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ABSTRACT
Quaternary climatic oscillations have impactedPatagonian sigmodontine fauna, leaving
traceable genetic footprints. In southern Chile, changes in the landscape included
transitions to different vegetation formations aswell as the extension of ice sheets. In this
study, we focus on the Valdivian forest endemic and recently described sigmodontine
species Abrothrix manni. We aim to assess the genetic structure of this species, testing
for the existence of intraspecific lineages, and inferring the recent demographic history
of the species. Analyses were based on the first 801 bp of the mitochondrial gene
Cytocrhome-b from 49 individuals of A. manni collected at 10 localities that covers
most part of its geographic distribution. Genealogical analyses recovered two main
intraspecific lineages that are geographically segregated and present an intermediate
site of secondary contact. Historical demography shows signal of recent population
decrease. Based on these results, we proposed that current genetic diversity of A. manni
differentiated in at least two distinct refugial areas in southern Chile. This scenario, in
addition to be unique among those uncovered for the so far studied Valdivian forest
rodents, is noteworthy because of the reduced geographic scale inhabited by the species.

Subjects Biogeography, Genetics, Zoology
Keywords Lowland coastal refugium, Pleistocene, Patagonia, Phylogeography, Historical
demography

INTRODUCTION
The southern cone of South America has been the setting of major climatic, tectonic and
volcanic activity during the past several million years (Heusser, 1984; Rabassa, Heusser &
Rutter, 1990; McCulloch et al., 2000). The Quaternary period was marked by a complex
sequence of glacial advances and retreats that dramatically altered Patagonian landscapes
(Clapperton, 1994; McCulloch et al., 2000; Hulton et al., 2002). A ‘‘Great Patagonian
Glaciation’’ (GPG) occurred approximately 1 MYA, followed by three major post-GPG
glaciations during the Early and Middle Pleistocene. The most recent of these events was
the Last Glacial Maximum (LGM), which began ∼20,000–18,000 YA and finished 14,000–
10,000YA (Coronato, Martínez & Rabassa, 2004;Ponce et al., 2011). During the LGM, an ice
sheet 1,800 km long built up along the axis of the southern Andes (McCulloch et al., 2000).
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In Southern Chile (south of 39◦S) the ice sheet extended toward lowlands covering
the eastern half of Los Ríos and Los Lagos Regions, including the south-east of Chiloe
Island (Fig. 1). Biotic evidence, including pollen records and beetle remains, indicate
that the vegetation type during the last millennia changed from Subantarctic parkland
to woodland and Patagonian evergreen forests about 14,000–13,000 YA (Heusser et al.,
1996; Moreno et al., 2001). Climatic events of this magnitude affected local abundance
and distributional patterns of the local biota leaving traceable genetic footprints in
several groups of organisms, which in turn allows identifying refugial areas, i.e., those of
population persistence during Pleistocene glaciations, e.g., in trees (Premoli, Mathiasen &
Kitzberger, 2010;Mathiasen & Premoli, 2010; Souto et al., 2015), fishes (Zemlak et al., 2008),
crustaceans (Xu et al., 2009), frogs (Nuñez et al., 2011), lizards (Vera-Escalona et al., 2012;
Muñoz Mendoza et al., 2017).

Patagonian species have been differentially impacted by past climatic dynamics.
Different demographic processes and trajectories (e.g., demographic or range expansion or
stability, fragmentation, secondary contact) have been recorded in co-distributed species
(Lessa, D’Elía & Pardiñas, 2010; Sersic et al., 2011). A pattern of north-to-south postglacial
colonization was commonly observed in Patagonian rodents (e.g., Eligmodontia morgani
and Reithrodon auritus), although more complex processes were also reported, such as
within-region differentiation and population persistence at putative refugia (Cañón et al.,
2010; Lessa, D’Elía & Pardiñas, 2010). Given this rather species-specific response to climatic
oscillation in southern Chile and Argentina, it is of interest to explore phylogeographical
patterns in additional lineages before any generalization be advanced about the effect of
glaciations on the local fauna.

In this study, we focus on the recently described sigmodontine species Abrothrix
manni (D’Elía, Pardiñas & Teta, 2015). Mann’s soft-haired mouse mainly distributes in
the humid forests of north-western Patagonia, in the Chilean Regions of Los Ríos and Los
Lagos, including northern Chiloe Island. From west to east, this species is present in the
Pacific coast and reaches the Andes; it is also known from a single locality in Neuquén,
Argentina (D’Elía, Pardiñas & Teta, 2015; Fig. 1). Because A. manni was only recently
described, information on its natural history is scarce as no ecological study has focused on
it. Much of the available information on the life history of the species has been reported in
the literature under A. sanborni or of purported hybrids between that species and A. hirta
(referred earlier as A. longipilis; see Teta & Pardiñas, 2014). Mann’s soft-haired mouse is
active both day and night (Meserve et al., 1982). It feeds on fungi, moderate amounts of
mature arthropods and larvae, plant foliage, seeds, and fruits (Meserve, Lang & Patterson,
1988). A. manni breeds through the spring and summer (Meserve et al., 1982). Recording
localities of A. manni, all laying in the temperate Valdivian rainforest, suggest that the
species is a forest specialist.

Compared with most Patagonian mouse species, the geographic range of A. manni
is noticeably smaller (e.g., Lessa, D’Elía & Pardiñas, 2010; D’Elía, Pardiñas & Teta,
2015) and lies in an area that was highly impacted during the Quaternary period.
Here, historical environment diversity ranges from more or less continuous ice
cap to putative refugial areas for local biota. A lowland glacial refugium has been
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Figure 1 Study area for Abrothrix manni. Map of south-central Chile and neighboring areas of Ar-
gentina depicting in pink the known distribution of Abrothrix manni (taken from D’Elía et al., 2015). Col-
lecting localities of the specimens analyzed here are depicted with dots and numbered as in Table 1. The
dotted line indicates the area covered by the ice sheet during the LGM (sensuMcCulloch et al., 2000).
The tree to the left depicts the genealogical relationships, reconstructed via Bayesian inference, of 22 Cytb
haplotypic classes of Abrothrix manni. Support values correspond to posterior probability and bootstrap
proportion in a Maximum Likelihood analysis; number of specimens sharing each haplotype is given in
parenthesis.

Full-size DOI: 10.7717/peerj.6130/fig-1

proposed along the coast north of the latitude 42◦S (Victoriano et al., 2008; Quiroga &
Premoli, 2010; Sersic et al., 2011). Other co-distributed (at least partially) sigmodontine
species in this area exhibit contrasting genetic footprints. For instance, within the
area of sympatry with Abrothrix manni, populations of the co-generic A. olivacea
belong to two distinct intraspecific lineages (Rodríguez-Serrano, Cancino & Palma,
2006), while populations of Oligoryzomys longicaudatus are genetically homogeneous,
without distinct lineages (Palma et al., 2005; Palma et al., 2012). This is also the case
of continental populations of the pudu deer Pudu puda (Fuentes-Hurtado et al., 2011).
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Therefore, given that A. manni occurs in a geographic area that was directly affected by
Pleistocene glaciations, and considering that the impact of glaciations was differential over
species, we address here the phylogeographic pattern of A. manni. We aim to assess the
species genetic structure, testing for the existence of intraspecific lineages, and inferring
past demographic signals.

Theory predicts distinct patterns of genetic variation under distinct demographic and
historical scenarios. The literature in this regard is vast (e.g., Tajima, 1989; Slatkin &
Hudson, 1991; Fu, 1996; Wakeley & Hey, 1997; Kuhner, Yamato & Felsenstein, 1998) and
for a general review we refer the reader to Avise (2000) and Knowles & Maddison (2002).

In this study, we focus on the phylogeographical pattern as revealed by a Cytb gene
genealogy and on genetic signals of demographic stability/expansion. The main expected
signals of the persistence of A. manni in Valdivian forest during LGM are: (a) presence of
well-supported allopatric clades, (b) multimodal mismatch distributions, (c) significant
values of demographic indexes (F, D, hr, and SSD) (d) signals of demographic stability in
absolute time calibrated skyline plots. Therewith, we hope to contribute filling the gap in
the phylogeographic knowledge of one of the least studied areas of southern South America
(Beheregaray, 2008).

MATERIALS & METHODS
Specimen sampling and data collection
Analyses were based on the first 801 bp of the mitochondrial gene Cytochrome-b (Cytb)
from49 individuals ofAbrothrix manni collected at 10 localities alongmost part of its known
distributional range (see Fig. 1 and Table 1). Fieldwork and procedures with animals were
were approved by the Servicio Agricola Ganadero (Permits number 1231/2017, 5611/2013,
2164, 5165) and the Comité de Bioética of the Universidad Austral de Chile (Nb. 311/2018).
Nineteen sequences were downloaded from GenBank, while 30 were newly generated from
specimens housed at the Colección de Mamíferos de la Universidad Austral de Chile
(UACH). Unpublished sequences were generated following the protocol outlined byD’Elía
& Pardiñas (2004); external DNA sequencing service was provided by Macrogen (Seoul,
South Korea). All new DNA sequences were deposited at GenBank (see accession numbers
in Table 1).

Alignment, molecular diversity, and genealogical reconstruction
Sequences were aligned using Clustal W (Thompson, Higgins & Gibson, 1994) implemented
in Mega 7 (Kumar, Stecher & Tamura, 2016) to establish character primary homology.
Haplotype and nucleotide diversity indexes were calculated using DNAsp (Rozas et
al., 2017). Genetic distances (p-distances) were calculated using Mega 7. Genealogical
analyses were based on a matrix containing one representative of each allelic class to
speed up searches. Haplotype selection was conducted using DNAsp following a visual
corroboration of the absence of segregating sites within haplotype classes. This was
conducted observing branch length in a neighbor-joining tree constructed with Mega 7.
Sequences of Cytb from Abrothrix andina (GenBank accession: AF108671), A. jelskii
(M35714), A. lanosa (EU683432), A. longipilis (HM167785), A. sanborni (KP666004), and
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Table 1 Specimens of Abrothrix manni studied with details of the Cytb sequence retrieved from each of them. Locality numbers are those de-
picted in Fig. 1.

# Locality Specimen, GenBank accession, haplotype Reference

1 Región de Los Ríos, San José de la
Mariquina, Fundo San Martin;−39.649233,
−73.19255

UACH7300, MH917358, 4; UACH7289, MH917347, 4;
UACH7291, MH917349, 1; UACH7292, MH917350, 2;
UACH7293, MH917351, 1; UACH7294, MH917352, 5;
UACH7295, MH917353, 5; UACH7296, MH917354, 5;
UACH7297, MH917355, 4; UACH7298, MH917356, 4;
UACH7299, MH917357, 5; UACH7301, MH917359, 5;
UACH7302, MH917360, 5; UACH7303, MH917361, 5;
UACH7304, MH917362, 5; UACH7305, MH917363, 3;
UACH7306, MH917364, 5; UACH7879, MH917348, 4

This paper

2 Región de Los Ríos, Valdivia, Curiñanco;
−39.7502,−73.390383

UACH7279, MH917366, 6; UACH7307, MH917365, 6 This paper

3 Región de Los Ríos, Valdivia, El Arenal;
−39.787367,−73.210909

UACH8016, MH917371, 7 This paper

4 Región de Los Ríos, Corral, Naguilan;
−40.016108,−73.351585

UACH7875, MH917367, 8; UACH7876, MH917368, 9;
UACH7877, MH917369, 8; UACH7878, MH917370, 9

This paper

5 Región de Los Ríos, Futrono, Cerro Hue-
quecura;−40.192567,−72.254983

UACH7284, MH917342, 12; UACH7285, MH917343, 13;
UACH7287, MH917345, 11

This paper

6 Región de Los Ríos, Futrono, Camino
Llifen-Maihue, 400 m Oeste de Puente
Blanco;−40.193067,−72.0076

UACH7288, MH917346, 10; UACH7286, MH917344, 1 This paper

7 Región de Los Lagos, Parque Nacional Vi-
cente Pérez Rosales, La Picada;−41.033333,
−72.5

ER74, GU564046, 15; ER75, GU564047, 1; ER76,
GU564048, 1

Palma, Cancino & Rodríguez-
Serrano (2010)

8 Región de Los Lagos, Pichiquillaipe, Parque
Katalapi;−41.51965,−72.752183

UACH7260, KP665999, 17; UACH7280, KP665998, 1;
UACH7281, KP666001, 1; UACH7282, KP666000, 1

D’Elía, Pardiñas & Teta (2015)

9 Región de Los Lagos, Lago Tagua Tagua,
Rampa Los Canelos;−41.5643,−72.172217

UACH7283, KP666003, 22 D’Elía, Pardiñas & Teta (2015)

10 Región de Los Lagos, Chiloé, Senda Darwin;
−41.883838,−73.663461

ER48, GU564049, 20; ER49, GU564050, 2; ER53,
GU564052, 2; ER55, GU564053, 2; ER61, GU564054, 2;
ER62, GU564055, 2; ER63, GU564056, 2; ER67, GU564057,
2; ER68, GU564058, 2; ER52, GU564051, 2; UWBM79697,
KP666002, 19

Palma, Cancino &
Rodríguez-Serrano (2010),
D’Elía, Pardiñas & Teta (2015)

A. olivacea (HM167800) were used to conform the outgroup. Best-fit model of nucleotide
substitution for this dataset was determined based on maximum likelihood estimates of
model parameters and Bayesian Information Criterion (BIC) using jModeltest2 (Darriba et
al., 2012). The selected model was set in genealogical reconstruction using two approaches,
maximum likelihood (ML) and Bayesian inference (BI). TheML tree was inferred using IQ-
TREE (Nguyen et al., 2015) implemented in the IQ-TREE web server (Trifinopoulos et al.,
2016); branch supports were calculated with the ultrafast bootstrap (Minh, Nguyen & Von
Haeseler, 2013). The BI analysis was conducted using MrBayes (Ronquist & Huelsenbeck,
2003); four independent runs were conducted, each consisting of 20 × 106 MCMC
iterations, where chains were sampled every 1,000 generations. Convergence among chains
was corroborated by inspecting values (<0.01) of the average standard deviation of split
frequencies. The first 25% of the samples were discarded as burn-in; remaining trees,
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sampled well after stationarity was reached, were used to compute a consensus tree with
posterior probability (PP) estimates for each clade.

Genetic structure and historical population analyses
The spatial partition of the observed genetic variation was evaluated using analysis
of molecular variance (AMOVA) implemented in Arlequin 3.5 (Excoffier & Lischer,
2010). Several haplotype arrangements were set a priori to test specific geographic and
genealogical groupings. In a geographic arrangement, sequences were allocated in two
groups, one containing northern sampling sites (localities numbers 1 to 6) and another
group containing southern sites (localities 7 to 10). In a second arrangement, haplotypes
were grouped according to the results of the genealogical analysis (see below). The
amount of genetic variation attributable to differentiation among groups (FCT), among
localities within groups (FSC), and among localities relative to the total sample (FST) was
estimated.

Historical demography was assessed on the basis of the distribution of pair-wise
differences and related tests using Arlequin 3.5. A multimodal mismatch distribution
indicates that samples were drawn from a population in demographic equilibrium, while
a unimodal curve is expected for populations that experienced a recent demographic
expansion (Rogers & Harpending, 1992). The smoothness of the mismatch distribution was
quantified using the raggedness index (hr); a significant p-value indicates that the sample
is drawn from a recently expanded population (Harpeding, 1994). The fit of observed data
to a null model of stationary population size was tested via the sum of squares deviation
(SSD) test. Also, Tajima’s D and Fu’s F were calculated; significant negative values, of
both indexes, are indicative of recent population expansion (Tajima, 1989; Fu, 1996) In a
different approach, coalescent-base Bayesian skyline plots (Drummond et al., 2005) were
also conducted to estimate changes in the effective population size through time, using
Beast2 (Bouckaert et al., 2014). Nucleotide substitution and frequencies for each groupwere
estimated from the data; Bayesian Information Criterion was used to choose best-fitting
models. The best clock model was selected using Model Selection v1.01 Beast package
implemented in BEAST, which was a strict clock. Markov Chain Monte Carlo were let
run for 10 M iterations logging trees every 1,000 iterations. Historical demographic plots
were constructed using Tracer (Rambaut et al., 2018). Absolute time-scale was calculated
using a substitution rate for Cytb gene of 0.0031, which was the estimated rate for this
gene in the closely related species Abrothrix longipilis by Lessa, D’Elía & Pardiñas (2010).
Six groups were set to test for signals of demographic change/stability using mismatch
distributions, associated demographic tests and Bayesian skyline plots mentioned above.
(1) Total sample, which includes the 49 Cytb sequences in the dataset; (2) clade A, which
considers only the sequences included in this clade (see below); (3) clade B, including
only sequences in this clade (see below), (4) northern range, containing all samples from
localities 1–6, (5) southern range, with all samples from localities 7–10; and (6) eastern
range, containing samples from localities near the Andes, 5–9).
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RESULTS
Molecular diversity
The 49 sequences of Cytb of Abrothrix manni contain 46 variable sites that define 22
haplotypic classes (Table 1). Nine haplotypes were found in more than one specimen.
No single haplotype was found in more than one collection site; most sites (seven out of
10) exhibited more than one haplotype (Table 1). Overall pairwise distance for the whole
dataset is 1.2%. Sequence divergence among localities (Fig. 1) ranged from 0.3% (between
localities 3 and 9) to 1.8% (between locality pairs 1–2, 1–5, 1–3, and 2–3). Observed
haplotype and nucleotide diversity values for the entire sample are Hd = 0.909 (SD =
0,025) and Pi: 0,01012.

Gene genealogy
The best model of molecular evolution for the dataset was HKY + G (−lnL = 3499.6757;
BIC= 7447.304), which was implemented in bothML and BI analyses. Resulting topologies
congruently recover, although without a strong support (Bayesian posterior probability:
PP = 0.73; Bootstrap support: BT = 67%) the monophyly of A. manni. Haplotypes of
A. manni form two main clades (Fig. 1). The first one (clade A, hereafter) is composed by
10 haplotypes from 6 localities (1–6) covering the northern part of the study area; support
values for this clade are low, PP = 0.8 and BT = 71. The second clade (clade B, hereafter),
which is moderately supported (PP = 0.8, BT = 94), includes haplotypes from southern
localities (7–10) and one haplotype from a specimen collected at locality 6. Thus, in the
area of Llifen (locality 6) both main clades of A. manni overlap (Fig. 1). Haplotypes from
clades A and B are, on average, 1.7% divergent. Mean divergence within each clade is low;
0.7% and 0.6% for clades A and B, respectively.

Genetic structure and historical demography
When grouping haplotypes according to a geographical criterion (localities 1–6 vs.7–10),
AMOVA shows that 55.6% of the total variation in the data set is attributable to differences
between these two geographic groups. The remaining percentage is due to differences
among locality sites (21%) and within localities (23.4%). Fixation indexes were significant
at these three levels (Table 2). When analyzing the data set grouped according to gene
genealogy, the AMOVA shows the same pattern, where the largest fraction of the observed
variation is due to differences between groups (clades in this case). Here, a 2% increase
was observed in the variation attributable to differences between clades (57.26%) over the
mentioned difference between geographic groups (Table 2).

Historical demography of A. manni, assessed by means of four indexes, recovered
contrasting signals for six different grouping of samples. When considering the whole
dataset, half of the indexes recovered signals of demographic expansion (SSD and Hr),
while the rest failed to do so (Tajima’s D and Fu’s Fs; see Table 2). Further exploration of the
overall signals led us to calculations per clade and geographic range. Estimations for clade
A and northern range exhibited the same pattern as the total sample, with significant values
of SSD and Hr (Table 2). On the other hand, calculations for clade B and southern range
failed to show signals of population expansion in most tests (Table 2, Fig. 2). Exceptions are
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Table 2 Analysis of molecular variance. Results of analyses of molecular variance (AMOVA) for two arrangements of samples (for the definition
of groups see ‘Materials and Methods’ and Fig. 1). Percentage of variation among groups (AG), among populations within groups (APWG), and
within populations (WP) are given.

Percentage of variation F-statistics

Grouping criteria Group content (locality numbers) AG APWG WG Fsc Fst Fct

G1: specimens from clade AGeneaological
G2: specimens form clade B

57.26 20.68 22.06 0.48* 0.78* 0.57*

G1: specimens from northern localities (1–6)Geographic
G2: specimens from Southern localities (7–10)

55.61 21.05 23.34 0.47* 0.77* 0.56*

Notes.
*indicate p-values lower than 0.0001.

marginally significant values of Fu’s F for clade B and highly significant negative Tajima’s
D for southern range. Western localities (1–9) are sites that were probably covered by the
ice sheet during the last glaciation (see dotted lines in Fig. 1). Demographic tests based
on mismatch distribution for this set of localities failed to recover signals of population
expansion (Table 3, Fig. 2). Finally, skyline plots helped understanding past demographic
dynamics at the light of contradictory signals in demographic tests by showing that after
an increase in the effective population size, a more recent decrease have occurred (Fig. 3).
This pattern was observed in all groups analyzed, being more evident when analyzing the
total sample (Fig. 3). Population size reductions would have taken place during the last
15,000–10,000 years. Skyline plot for the eastern range shows a gradual increment in the
population effective size from ca. 100 KYA to 25 KYA and a more recent slight reduction
in effective size (Fig. 3F).

DISCUSSION
Patagonian sigmodontine species have differentially responded to historical climatic
events. Many of these broadly distributed species lack significant phylogeographic breaks
(Lessa, D’Elía & Pardiñas, 2010). Fewer are the cases where allopatric clades were reported;
among these are the Patagonian chinchilla mouse Euneomys chinchilloides (Lessa, D’Elía
& Pardiñas, 2010), the long-haired mouse Abrothrix hirta (Lessa, D’Elía & Pardiñas, 2010)
and the olive mouse Abrothrix olivacea (Rodríguez-Serrano, Cancino & Palma, 2006; Lessa,
D’Elía & Pardiñas, 2010). Notice, however, that these species show phylogeographic
structure over their large distributional ranges covering most of the open (the former) or
open and forested (the last two) areas of Patagonia. Meanwhile the distributional range
of Abrothrix manni is considerably smaller than that of the species mentioned above,
including the co-generic and co-distributed A. hirta and A. olivacea (D’Elía, Pardiñas &
Teta, 2015). Even so, A. manni exhibits a clear differentiation in two main clades that
are essentially allopatric (Fig. 1). Interestingly, in our study area, which traditionally has
been considered as large refugial area (Villagrán, 1991; Villagrán, Moreno & Villa, 1995) no
phylogeographic structure is found in other mammals, such as the olive mouse A. olivacea
(Rodríguez-Serrano, Cancino & Palma, 2006), the long-tailed mouse O. longicaudatus
(Palma et al., 2005; Palma et al., 2012), the marsupial Dromiciops gliroides (sensu D’Elía,
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Figure 2 Mismatch distribution for populations of Abrothrix manni. Frequency distribution of pair-
wise differences among Cytb haplotype pairs of Abrothrix manni for (A) total sample; (B) clade A; (C)
clade B; (D) northern range; (E) Southern range; (F) Eastern range,

Full-size DOI: 10.7717/peerj.6130/fig-2

Hurtado & D’Anatro, 2016; cladeC inHimes, Gallardo & Kenagy, 2008), and the puduPudu
puda (Fuentes-Hurtado et al., 2011). Therefore, setting aside the limitations of the data
analyzed in terms of loci and geographic coverage, the phylogeographic pattern found in
A. manni is unique among the mammals studied to date in the Patagonian Valdivian forest.
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Table 3 Demographic history of Abrothrix manni. Indexes of demographic history for four arrangements of samples of Abrothrix manni.
Tajima’s D (D), Fu’s Fs (Fs), sum of squared deviation (SSD), Harpending’s raggedness index (Hr), and their respective p-values to the right. Values
in bold are those that support demographic expansion.

Group content D p Fs p SSD p Hr p

Total sample Samples from localities 1–10 −0.35 0.42 −1.94 0.28 0.32 0.02 0.06 0.02
Clade A Samples in clade A from localities 1–6 −0.61 0.31 −1.59 0.25 0.04 ∼0.00 0.10 ∼0.00
Clade B Samples in clade B from localities 6–10 −1.39 0.08 −22.84 ∼0.00 0.06 0.09 0.14 0.06
Northern range All samples from localities 1–6 −1.02 0.15 −1.92 0.22 0.03 0.02 0.08 ∼0.00
Southern range All samples from localities 7–10 −1.51 0.05 1.27 0.22 0.02 0.47 0.078 0.45
Eastern range All samples from localities 5–9 −0.86 0.19 −1.74 0.20 0.08 0.08 0.10 0.06

The distributional area of A. manni has been highly impacted by the Quaternary
climate oscillations. Environmental dynamics in this area include changes in the spatial
configuration of forests (e.g., reduction, fragmentation, and expansion) and the extension
of a glacial ice cap in pre-Andean and Andean areas during the LGM (Villagrán, Moreno
& Villa, 1995; Heusser, Heusser & Lowell, 1999; McCulloch et al., 2000; Ponce et al., 2011).
Having in mind that A. manni is a forest-dwelling species with a restricted geographic
range, the uncovered phylogeographic pattern suggests a process of local differentiation
in at least two areas that are latitudinally segregated, one in the north and another in
the south of the species distribution. Determining the absolute time for the formation
of the two main intraspecific lineages of A. manni remains a challenging task. However,
considering the estimation of 0.6 MY as the crown age of the species (see Fig. 2 in D’Elía,
Pardiñas & Teta, 2015; but note the error bar ranging from more than 1 MY to a few
thousand years ago), it is possible that the two main lineages of A. manni may have
diverged in the context of Pleistocene forest fragmentation occurring in the area (Villagrán,
1991; Villagrán & Hinojosa, 1997; Heusser, Heusser & Lowell, 1999). If, as hypothesized,
both main mitochondrial lineages of A. manni differentiated in allopatry, it is necessary
to propose an event of secondary contact after the differentiation of the northern and
southern lineages of A. manni. Our sampling design detected a single intermediate locality
of sympatry of these lineages (locality 6, Table 1, Fig. 1). Since there are not noteworthy
discontinuities in the non-sampled area between the known areas of occupancy of both
clades, we anticipate that more sites of contact might be found with a denser geographic
coverage.

The existence of Pleistocene refugia in the Valdivian forest of North-Western Patagonia
has been proposed in an increasing number of studies, including reptiles (Victoriano
et al., 2008; Vera-Escalona et al., 2012; Muñoz Mendoza et al., 2017), amphibians (Nuñez
et al., 2011), fishes (Zemlak et al., 2008; González-Wevar et al., 2015) and insects (Xu et
al., 2009). An initial model of a single coastal refugium has been rapidly replaced by a
more complex scenario of multiple refugia (Premoli, Kitzberger & Veblen, 2000; Premoli
et al., 2003; Azpilicueta, Marchelli & Gallo, 2009; Nuñez et al., 2011; Vera-Escalona et al.,
2012). In any case, palynological, palaeoclimatic and genetic data suggest that non-
glaciated coastal areas from northern Chiloe up northwards were mainly forested during
the LGM (Villagrán, 1991; Villagrán & Hinojosa, 1997; Heusser, Heusser & Lowell, 1999).
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Figure 3 Bayesian skyline plots for populations of Abrothrix manni. Bayesian skyline plots showing
the change in effective population size (y-axis) through time (in thousand years; x-axis) for distinct sam-
ples of haplotypes of Abrothrix manni: (A) total sample; (B) clade A; (C) clade B; (D) northern range; (E)
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Accordingly, several tree species, such as Nothofagus pumilio, N. oblicua, Podocarpus
nubigena, and Euchryphia cordifolia, would have persisted not only in the coastal zone,
but also near and at Los Andes (Azpilicueta, Marchelli & Gallo, 2009; Quiroga & Premoli,
2010;Mathiasen & Premoli, 2010; Segovia, Pérez & Hinojosa, 2012), some of them probably
moving down and uphill during the Pleistocene and the Holocene (Villagrán, 1991;
Premoli, Kitzberger & Veblen, 2000). Sersic et al. (2011) identified two types of refugial
areas in southern Chile, a peripheral glacial refugium along the western slopes of the
Andes, and a lowland glacial refugium located in the Western Chilean Pacific coast. The
first one is supported by genetic evidence of—among other plants and animal species—the
sigmodontine mouse Loxodontomys micropus (Cañón et al., 2010; Sersic et al., 2011). On
the other hand, another sigmodontine rodent, the olive mouse Abrothrix olivacea, supports
the lowland coastal refugium (Smith, Kelt & Patton, 2001). In addition, both coastal and
Andean refugia has been also proposed for same species (Premoli et al., 2003; e.g., Xu
et al., 2009; Sersic et al., 2011; Nuñez et al., 2011; Vera-Escalona et al., 2012). Whether the
suggested refugia for A. manniwere coastal and/or pre-Andean is uncertain. Both scenarios
are plausible for either northern or southern refugium. Irrespective the precise location of
refugial areas for northern and southern lineages, our results support the local persistence
of A. manni during the LGM in its current general distributional area at the Valdivian
forest. In line with this idea is the fact that neither demographic indexes nor mismatch
distribution test for the six geographical groups of localities showed clear signals of recent
population expansion; the eastern range (Table 3) that considers localities that would
have been covered by the ice sheet during the LGM (Fig. 1). In addition, the six groups
analyzed (Figs. 3A–3E) show a general pattern of population reduction towards the present.
Noteworthily, the eastern range group shows a trend of gradual increment in the effective
population size between ca. 100 KYA to 25 KYA with a minor reduction towards the
present (Fig. 3F). In this regard, it is of interest in future studies to include more samples of
A. manni from the eastern range, particularly from Argentina (i.e., east side of the Andes)
to assess if the uncovered pattern changes.

In addition to the mainland area of Central-Southern Chile, the north-west half of
the large Chiloe Island has been also proposed as a refugial area (Villagran, 1988). Due
to sampling limitations we could not test here for demographic stability of populations
of A. manni from Chiloe, but we observed that island genetic variants are closely related
to those recovered in the mainland. This was also observed in the marine otter Lontra
felina (Vianna et al., 2010), the pudu deer Pudu puda (Fuentes-Hurtado et al., 2011), the
marsupial Dromicios gliroides (Himes, Gallardo & Kenagy, 2008), and in the long-tailed
mouse Oligoryzomys longicaudatus (Palma et al., 2005). These results are in line with
well-known evidence showing that during Pleistocene glacial oscillations, the Chiloe Island
remained connected with the mainland due to a drop in sea level (Heusser, Heusser &
Lowell, 1999).

In north-western Patagonia, different mammals show signals of demographic expansion
within our study area. This is the case of Dromiciops gliroides (referred as clade C in
Himes, Gallardo & Kenagy, 2008), Abrothrix olivacea (Smith, Kelt & Patton, 2001; but see
Rodríguez-Serrano, Cancino & Palma, 2006) and Oligoryzomys longicaudatus (Palma et
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al., 2012). Contrary to the mentioned species, A. manni fails to show signals of recent
demographic expansion in both northern and southern portions of its distributional
range (Table 3). On the contrary, Bayesian skyline plots showed a temporal line with
an increase in the effective population size followed by a reduction towards the present
(Fig. 3). This population decline was estimated as occurring about 15,000-10,000 YA.
This is the approximate timing of the end of the last glaciation. Distinct processes could
explain the inferred recent reduction in population sizes of Mann’s soft-haired mouse.
One of this is a scenario where populations of A. manni have been negatively affected by
interspecific competition with other species, likely sigmodontine rodents, which would
have expanded in the area after glacial conditions retreated. Also, it is possible that the
demographic reduction experienced by A. manni may have been caused by the wildfire
that increased in Northern Patagonian forests ca. 11,000–8,500 YA (Abarzúa & Moreno,
2008; Úbeda & Sarricolea, 2016) and/or eruptions such as that of the regional volcanoes
Mocho-Choshuenco and Puyehue-Cordón Caulle (Fontijn et al., 2016). For the moment,
the understanding of the natural history of A. manni is much limited (see D’Elía, Pardiñas
& Teta, 2015); as such, the just posed suggestions needs to be further evaluated with
additional genetic studies (allowing testing the reduction in population sizes) as well as
with field studies.

CONCLUSIONS
The genetic variation of the mitochondrial Cytb gene of Abrothrix manni supports a history
of persistence during Quaternary oscillations in its restricted distributional area at the
Valdivian forest of north-western Patagonia. This, however, does not imply that this
mouse was not impacted by climatic changes; on the contrary, forest fragmentation would
have caused a differentiation process that led to two divergent intraspecific lineages and
the posterior secondary contact between them. These conclusions are noteworthy because
of the reduced geographic scale inhabited by the species. They also imply that this small
area may have harbored multiple Pleistocene refugia.

Finally, with this study, which constitutes the first description of the spatial distribution
of the genetic variation and historical demography of the recently described Mann’s
soft-haired mouse A. manni, we hope to contribute to the understanding of evolutionary
history of the local fauna, particularly of the sigmodontine rodents.
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