloroflexi Fibrobacteres Nitrospirae Parcubacteria

t value P t value P t value P t value P t value P

Intercept 0.068 0.947 −3.280 0.005 −1.087 0.295 −1.176 0.259 −1.590 0.134
C −0.288 0.778 3.501 0.004 0.632 0.538 1.471 0.164 1.714 0.109
P −0.420 0.681 4.848 0.0003 3.735 0.002 4.108 0.001 3.326 0.005
Ca2+ −0.083 0.935 3.857 0.002 1.267 0.226 1.667 0.118 2.007 0.065
Mg2+ 0.031 0.976 −3.727 0.002 −1.174 0.260 −1.374 0.191 −1.934 0.074
Fe3+ 2.088 0.056 −0.332 0.745 −1.263 0.227 −2.900 0.012 −0.575 0.574

Notes.
Significant P values (<0.05) are in bold.

9.3%). The forest-specialist phylum Thaumarchaeota belongs to Archaea, while the four
grassland specialists are Eubacteria.

We further tested the effects of soil properties on the abundance of these habitat
specialists by GLM. Because organic C, P, Ca2+, Mg2+, and Fe3+ significantly explained
the RA of soil bacteria in dbRDA, these five soil variables were used as independent
predictors in GLM. The variances of the bacterial abundance of the sampled soils were
significantly or marginally significantly greater than the means, suggesting overdispersion
of these responses (P = 0.056, 0.001, 0.051, 0.002, and 0.002; alpha = 52.675, 25.871,
1.065, 23.101, and 76.612 in Thaumarchaeota, Chloroflexi, Fibrobacteres, Nitrospirae, and
Parcubacteria, respectively). Hence, we used the quasi-Poisson model for GLM, which led
to the same coefficient estimates as the standard Poisson model but with adjustment of the
dispersion parameter for overdispersion. Under the quasi-Poisson model, Fe3+ content
was marginally correlated with the abundance of the forest specialist Thaumarchaeota; for
the grassland specialists, the P content was correlated with the abundances of all four phyla
(Table 4). In addition, C, Ca2+, and Mg2+ were significantly correlated with Chloroflexi,
Fe3+ was significantly correlated with Nitrospirae, and Ca2+ and Mg2+ were marginally
correlated with Parcubacteria (Table 4).

Afforestation effects on the soil ecophysiological functions predicted
by soil microbiome
To understand the ecophysiological functions of the soil bacterial communities, we
predicted their functional composition using 16S rRNA gene and databases of reference
genomes. A total of 4,659 clusters of orthologous groups (COGs) and 306 KEGG modules
(Level-3 KEGG orthology) were identified. Similar to the analyses for testing the effects
of afforestation and soil properties on the soil bacterial communities, we used vegetation
type and soil elements as predictors to test the explanatory proportion and significance of
each predictor on the RAs of the COGs and KEGG modules. dbRDA indicated that 22.0%
and 21.2% of the variation of COGs and KEGG modules was significantly explained by
vegetation type, respectively, whereas the explanatory proportion decreased to 3.4% and
4.5% when conditioning the soil-property effect (Table 5). Soil properties explained 83.0%
and 82.4% of the variation of the COGs and KEGG modules in dbRDA, respectively, in
which C, P, Ca2+, Mg2+, Fe3+, and N significantly or marginally fit the model according
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Table 5 Summary of the (partial) dbRDA results for the afforestation effect (i.e., vegetation type) and soil-property effect on the ecological
function (COGs and KEGGmodules) estimated from the soil bacterial communities. Type II ANOVA was used to test the model fitting for each
independent variable.

dbRDA ANOVA dbRDA ANOVA

S.S. Proportion F P S.S. Proportion F P

COGs∼Vegetation type KEGG∼Vegetation type
Constrained 0.005 0.220 5.081 0.001 0.001 0.212 4.834 0.001
Unconstrained 0.016 0.780 0.002 0.788

COGs∼Vegetation type + Condition (Soil property) KEGG∼Vegetation type + Condition (Soil property)
Conditional 0.017 0.830 0.003 0.824
Constrained 0.001 0.034 2.267 0.078 1E–04 0.045 3.140 0.038
Unconstrained 0.003 0.136 4E–04 0.130

COGs∼ Soil property KEGG∼ Soil property
Constrained 0.017 0.830 0.003 0.824
C 0.002 0.094 5.541 0.001 3E–04 0.097 5.5051 0.001
P 0.003 0.140 8.234 0.001 0.001 0.165 9.3958 0.001
Ca 0.003 0.140 8.247 0.001 3E–04 0.107 6.0938 0.001
Mg 0.002 0.072 4.252 0.005 1E–04 0.042 2.4047 0.063
Fe 0.002 0.073 4.273 0.010 2E–04 0.066 3.738 0.013
pH 5E–04 0.023 1.347 0.283 9E–05 0.028 1.5886 0.177
N 0.005 0.258 15.157 0.001 0.001 0.292 16.615 0.001
K 2E–04 0.010 0.575 0.653 4E–05 0.012 0.6817 0.580
Na 4E–04 0.020 1.174 0.312 5E–05 0.016 0.914 0.453
Unconstrained 0.004 0.170 0.001 0.176

COGs∼ Soil property + Condition (Vegetation type) KEGG∼ Soil property + Condition
(Vegetation type)

Conditional 0.005 0.220 0.001 0.212
Constrained 0.013 0.644 0.002 0.658
C 0.001 0.027 1.776 0.152 7E–05 0.021 1.478 0.257
P 0.004 0.172 11.371 0.001 5E–04 0.157 10.877 0.001
Ca 0.001 0.071 4.723 0.006 2E–04 0.061 4.226 0.018
Mg 0.001 0.030 1.963 0.133 8E–05 0.027 1.869 0.175
Fe 0.005 0.251 16.630 0.001 0.001 0.264 18.238 0.001
pH 0.001 0.032 2.094 0.110 1E–04 0.038 2.650 0.066
N 4E–04 0.018 1.162 0.302 9E–05 0.028 1.946 0.130
K 3E–04 0.014 0.928 0.406 7E–05 0.022 1.510 0.223
Na 0.001 0.030 2.017 0.141 1E–04 0.039 2.691 0.070
Unconstrained 0.003 0.136 4E–04 0.130

Notes.
Significant P values (<0.05) are in bold.

to type II ANOVA (Table 5). When conditioned on vegetation type, the explanatory
proportion decreased slightly to 64.4% and 65.8% for the COGs and KEGG modules,
respectively, and the remaining significant fitting factors were P, Ca2+, and Fe3+ (Table 5).

Among all COGs, 44 and 21 were identified as forest- and grassland-predominant COG
categories by CLAM analysis, respectively. Most of the forest-predominant categories
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are involved in post-translational regulation, such as ubiquitin or E3 ligase, while many
categories in grassland are membrane proteins or are involved in cell transport. By
contrast, among all KEGG modules, only two forest-predominant categories and no
grassland-predominant categories were identified. Further testing of the correlation of
soil elements with these specialist COGs and KEGG modules revealed that 50 of the 65
COGs and both KEGG modules were significantly correlated with at least one soil element
under Poisson or quasi-Poisson regression. These significant correlations indicate that soil
properties, particularly P, Ca2+, and Fe3+, account for the changes in ecophysiological
functional due to grassland afforestation.

DISCUSSION
The closure of the tree canopy and increased litter accumulation that accompany the
ecosystem change from grassland to forest may directly alter the soil environment (Bond &
Midgley, 2012; Cunningham et al., 2015). The significantly higher contents of soil chemical
factors (C, P, Ca 2+, Mg2+, Fe3+, and pH) in the Mongolian pine plantation areas than
in the unplanted region suggest a great influence of grassland afforestation on secondary
salinization. Soil mineral elements are usually increased in tree-plantation regions where
groundwater is insufficient tomeet water requirements (Nosetto et al., 2008). High contents
of soil elements in a forest suggest not only a larger amount of litter biomass but also a
rapid decomposition rate of pine litters compared to other broadleaf flora (Berger et al.,
2015). However, despite significant differences in the contents of soil elements between
forest and grassland, these soil elements, except Mg2+ and Fe3+ (Fig. 2), could not singly
predict the ecosystem change due to afforestation by logistic regression analysis.

Significantly high predictable contents of Fe3+ and Mg2+ in forest soils reflect the
characteristics of litter and humus accumulation in forests (Song et al., 2008). Litter
decomposition accelerates the conversion and accumulation of soil non-organic elements
(Fenchel, King & Blackburn, 2012b). In 2nd-to-3rd-year needle litters of P. sylvestris L., a
decrease in the rate of biomass loss but an increase in the release of Fe3+ and Mg2+ were
recorded (De Marco et al., 2007). Consequently, we suggest that the high contents of Fe3+

and Mg2+ in the forest soils of our study sites are due to the long, steady accumulation
and decomposition of needle litter. The soil element cycling affects and is affected by
the composition of the soil microbiota (Fenchel, King & Blackburn, 2012b). For example,
the iron bacteria family Comamonadaceae, which was represented by the genera Delftia,
Comamonas, Acidovorax, and Albidiferax in our sampling, are able to deposit iron metal
oxides under natural conditions. These bacteria were present in soil for both vegetation
types. They were slightly more abundant in forest samples and can grow rapidly in iron-rich
and acidic substrates (Emerson et al., 2015; Fenchel, King & Blackburn, 2012a). These results
indicate that alteration of these chemical propertiesmay lead to a change in the composition
of the soil prokaryotic microbiome.

The distributions of the soil bacterial abundances in our samples best fit to Zipf and
Zipf–Mandelbrot rank abundance models (Table 6 and Fig. S4 ). The Zipf and Zipf–
Mandelbrot rank abundance models belong to the family of random-branching processes;
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Table 6 Deviance of the species-rank abundance distribution (RAD)models revealing the best fits of the Mandelbrot or Zipf-Mandelbrot
model for all sampled soil microbial communities.

Gr01 Gr02 Gr03 Gr04 Gr05 Gr06 Gr07 Gr08 Gr09 Gr10

Null 23,473.2 24,412.6 20,882.8 21,609.8 29,653.7 23,972.9 16,175.0 21,291.9 25,119.2 31,461.4
Preemption 28,921.1 30,018.9 25,494.1 26,779.2 36,675.8 29,667.9 19,209.2 26,001.7 30,809.4 38,768.3
Lognormal 9,527.5 11,539.7 9,701.5 10,157.8 12,942.7 10,585.8 7,802.7 9,847.3 10,650.6 13,265.6
Zipf 1,652.7 1,201.5 1,168.1 1,010.2 1,722.0 1,421.0 1,016.5 1,169.2 2,228.9 2,215.5
Mandelbrot 1,057.1 1,201.5 1,010.8 1,010.2 1,525.2 1,165.6 919.3 960.8 1,050.2 1,338.9

Fr01 Fr02 Fr03 Fr04 Fr05 Fr06 Fr07 Fr08 Fr09 Fr10

Null 16,276.4 37,243.8 90,272.5 29,118.5 45,159.8 20,701.9 30,670.6 30,757.4 24,744.7 56,299.3
Preemption 19,814.6 46,031.3 109,349.0 36,030.8 55,651.5 25,626.1 37,854.4 38,189.6 30,699.1 68,945.4
Lognormal 7,617.4 15,371.2 30,465.1 12,328.5 18,347.1 9,072.1 12,376.0 12,888.0 10,492.1 21,309.7
Zipf 1,299.5 2,431.4 4,527.6 1,944.1 3,573.2 1,244.4 1,894.5 1,351.4 1,220.3 2,186.6
Mandelbrot 867.4 1,699.7 3,043.8 1,248.1 2,080.9 883.3 1,245.9 1,285.5 1,092.0 1,897.3

Notes.
The lowest Akaike Information Criterion (AIC) values representing the best fit model are shown in bold.

these models suggest that individuals are always derived from ancestor individuals (McGill
et al., 2007) and that microbial community assembly is explained by the niche-based
mechanism (McGill et al., 2007; Mendes et al., 2014). These models indicate that decades
of grassland afforestation have generated soil properties that provide a divergent but stable
resource supply for the soil bacterial community, although a strong effect of depth on the
structure of bacterial communities should be recognized (Eilers et al., 2012).

Classification by the supermajority rule revealed that generalist bacteria represented
more than 2/3 of the total counts but <3% of bacterial OTUs. The low richness but
relatively high abundance of generalists suggests that a great proportion of residents utilize
broad resources or are highly tolerant of the environment (Verberk, 2011). It has been
suggested that microbes that are present in all or the majority of microbial communities
with high abundance represent the core set of genes responsible for key elements of
most metabolic pathways (Falkowski, Fenchel & Delong, 2008). Similarly, specialist bacteria
exhibited <1% richness but accounted for approximately 1/5 to 1/4 of the RA in the
grassland and forest soils. These specialist OTUs with low richness and high abundance
are probably more susceptible than generalists to environmental change. Since the original
vegetation was scattered grasses, the grassland specialists rarely found in forest soils were
those selected against by the afforestation effect; by contrast, forest specialists should be
enriched after forestation. The environmental differences (e.g., the contents of soil C, P,
Ca2+, Mg2+, and Fe3+, Table 2) could result in resource (niche) divergence to differentiate
the bacterial composition descended from the original bacterial communities, reflecting
the bacterial abundance distribution in the Zipf and Zipf–Mandelbrot models (Table 6).

In particular, the Fe3+ content was significantly correlated with the abundance
of the forest-specialist Archaea phylum Thaumarchaeota, and P was correlated with
the four grassland-specialist Eubacteria phyla Chloroflexi, Fibrobacteres, Nitrospirae,
and Parcubacteria (Table 4), suggesting that these two soil elements are key factors
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differentiating soil bacterial composition. Thaumarchaeota encodes the genes ammonia
monooxygenase A (amoA, encoding subunit A of AMO) and amoB, which are distantly
related to one another and similar to the bacterial amo gene for ammonia oxidation
(Stieglmeier, Alves & Schleper, 2014). The high abundance of amoA and its transcripts
suggests that ammonia-oxidizing archaea (AOA) are present in higher numbers than
ammonia-oxidizing bacteria (Shen et al., 2008) and that nitrogen cycling is enhanced in the
forest (Konneke et al., 2005; Stieglmeier, Alves & Schleper, 2014). A high abundance of AOA
with a high content of Fe3+ (e.g., ferrate, an ammonia oxidation reagent) could accelerate
ammonia oxidation (Sharma, Bloom & Joshi, 1998).

Soil P is closely related to plant growth (Shen et al., 2011), but microbes that transform
P to improve uptake by plants are also influenced by both plant species and soil type (Chen,
Condron & Xu, 2008). P metabolism is often related to the fungal community (Beever &
Burns, 1981; Rodŕıguez & Fraga, 1999). In this study, the specialists that were correlated
with soil P content were primarily not responsible for P transformation but were light
and aerobic thermophiles (e.g., Chloroflexi), symbionts within ruminant animals (e.g.,
Fibrobacteres), or involved in the nitrogen cycle (e.g., Nitrospirae). Although not directly
linked to P content, these bacterial ecological function reflect the differences between
grassland and forest ecosystems. The major changes in the canopy, amounts of litterfall,
plant composition, and root-bacteria interactions due to grassland afforestation may
explain the differences in soil P content as well as the abundances of these bacterial phyla
(Chen, Condron & Xu, 2008; Li, Lee Allen & Wollum, 2004).

By contrast, the significant differences in H, 1/D, and J but not richness between the
grassland and forest soil microbiomes suggest that the change in the soil microbiome
is due to a difference in species RA rather than species number. A high proportion of
‘‘too-rare’’ bacterial OTUs (95% richness) accounted for >1/3 of the RA of soil bacteria,
reflecting transient changes in bacteria in the environments. This rarity could result from
stochasticity (Ai et al., 2013), fitness trade-off (Gobet et al., 2012; Gudelj et al., 2010), or
biological interactions (García-Fernández, De Marsac & Diez, 2004; Narisawa et al., 2008;
Schluter et al., 2015). These rare bacteria are still relevant in ecological functions, including
bacterial community assembly and function and biogeochemical cycling (Jousset et al.,
2017). The high richness of rare bacteria contributes to the alpha-diversity of the soil
bacterial communities.

Based on the dbRDA of the relationships among vegetation type, soil properties, and
bacterial composition, we concluded that grassland afforestation has affected the soil
chemical properties (Table 2), soil microbiome composition and ecologically functional
potential. Post-translational systems may increase the heterogeneity of the soil prokaryotic
microbiome and facilitate the coexistence of different bacterial species via functional
regulation (Spallek, Robatzek & Göhre, 2009). In addition, these effects of afforestation on
the microbiome were modulated by changes in soil chemical properties (Tables 2 and 5).
The changes in chemical properties led to differential abundance of low-taxonomic-level
OTUs. For example, Planctomycetes, which was differentially abundant between forest and
grassland in our data, are sensitive to changes in soil management and physicochemical
properties (Buckley et al., 2006). This conclusion was reached because the explanation of
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soil microbiome by vegetation type decreased or was even lost when conditioned on soil
properties (Table 2). Albeit indirectly, afforestation indeed altered the ecological function
of the soil microbiome (Table 5).

As discussed above, soil chemical properties interact with the soil bacterial communities.
Because the original vegetation before forestation was grassland, the changes in the soil
properties are probably attributable to the vegetation changes produced by afforestation.
Several studies have suggested that afforestation can influence biotic and abiotic changes
in micro- and macro-ecosystems (Jousset et al., 2017; Nosetto et al., 2008; Wang, Zhu &
Chen, 2016; Zheng et al., 2017). Here, we suggest that the underground biotic change was
indirectly affected by forestation mediated by soil property changes (Table 2), especially
the contents of soil P, Ca2+, and Fe3+, which are further related to ecological function
changes in soil microbiomes for different vegetation types (Table 5 and Table S1 ). These
results are similar to the bacterial abundance changes and compositional shifts reported
for a long-term poplar plantation, which were suggested to be highly correlated with
the changes in soil properties caused by afforestation (Zheng et al., 2017). Soil bacterial
composition has been suggested to be more closely related to plant diversity-controlled
abiotic soil properties because of the highly resilient characteristics of bacterial communities
due to their fast life cycle (De Vries et al., 2012; Lange et al., 2014).

CONCLUSIONS
The change in vegetation type was linked, at least in part, to potential ecological function
changes in the soil bacterial communities, despite an indirect impact on bacterial
composition and the calculation of the ecologically functional potential from the bacterial
composition. Aboveground changes such as abiotic factors and biotic activities may be
responsible for these changes in underground ecological functions. According to our study,
afforestation may change the soil contents and subsequently affect the ecological functions
and alpha- and beta-diversity of bacterial communities. However, the relatively small
proportion of bacterial specialists and high proportion of bacterial generalists with respect
to ecological function among the bacterial OTUs indicates that the vegetation change
preserved a high proportion of the core functions of the soils (Li, Lee Allen & Wollum,
2004). This preservation occurred because the core functional genes were distributed
widely across a variety of bacterial taxa. However, the high proportion of functions that
were correlated with changes in soil properties indicates that bacterial ecological functions
are highly sensitive to environmental change. Future work could focus on the link between
anthropogenic actions on vegetation and indicator species such as Planctomycetes or iron
bacteria such as Comamonadaceae. These links could be validated by quantitative analyses
(e.g., qPCR) to determine how changes in the structure of key bacteria lead to ecological
function changes after land cover change.
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