The extinct giant shark *Otodus megalodon* is the last member of the predatory megatoothed lineage and is reported from Neogene sediments from nearly all continents. The timing of the extinction of *O. megalodon* is thought to be Pliocene, although reports of Pleistocene teeth fuel speculation that *O. megalodon* may still be extant. The longevity of the *Otodus* lineage (Paleocene to Pliocene) and its conspicuous absence in the modern fauna begs the question: when and why did this giant shark become extinct? Addressing this question requires a densely sampled marine vertebrate fossil record in concert with a robust geochronologic framework. Many historically important basins with stacked *Otodus*-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and well-dated lower and upper Pliocene strata (e.g. Atlantic Coastal Plain). The fossil record of California, USA, and Baja California, Mexico, provides such an ideal sequence of assemblages preserved within well-dated lithostratigraphic sequences. This study reviews all records of *O. megalodon* from post-Messinian marine strata from western North America and evaluates their reliability. All post-Zanclean *O. megalodon* occurrences from the eastern North Pacific exhibit clear evidence of reworking or lack reliable provenance; the youngest reliable records of *O. megalodon* are early Pliocene, suggesting an extinction at the early-late Pliocene boundary (~3.6 Ma), corresponding with youngest occurrences of *O. megalodon* in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a published dataset, thoroughly vetting each occurrence and justifying the geochronologic age of each, as well as excluding several dubious records. Reanalysis
of the dataset using Optimal Linear Estimation resulted in a median extinction date of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling sea surface temperature may have resulted in range fragmentation, while alongside competition with the newly evolved great white shark (*C. carcharias*) during the Pliocene may have led to the demise of the megatoothed shark. Alternatively, these findings may also suggest a globally asynchronous extinction of *O. megalodon.*
The early Pliocene extinction of the mega-toothed shark *Otodus megalodon*: A view from the eastern North Pacific

Robert W. Boessenecker¹,²,³, Dana J. Ehret⁴, Douglas J. Long⁵,⁶, Morgan Churchill⁷, Evan Martin⁸, and Sarah J. Boessenecker³,⁹

¹Department of Geology and Environmental Geosciences, College of Charleston, Charleston, South Carolina, USA
²University of California Museum of Paleontology, University of California, Berkeley, California, USA
³Mace Brown Museum of Natural history, College of Charleston, Charleston, South Carolina, USA
⁴New Jersey State Museum, Trenton, New Jersey, USA
⁵Department of Ichthyology, California Academy of Sciences, San Francisco, California, USA
⁶Current address: Department of Biology, St. Mary's College, Moraga, California, USA
⁷Department of Biology, University of Wisconsin-Oshkosh, Oshkosh, Wisconsin, USA
⁸San Diego Natural History Museum, Department of Paleontology, San Diego, California, USA
⁹School of Museum Studies, University of Leicester, Leicester, UK

Corresponding author:

Robert W. Boessenecker¹,²,³
Abstract

The extinct giant shark *Otodus megalodon* is the last member of the predatory megatoothed lineage and is reported from Neogene sediments from nearly all continents. The timing of the extinction of *O. megalodon* is thought to be Pliocene, although reports of Pleistocene teeth fuel speculation that *O. megalodon* may still be extant. The longevity of the *Otodus* lineage (Paleocene to Pliocene) and its conspicuous absence in the modern fauna begs the question: when and why did this giant shark become extinct? Addressing this question requires a densely sampled marine vertebrate fossil record in concert with a robust geochronologic framework. Many historically important basins with stacked *Otodus*-bearing Neogene marine vertebrate fossil assemblages lack well-sampled and well-dated lower and upper Pliocene strata (e.g. Atlantic Coastal Plain). The fossil record of California, USA, and Baja California, Mexico, provides such an ideal sequence of assemblages preserved within well-dated lithostratigraphic sequences. This study reviews all records of *O. megalodon* from post-Messinian marine strata from western North America and evaluates their reliability. All post-Zanclean *O. megalodon* occurrences from the eastern North Pacific exhibit clear evidence of reworking or lack reliable provenance; the youngest reliable records of *O. megalodon* are early Pliocene, suggesting an extinction at the early-late Pliocene boundary (~3.6 Ma), corresponding with youngest occurrences of *O. megalodon* in Japan, the North Atlantic, and Mediterranean. This study also reevaluates a published dataset, thoroughly vetting each occurrence and justifying the geochronologic age of each, as well as excluding several dubious records. Reanalysis of the dataset using Optimal Linear Estimation resulted in a median extinction date of 3.51 Ma, somewhat older than a previously proposed Pliocene-Pleistocene extinction date (2.6 Ma). Post-middle Miocene oceanographic changes and cooling sea surface temperature may have resulted
in range fragmentation, while alongside competition with the newly evolved great white shark (C. carcharias) during the Pliocene may have led to the demise of the megatoothed shark. Alternatively, these findings may also suggest a globally asynchronous extinction of O. megalodon.

Introduction

The giant predatory shark Otodus megalodon has been reported from Miocene and some Pliocene sediments from all continents except Antarctica, indicating a near worldwide distribution (Cappetta, 2012). Although some controversy exists regarding the generic allocation of this species (Purdy et al., 2001; Ehret et al., 2009a, 2012, and references therein; Cappetta, 2012), O. megalodon appears to represent the terminal chronospecies of a Paleocene to Pliocene lineage including O. obliquus and earlier species formerly placed within Carcharocles such as O. angustidens, generally characterized by steadily increasing body size through time (Ward and Bonavia, 2001; Ehret et al., 2009a; Cappetta, 2012; Ehret et al., 2012). Otodus megalodon is estimated to have attained a body length of 16 m (Gottfried et al., 1996), representing one of the largest sharks to ever exist, and one of a few marine superpredators of the Miocene, alongside macropagous sperm whales (Bianucci and Landini, 2006; Lambert et al., 2010) and the less well known giant shark Parotodus benedeni (Kent, 1999; Kent and Powell, 1999; Purdy et al., 2001). Although aspects of the morphology, evolution, and paleoecology of O. megalodon and other members of the Otodus lineage have been investigated, including phylogenetic affinities (Applegate and Espinosa-Arrubarrera, 1996; Gottfried and Fordyce, 2001; Nyberg et al., 2006; Ehret et al., 2009a, 2012), body size (Gottfried et al., 1996; Gottfried and Fordyce, 2001), tooth histology (Bendix-Almgreen, 1983), vertebral morphology and growth (Gottfried and Fordyce, 2001; MacFadden et al., 2004), physiology (Ferrón, 2017), and reproductive behavior and habitat
preference (Purdy et al., 2001; Pimiento et al., 2010), until recently little attention has been
directed at causes for the extinction or timing of its extinction. A recent study (Pimiento and
Clements, 2014) utilized an Optimal Linear Estimation analysis of geochronologic data for \textit{O. megalodon} records to estimate a late Pliocene (terminal Piacenzian; 2.58 Ma) extinction for \textit{O. megalodon}. However, the dataset utilized by Pimiento and Clements (2014) contains many errors including incorrectly identified specimens, use of specimens with poor provenance, specimens residing in private collections, and use of specimens with outdated, unclear, or poor geochronologic age determinations. Examples of these problems, illuminated below, indicate that rigorous reevaluation of the provenance of late Neogene \textit{O. megalodon} specimens worldwide and their geochronologic age is necessary.

Until recently, few rigorous attempts have been made to identify the youngest records of \textit{O. megalodon} (Pimiento and Clements, 2014), and in many regions, the lack of continuously fossiliferous strata of late Neogene age, prominence of specimens with poor or dubious provenance, and stratigraphic uncertainty make assessing the age and stratigraphic occurrence of \textit{O. megalodon} records difficult (see Pimiento and Clements, 2014:table s2 for records they excluded from their analysis). The stratigraphic record of the eastern North Pacific, primarily in California and Baja California, includes fossiliferous marine strata with abundant marine vertebrae and excellent age control, essentially preserving a nearly continuous marine fossil record from the middle Miocene through Pleistocene (Boessenecker, 2016). Other regions with abundant Neogene marine vertebrate assemblages including fossils of \textit{O. megalodon} either lack well-sampled Pliocene intervals (e.g. Peru; the youngest assemblages such as Sacaco and Sud-Sacaco are late Messinian in age (Ehret et al., 2012; di Celma et al., 2017) or lack well-sampled upper Pliocene intervals (Neogene marine deposits of the Atlantic coastal plain; e.g. Ward,
We review reported occurrences of *O. megalodon* from the densely-sampled and well-dated Miocene and Pliocene lithostratigraphic units in California and Baja California (Messinian-Gelasian equivalent), historically renowned for extensive Cenozoic marine vertebrate assemblages (Jordan, 1922; Jordan and Hannibal, 1923; Mitchell, 1966; Barnes, 1977; Repenning and Tedford, 1977; Domning, 1978; Welton, 1979; Warheit, 1992; Barnes, 1998; Deméré et al., 2003; Boessenecker, 2011b, 2013a, 2016), and report several new specimens (Fig. 1; Table 1). We further reevaluate some specimens of questionable provenance that appear to be reworked from underlying strata, or are not well documented geographically and/or stratigraphically. This review invited a reappraisal of the *O. megalodon* occurrence dataset published by Pimiento and Clements (2014). We thoroughly vetted the geochronologic age control for each occurrence (Appendix 1) using some of the criteria, methods, and reporting standards recommended and/or utilized by earlier studies (Parham et al., 2012; Boessenecker and Churchill, 2015; Boessenecker et al., 2018). We excluded several dubious records from their dataset, corrected the geochronologic range for most, and added several additional records and performed an Optimal Linear Estimation (OLE) analysis with the corrected data set in order to estimate the timing of extinction of *O. megalodon* (Table 2, Appendix 1-2).

Materials and methods

We examined collections from several institutions (CAS, LACM, RMM, SDNHM, and UCMP; see below) housing large collections of Neogene marine vertebrate fossils from the Pacific coast of North America. From these collections we identified a total of 145 *Otodus megalodon* teeth in lower Miocene through Pliocene deposits. This study (Fig. 1; Table 1) only focuses on those specimens of Messinian (latest Miocene) or younger age (n=46) and does not consider specimens
predating the (n=99). Teeth of *O. megalodon* were examined for evidence of reworking (e.g. abrasion, enameloid cracking, phosphatization, fragmentation; e.g. Boessenecker et al., 2014), and details of provenance (collector, collection date, locality description, similarity of preservation with other material from the same locality) to evaluate the likelihood of specimens being taphonomically autochthonous or parautochthonous versus allochthonous, or mistakenly attributed to an incorrect locality. Because this study relied upon existing collections of fossil specimens in museum collections and did not involve field study, no permits for field collection were required.

Global Otodus megalodon occurrence data and Optimal Linear Estimation

We re-evaluated the entire dataset published by Pimiento and Clements (2014:table S1, text S1; Table 2, Appendix 1-2). Age justifications by these authors did not include citations of stratigraphic or geochronologic literature, instead relying upon the ages cited within the paleontological papers reporting the fossil occurrences. Readers are instructed to consult the Paleobiology Database (Pimiento and Clements, 2014:2). However, out of 42 entries, only 24 (57%) have stratigraphic justifications, complicating evaluation of the dataset. Furthermore, some entries have been edited since 2014, preventing clear evaluation of the reasoning behind age assignments by Pimiento and Clements (2014). Paleontological studies frequently re-cite the paper first reporting a fossil occurrence, but since stratigraphy is not static, it is critical to exhaustively search for stratigraphic and geochronologic data published afterwards (Parham et al., 2012). We have audited the dataset by identifying the intraformational stratigraphic position of each occurrence (if applicable) and citing relevant, up-to-date publications with geochronologic dates, favoring microfossil age correlations and absolute dates (87Sr/86Sr ratios,
radiometric dates from interbedded ash/tuff/basalt, etc.) whenever possible; in some cases, only
member- or formation-level stratigraphic control is available. In order to preserve our reasoning
for future evaluation this reasoning is presented in the appendix to this study. In addition, we
excluded occurrences where any one or more of the following problems existed (see Appendix
2): 1) lack of sub-epochal age control (e.g. “middle Miocene-Pliocene” or “Pliocene”); 2) lack of
minimum age control, 3) all available voucher specimens residing in a private collection; 4)
specimens lacking clear provenance (e.g. “specimen probably collected from locality…”; 5)
misidentified specimens that are not identifiable as *Otodus megalodon*; 6) occurrence with
corrected minimum date falling entirely within the Miocene; 7) occurrences where the estimated
age is based on the occurrence of *Otodus megalodon*, leading to a case of circular reasoning; and
8) unpublished occurrence data where the stratigraphy and geochronology cannot be evaluated
by the reader. Using the revised occurrence data presented in Appendix 1 and discussed in detail
below, we then reanalyzed the data using an Optimal Linear Extinction (OLE) model
implemented in R using the code and parameters used in Pimiento and Clements (2014).

Geochronologic framework

The traditional threefold division of the Pliocene and Pliocene-Pleistocene boundary set at 1.806
Ma (Gradstein et al., 2004) has recently been modified by the inclusion of the Gelasian stage
within the Pleistocene and designation of the Zanclean and Piacenzian stages as early and late
Pliocene (respectively), and a new Pliocene-Pleistocene boundary at 2.566 Ma (Gibbard et al.,
2009; Gradstein et al., 2012), which we follow herein. Stages of international usage are generally
referred to throughout (e.g. Messinian, Zanclean, Piacenzian, Gelasian) to alleviate confusion
between late Pliocene *sensu lato* (=Gelasian stage) and late Pliocene *sensu stricto* (=Piacenzian
stage); references to North American Land Mammal Ages (NALMAs; e.g. Clarendonian, Hemphillian, Blancan) and local New Zealand stages (e.g. Opoitian) are also made. Note that other recent studies in Pliocene-Pleistocene marine vertebrate paleontology followed the compromise of Hilgen et al. (2012) in maintaining the Gelasian as the late Pliocene (e.g. Boessenecker 2011b, 2013a, 2013b).

166 **Institutional abbreviations**

CAS, California Academy of Sciences, San Francisco, California, USA; LACM, Natural History Museum of Los Angeles County, Los Angeles, California, USA; RMM, Riverside Municipal Museum, Riverside, California, USA; SDNHM, San Diego Natural History Museum, San Diego, California, USA; UCMP, University of California Museum of Paleontology, Berkeley, California, USA

167 **Results**

168 **Systematic Paleontology**

169 Chondrichthyes Huxley, 1880

170 Lamniformes Berg, 1958

171 Otodontidae Glikman, 1964

172 Otodus Agassiz, 1838

173 Otodus megalodon Agassiz, 1843

174 **Referred material**
LACM 59836, 59837, 115989, 129982, and SDNHM 53167, Capistrano Formation (LACM localities 4437, 5792, 61520, and SDNHM locality 3842); LACM 148311, 148312, and 149739, Fernando Formation (LACM localities 7321 and 7481); RMM A597-1, A597-9A, A597-9B, and A597-12, Lomita Marl (no locality number); LACM 59065 and SDNHM 73462, Niguel Formation (LACM locality 65187 and SDNHM locality 4080, respectively); LACM 10141, LACM 11149, LACM 159028, Palos Verdes Sand and unnamed Pleistocene strata (LACM locality 1066 and 7971); UCMP 219502, Purisima Formation (UCMP locality V-99875); LACM 10152, LACM 103448, LACM 156334, and SDNHM 29742, San Diego Formation (LACM localities 1080, 1095, 4875 and SDNHM locality 3253); LACM 131149, SDNHM 23056, 23959 (four teeth with same number), 24448, 77430, and 77343, “upper” San Mateo Formation (Lawrence Canyon local fauna; LACM locality 4297 and SDNHM locality 3161); CAS 72799.00, Santa Cruz Mudstone (no locality number); and LACM 29065-29067, 29069-29070, and 29073-29078, Tirabuzón Formation (LACM locality 6579).

Diagnosis

Crowns broad, triangular and erect, being broader and more vertical in anterior teeth and with increasing posterior inclination distally; labial crown face relatively flat or mildly convex, often showing short vertical infoldings of the enameloid at base of crown, lingual crown face moderately convex; crown enameloid relatively thick; chevron-shaped band of thinner enameloid on lingual crown face between base of crown and root (lingual neck), thicker in medial section becoming thinner laterally and showing fine vertical striations; cutting edge with fine, even, rounded serrations along entire margin, averaging 12-17 serrations per centimeter (cm); lateral cusplets lacking in adult teeth; root is labiolingually thick with two laterally divergent but
apicobasally shallow lobes, usually similar in size and not extending much laterally beyond the
lower margin of the crown; labial root face is relatively flat while the lingual root face is laterally
convex and thicker in the center with a pronounced nutritive foramen medially.

Taxonomic Note

The taxonomy of the megatoothed sharks is a topic that has been subject to much controversy
and debate. In the original description of the species, Agassiz (1843) referred *Otodus megalodon*
to the genus *Carcharodon* based on superficial morphological similarities in tooth shape and the
presence of serrations. Jordan and Hannibal (1923) recognized a difference between the extant
great white shark (*Carcharodon carcharias*) and the fossil serrated-edged megatoothed sharks,
erecting the genus *Carcharocles* for the latter. However, this taxonomic change was not adopted
into the literature until the late 1980s (Cappetta, 1987). Other generic names proposed for *Otodus
megalodon* include *Procarcharodon* Casier, 1960 and *Megaselachus* Glikman, 1964. Usage of
Carcharodon and *Procarcharodon* were challenged in the literature based on tooth morphology,
the fossil record, and taxonomic priority (Cappetta, 1987; Ehret et al., 2009a, 2012; Pimiento et
al., 2010). Instead, *Carcharocles* is broadly accepted for the assignment *O. megalodon* in many
recent studies (Ehret et al., 2009a; 2012; Pimiento and Clements, 2014; Boessenecker, 2016;
Pimiento and Balk, 2015; Pimiento et al., 2016, 2010, 2017; Collareta et al., 2017). Some recent
publications have proposed uniting all megatoothed shark taxa included within *Otodus* and
Carcharocles in the genus *Otodus*. In this scenario, all non-serrated forms would belong to the
genus *Otodus*, whereas Eocene-Oligocene serrated forms *C. auriculatus* and *C. angustidens* are
designated to the subgenus *Carcharocles*, and *C. chubutensis* and *C. megalodon* belong to their
own subgenus *Megaselachus* (Zhelezko and Kozlov, 1999; Cappetta and Carvallo, 2006;
Cappetta, 2012). Recently, Shimada et al. (2017) further argued from a cladistic standpoint that *Carcharocles* should be synonymized within *Otodus* in order to make the latter genus monophyletic. We follow the reassignment of *Isurus hastalis* (or alternatively, *Cosmopolitodus hastalis*) to the genus *Carcharodon* (Ehret et al., 2012) for similar reasons, and thus adopt the reassignment of *Carcharocles* to *Otodus*. Because subgenera are generally not used as a taxonomic convention in vertebrate paleontology, we do not use the subgeneric taxonomy of Cappetta (2012).

Occurrence Data

Pliocene-aged teeth of *Otodus megalodon* have been recovered or reported from several formations in California and Baja California (Fig. 1), including the Lomita Marl, Capistrano, Fernando, Niguel, Purisima, San Diego, San Mateo, and Tirabuzón formations, the ages of which are summarized below. These specimens exhibit a combination of morphological characters including: a large overall size and thickness, triangular shape, fine serrations, and a V-shaped chevron on the lingual surface between the crown and root. These characters, when observed together, indicate that the specimens undoubtedly belong to *O. megalodon*. The only other sharks that could be confused with *O. megalodon* during the late Miocene and early Pliocene are those belonging to *Carcharodon* (*C. hubbelli* and *C. carcharias*), which have significantly smaller and labiolingually flatter teeth lacking V-shaped chevrons and have coarser serrations. Therefore, we are confident in assigning these specimens to *O. megalodon*. Additionally, we found that relatively few *O. megalodon* teeth from eastern North Pacific Neogene sediments are present in museum collections; for example, a total of 145 teeth from Miocene and Pliocene west coast deposits are represented in LACM, SDNHM, and UCMP collections, primarily from California.
In comparison, Purdy et al. (2001:131) referred 82 specimens in addition to "several hundred isolated teeth" from the Pungo River Limestone and Yorktown Formation at the Lee Creek mine alone, and countless additional teeth exist in other collections and from other stratigraphic units from the Atlantic coastal plain. Intense collecting at eastern North Pacific localities like the Sharktooth Hill Bonebed suggests that this is not simply a case of collection bias and likely reflects genuine rarity (whether biogenic or taphonomic) of *O. megalodon* teeth from Pacific coast deposits. An alternative hypothesis is a geochronologically earlier extinction of *O. megalodon* in the Pacific basin than the Atlantic.

Capistrano Formation

A thick section of late Neogene mudrock exposed in Orange County, California, are divided into the Monterey/Temblor Formation (early late Miocene) and the Capistrano Formation (latest Miocene to early Pliocene). In southern Orange County, the Capistrano Formation is between 300-650 m thick, and includes a basal turbidite unit composed of breccia, sandstone, and siltstone, and an upper micaceous siltstone unit (Vedder, 1972; Ingle, 1979). The Oso Member of the Capistrano is a coarse clastic tongue within the finer grained parts of the Capistrano (not formally named as member) interpreted as the distal deposits of a delta within a shallow embayment (Vedder et al., 1957; Barboza et al., 2017).

Specimens recovered from the Capistrano Formation (latest Miocene - early Pliocene) include, LACM 59836, 58937, 115989, 129982, and SDNHM 53167 (Fig. 2). SDNHM 53167 is an incomplete upper left anterior tooth and represents the largest specimen from the Capistrano Formation (Fig. 2 A-B). The other specimens from the Capistrano Formation represent both anterior and posterolateral teeth and range from nearly complete (LACM 129982, Fig. 2C-D;
LACM 115989, Fig. 2G-H) to highly fragmented (LACM 59837, Fig. 2E-F; LACM 59836, Fig. 2I-J). SDNHM 53167 was collected from the upper siltstone unit of the Capistrano Formation (SDNHM locality 3842) from a horizon approximately 30 m below a bed which yielded diatoms of the earliest Pliocene *Thalassiosira oestruppi* zone (T.A. Deméré, pers. comm., 11/2012; Deméré and Berta, 2005), dated at approximately 5.6-3.7 Ma in age (Barron and Gladenkov, 1995; Barron and Isaacs, 2001). This occurrence of *O. megalodon* can be best summarized as latest Miocene to earliest Pliocene in age (latest Messinian to Zanclean equivalent, 5.6-3.7 Ma).

Other specimens from the Capistrano Formation (LACM 58936, 59837, 115989, 129982) were collected from unknown horizons within the Capistrano Formation. A record of *Otodus megalodon* was listed by Pimiento and Clements (2014: table S1) from the Capistrano Formation and dated to 11.6-3.6 Ma, without explanation or an accompanying Paleobiology Database entry. Specimens reported from the Oso Member of the Capistrano Formation by Barboza et al. (2017) are 6.6-5.8 Ma in age (Messinian) based on the occurrence of the extinct horse *Dinohippus interpolatus*.

Fernando Formation

The Fernando Formation of Eldridge and Arnold (1907) is a poorly defined unit of Pliocene marine sediments in the Ventura and Los Angeles basins of southern California (Eldridge and Arnold, 1907; Woodring et al., 1946; Vedder, 1972; Squires, 2012). The Fernando Formation unconformably overlies several Miocene units, including the terrestrial Sycamore Canyon Member of the Puente Formation and the marine Capistrano and Monterey Formations (Vedder, 1972) in Orange County. The Fernando Formation was defined only on biostratigraphic age and includes numerous lithologies (Eldridge and Arnold, 1907; Squires, 2012). Because of confused
relationships with other late Neogene marine rocks in southern California (e.g. Pico, Towsley, and Repetto formations), poor exposure, subsequently overlain by suburban sprawl in by the late 20th century, the stratigraphy and age of various outcrops assigned to the Fernando formation remains uncertain.

Eldridge and Arnold (1907) listed a single occurrence of *Otodus megalodon* (as *Carcharodon rectus*, a junior synonym of *O. megalodon*) from the Shatto Estate locality; however, no photograph, specimen number, or repository information was given and thus it is not possible to unambiguously interpret this record. Eldridge and Arnold (1907) also reported the shark *Isurus planus* (as *Oxyrhina plana*) in addition to numerous mollusks indicating a late Pliocene to Middle Pleistocene age (C. L. Powell, II, pers. comm., 6/2013). *Isurus planus* is only represented in upper Oligocene through lower upper Miocene sediments (Chattian-Tortonian equivalent; Boessenecker, 2011b:14). The lack of reliable provenance and reported presence of *I. planus* casts doubt on the validity of this record, and is not considered further.

Three teeth are recorded from the Fernando Formation (Fig. 3), including two specimens (LACM 148311 and 148312) from Eagle Glen in Riverside County (LACM locality 7321) and a single specimen (LACM 149739) from nearby LACM locality 7481. LACM 148311 and 148312 are fragmentary with thin and abraded enameloid, and the serrations have been eroded away. LACM 149739 is now missing, though an existing photograph shows this specimen is fragmented yet exhibits unabraded cutting edges. Owing to poor understanding of the lithostratigraphy and age of the Fernando Formation at this locality, the age of these specimens - whether reworked or not - is equivocal, and the age of the Fernando Formation is best summarized as Pliocene to Pleistocene.
Imperial Formation

The Imperial Formation is a thick succession of fossiliferous mudrocks deposited on the west side of the Salton Trough in Imperial County, California, and exposed best in the vicinity of Coyote Mountains, Fish Creek Mountains, and Vallecito Mountains (Powell, 1988; Winker and Kidwell, 1991; Dorsey et al., 2011). The Imperial Formation was upgraded to group rank and subdivided into the Latrania and Deguynos members by Winker and Kidwell (1991), though we follow Powell (2008) in not recognizing this as the redefined units have not been formally described. The Fish Creek-Vallecito section of the Imperial Formation, the underlying Split Mountain Group (Miocene), and the overlying Palm Springs Group (Pliocene-Pleistocene) has been the focus of extensive stratigraphic studies investigating regional tectonics, magnetostratigraphy, biostratigraphy, and the formation of the Colorado River (Dorsey et al., 2011). The Imperial Formation has long been considered Pliocene (Hanna, 1926; Durham, 1954), and recent magnetostratigraphic work on the Fish Creek-Vallecito section indicates that the Imperial Formation spans chron C3An.1r to C3n.1n, indicating an age of 6.43-4.187 Ma for the entire unit (Dorsey et al., 2011).

A single tooth (USNM 324542) of "Carcharodon arnoldi" was reported by Hanna (1926) from the Imperial Formation at Garnet Cañon (USGS locality 3922) in the Coyote Mountains of Imperial County, California, near the type locality of the extinct walrus *Valenictus imperialensis* (Mitchell, 1961). This specimen is clearly a tooth of *Otodus megalodon* owing to its large size and clearly preserved V-shaped dental band. It is unclear whether this came from the lower (Latrania) or upper (Deguynos) member of the formation. By extrapolating magnetostratigraphy from the better studied Fish-Creek Vallecito section, this occurrence of *O. megalodon* is latest Miocene to early Pliocene (6.43-4.187 Ma).
Lomita Marl

The Lomita Marl consists mostly of unconsolidated calcareous mudrocks and sandstones exposed in the western Los Angeles basin in the vicinity of Torrance and Lomita northeast of the Palos Verdes Hills, Los Angeles County, California (Grant and Gale, 1931; Woodring et al., 1946; Fig. 1). The Lomita Marl is, in part, a lateral and temporal equivalent of the Timms Point Silt and the San Pedro Sand (Woodring et al., 1946). The Lomita Marl is widely considered to be middle Pleistocene in age based on aminostratigraphy (Ponti, 1989; Dupré et al., 1991), magnetostratigraphy (Lajoie et al., 1991), and a 3 Ma K/Ar date from glauconite (Obradovich, 1965) is thought to be an error. *Otodus megalodon* is represented from this unit by teeth of "*Carcharodon branneri*" Jordan, 1922 (RMM A597-1, A597-12) and "*Carcharodon leviathan*" Jordan, 1922 (RMM A597-9A, A597-9B), both junior synonyms of *O. megalodon*; these specimens were collected in a quarry that exposed the unconformable contact between the Miocene Monterey Formation and Pleistocene Lomita Marl. These specimens are fragmented, abraded, with polished enameloid and phosphatic matrix adhering in cracks. Mount (1974) noted that several marine vertebrate fossils appear to be reworked from underlying Miocene rocks, supported by the preservation of these specimens (e.g. Boessenecker et al., 2014). In summary, these specimens appear to have been reworked or anthropogenically mixed with middle Pleistocene sediment approximately 650 to 350 Ka in age (See Purported Pleistocene and Holocene records of *Otodus megalodon*).

Niguel Formation
The Niguel Formation is a unit of unconsolidated conglomerates, sandstones, and siltstones exposed in the San Joaquin Hills in Orange County, California, deposited along the southeastern margin of the Los Angeles Basin and unconformably overlying the Capistrano Formation and other strata (Vedder, 1972). At SDNHM locality 4080, the Niguel Formation unconformably overlies the lower-middle Miocene “Topanga” Formation (T.A. Deméré, pers. comm., 2013). The base of the Niguel Formation is a conglomerate lag deposit (Vedder, 1972). The Niguel Formation is rich in fossils and mollusks indicating a Pliocene age (Vedder, 1972) possibly between 3.3 and 3.15 Ma (Powell et al., 2008). Ehlig (1979) considered the Niguel Formation to be late Pliocene to Pleistocene in age, estimating it to be 1-3 Ma (Kem and Wicander, 1974; Powell et al., 2008). An abraded tooth fragment identifiable as *Otodus megalodon* (SDNHM 73462) was collected from the basal conglomerate, along with teeth of other sharks including *Carcharhinus* sp., *Carcharodon carcharias*, *C. hastalis*, *Galeocerdo* sp., *Hemipristis* sp., *Isurus planus*, and *Myliobatis* sp. Also recovered from this locality were tooth fragments of *Desmostylus* sp., earbones of a delphinid dolphin and a balaenid mysticete, and a pharyngeal tooth plate of the sheepshead fish *Semicossyphus*. Another *O. megalodon* specimen, LACM 59065 from Capistrano Highlands (LACM locality 65187), likely represents an upper anterior tooth (Fig. 4A-B) and exhibits longitudinal cracks, abraded cutting edges, and a fragmented root. Although certain marine vertebrates from SDNHM locality 4080 such as *Carcharodon carcharias* and Delphinidae indet. are consistent with a Pliocene age for the Niguel Formation, several other taxa are typical of older Miocene age. For example, the youngest records of desmostylians occur in the Tortonian equivalent Santa Margarita Sandstone in Santa Cruz County, and the Monterey Formation in Orange County, California (Mitchell and Repenning, 1963; Barnes, 1978; Domning, 1978; Barnes, 2013). Other Miocene vertebrates from this
locality include C. hastalis and Isurus planus; C. hastalis is replaced by C. hubbelli at approximately 8-7 Ma (Ehret et al., 2012), whereas confirmable records of I. planus are Tortonian and older (Boessenecker, 2011b:14). The taphonomic condition of these O. megalodon specimens and presence of strictly Miocene marine vertebrates, and the occurrence of these specimens in the basal conglomerate of the Niguel Formation all indicate they were reworked from the early to middle Miocene “Topanga” Formation.

Purisima Formation

The Purisima Formation comprises a series of lightly consolidated sandstones, mudrocks, and diatomites of latest Miocene and Pliocene age representing shoreface to offshore sedimentation, and is exposed mostly west of the San Andreas fault in the vicinity of Santa Cruz, Halfmoon Bay, and Point Reyes in central and Northern California (Cummings et al., 1962; Norris, 1986; Powell, 1998; Powell et al., 2007; Boessenecker et al., 2014). The Purisima Formation is richly fossiliferous, including fossils of sharks, bony fishes, marine birds, and marine mammals (see Boessenecker, 2011b, 2013b; Boessenecker et al., 2014, and references therein). A single nearly complete upper anterior tooth of O. megalodon (UCMP 219502; Fig. 5) was reported by Boessenecker (2016) from the basal bonebed of the Miocene to Pliocene Purisima Formation near Santa Cruz, California (UCMP locality V99875). Only the root lobes and a small portion of the crown base are missing, and longitudinal enameloid cracks are evident lingually and labially. The basal meter of the Purisima Formation is composed of glauconitic sandstone and a matrix-supported conglomerate with abundant vertebrate skeletal elements mantling an erosional surface with ~1 m of relief, unconformably overlying the upper Miocene Santa Cruz Mudstone (Clark, 1981; Boessenecker et al., 2014). Glauconite from the base of the Purisima Formation has
yielded a K/Ar date of 6.9 ± 0.5 Ma (Clark, 1966; Powell et al., 2007). A tuff bed approximately
30 m above the base of the Purisima Formation has been tephrochronologically correlated with
5.0 ± 0.3 Ma tephra in the Pancho Rico Formation (Powell et al., 2007). Therefore, this locality
(UCMP locality V99875) can be summarized as 6.9-5.3 Ma in age, or latest Miocene (Messinian
equivalent).

San Diego Formation

The San Diego Formation comprises approximately 85-90 m of unconsolidated Pliocene and
Pleistocene sandstones, mudrocks, and conglomerates of terrestrial and marine origin deposited
via extensional tectonics within a graben in the vicinity of San Diego, California between Pacific
Beach and northern Baja California (Deméré 1982, 1983; Wagner et al., 2001; Vendrasco et al.,
2012). The San Diego Formation is informally divided into two members: a “lower” sandstone
member that is entirely marine in origin, and an “upper” sandstone and conglomeratic member
that is marine and terrestrial (Deméré 1982, 1983). Although earlier studies concluded that the
San Diego Formation was approximately 3-1.5 Ma in age (late Pliocene to early Pleistocene:
Deméré 1983), more recent estimates based on paleomagnetism and correlation with patterns of
eustatic sea level change suggest an early Pliocene age (Zanclean equivalent) for parts of the
“lower” member of the San Diego Formation (Wagner et al., 2001). Furthermore, Vendrasco et
al. (2012) reported the San Diego Formation to range in age from 4.2-1.8 Ma. A single upper
right anterior or anterolateral tooth missing part of the root and crown (SDNHM 29742; Fig. 6A-
B) was reported from the basal San Diego Formation near La Joya in Baja California (SDNHM
locality 3253; Ashby and Minch, 1984). The tooth is almost equilateral, with a slight curvature to
the right. A V-shaped chevron, fine serrations, and three small nutrient foramina are present on
the lingual surface of the root. Three additional specimens (Fig. 6C-H) are recorded from LACM collections from San Diego County: LACM 156334 (LACM locality 1095), a broken tooth with thinned and longitudinally cracked enameloid, abraded surfaces and broken edges; LACM 10152 (LACM locality 4875), a broken but unabraded tooth with longitudinally cracked enameloid; LACM 103448 (LACM locality 1080), a fragment of enameloid shell missing the orthodentine core. These other specimens are less complete than SDNHM 29742 and are not stratigraphically located within the San Diego Formation.

The only specimen with precise stratigraphic data (SDNHM 29742) was collected from the basal unconformity of the San Diego Formation. This occurrence can be summarized as approximately 4.2 Ma in age (early Pliocene); a minimum age of 3.6 Ma is provided by magnetostratigraphy of strata higher up in the San Diego Formation (Wagner et al., 2001).

San Mateo Formation

The San Mateo Formation is a thin package of unconsolidated sandstones and conglomerates, which crop out in the vicinity of Oceanside in San Diego County, California. It is considered a temporal equivalent of the Oso Member of the Capistrano Formation (Barnes et al., 1981; Domning and Deméré, 1984), and Vedder (1972) refers to it as a coarse clastic tongue within the Capistrano Formation. It consists of a lower unit composed of massive, fine-grained sandstones with occasional muddy lenses, sparse pebbles and cobbles, and an upper unit of complexly bedded sandstones and conglomerates; a sharp erosional surface at the base of the upper unit divides the formation (Barnes et al., 1981; Domning and Deméré, 1984). Fossil assemblages from the lower and upper units have been termed the San Luis Rey River and Lawrence Canyon local faunas, respectively (Barnes et al., 1981). Domning and Deméré (1984) interpreted the
lower unit to represent middle or inner shelf deposition, and the upper unit to represent the distal margin of a submarine fluvial delta system. A diverse marine vertebrate assemblage including sharks, bony fish, marine birds, and marine mammals is now known from the San Mateo Formation at Oceanside (Barnes et al., 1981; Domning and Deméré, 1984; Long, 1994). Due to the lack of macroinvertebrates or microfossils, age estimates for the San Mateo Formation have been established based on vertebrate biochronology, including terrestrial mammals and mancalline auks (Domning and Deméré 1984). Barnes et al. (1981) considered both the lower and upper units to be correlative with the Hemphillian NALMA. However, Domning and Deméré (1984) reported that the presence of *Aepycamelus* indicated the lower unit is slightly older, perhaps late Clarendonian to early Hemphillian in age (approximately 10-7 Ma; Tedford et al., 2004), and correlated the upper unit with the late Hemphillian NALMA (7 Ma to 4.9-4.6 Ma; Tedford et al., 2004). Based on the presence of mancalline auks found in other rocks of early Pliocene age (and the lack of late Pliocene mancalline taxa as from the San Diego Formation), Domning and Deméré (1984) indicated an early Pliocene age for the upper unit of the San Mateo Formation. Teeth of *Otodus megalodon* occur in both the lower and upper units of the San Mateo Formation (Domning and Deméré 1984; Barnes and Raschke, 1991), and occurrences from the upper unit are here summarized as earliest Pliocene in age (5.33 to 4.6 Ma).

The San Mateo Formation has yielded a number of partial *Otodus megalodon* teeth including: SDNHM 23056, 23959 (several teeth in a lot), 24448, 77430, 77343, and LACM 131149 (Fig.7). One specimen catalogued in the lot SDNHM 23959 (Fig. 7I-J) and another tooth (SDNHM 24448, Fig. 7C-D) represent the most complete teeth recovered from the San Mateo Formation. SDNHM 23959 represents an upper right anterolateral tooth consistent with *O. megalodon* despite missing the apex, having worn and chipped mesial and distal cutting edges,
and broken root lobes. SDNHM 24448 represents an upper left posterolateral tooth (Fig. 7C-D).

The specimen is missing a portion of the right root lobe and is missing some enameloid on the lingual surface of the crown.

Santa Cruz Mudstone

At the type section west of Santa Cruz (Santa Cruz County) of the Santa Cruz Mudstone is a monotonous succession of jointed, indurated, and siliceous mudrocks (siltstone and porcelanite), which conformably overlies the Santa Margarita Sandstone and is in turn unconformably overlain by the Purisima Formation. In the vicinity of Point Reyes, thick, massively bedded, indurated and fractured siliceous mudrocks were originally considered by Galloway (1977) to represent both the Monterey and Drakes Bay formations, but were remapped by Clark et al. (1984) as the somewhat younger Santa Cruz Mudstone. Near Bolinas, foraminifera representative of the Delmontian California benthic foraminiferal Stage (~7-5 Ma; Barron and Isaacs, 2001) has been recorded, in addition to a diatom flora typical of Diatom Zone X (Clark et al., 1984), which was later refined to subzone A of the Nitzschia reinholdii zone by Barron (in Zeigler et al., 1997), equivalent to 7.6-6.5 Ma (Barron and Isaacs, 2001). Fossil bivalves from the Santa Cruz Mudstone at Bolinas indicate deposition at about 500+ m (Zeigler et al., 1997). Fossil vertebrates from the Santa Cruz Mudstone include the baleen whale Parabalaenoptera baulinensis (Zeigler et al., 1997), the sea cow Dusisiren dewana (initially reported as Dusisiren species D by Domning, 1978), a herpetocetine baleen whale (Boessenecker, 2011a:8), and a number of unpublished marine mammals (R.W. Boessenecker, pers. obs.) including a phocoenid porpoise (cf. Piscolithax), an albireonid dolphin, fragmentary odobenid and otariid bones, and earbones of indeterminate balaenopterid mysticetes.
A single tooth of *O. megalodon* was reported from “Bolinas Bay” by Jordan (1907: figure 15) as the holotype specimen of “*Carcharodon branneri*”. Unfortunately, searches for additional locality information at CAS were unsuccessful. Specimens reported by D.S. Jordan in various publications were originally curated at Stanford University, the collections of which were later transferred to CAS; it is possible that some of these specimens were never transferred to CAS (S. Mansfield, pers. comm., 2013; D. Long, pers. obs., 2013). Ransom (1964) published township and range coordinates for this locality, suggesting that the type was collected near the west shore of the Bolinas Lagoon in the vicinity of the Bolinas County Park. However, this area is covered by Quaternary alluvium with nearby exposures of sparsely fossiliferous Pliocene to Pleistocene Merced Formation. It is more likely that the original locality information is correct, and that the type specimen was collected from exposures (or as float) of the Santa Cruz Mudstone along the northwestern shore of Bolinas Bay (Jordan and Hannibal, 1923; also see Jordan, 1907) or possibly from as far west as Duxbury Reef (where the majority of twentieth and twenty-first century vertebrate collections from this unit have been made). This specimen was erroneously assigned to the Purisima Formation by Pimiento and Clements (2014: table S2) and assigned an age of 5.3-2.6 Ma without explanation; the Purisima Formation does not crop out anywhere within 25 km of Bolinas (Clark et al. 1984). Bones of fossil marine mammals are often collected as float from these beaches. **If this specimen was collected from the Santa Cruz Mudstone near Bolinas, then it likely represents an older 7.6-6.5 Ma record.**

Tirabuzón Formation

The Tirabuzón Formation consists of unconsolidated fossiliferous sandstone exposures in the vicinity of Santa Rosalia along the eastern side of the northern Baja California Peninsula.
(Applegate, 1978; Applegate and Espinosa-Arrubarrena, 1981; Wilson, 1985). Formerly mapped as the Gloria Formation, it was renamed the Tirabuzón Formation by Carreno (1982) after abundant spiral burrows of the ichnogenus *Gyrolithes* which leant the locality the name “Corkscrew Hill.” Paleodepth estimates for this unit range from 200-500 m (outer shelf to slope) based on foraminifera (Carreno, 1982) to 55-90 m (middle shelf) based on ichnology (Wilson, 1985). The Tirabuzón Formation unconformably overlies the upper Miocene Boleo Formation, and is in turn unconformably overlain by the lower to upper Pliocene Infierno Formation (Holt et al., 2000). Holt et al. (2000) reported an 40Ar/39Ar date of 6.76 ± 0.9 Ma from an andesitic interbed within the Boleo Formation, constraining a lower limit for the age of the Tirabuzón Formation. The age of the Tirabuzón Formation was considered Pliocene by Applegate (1978) and Applegate and Espinosa-Arrubarrena (1981), and approximately 4-3 Ma (Zanclean equivalent) by Barnes (1998). Mollusks reported from the overlying Infierno Formation indicate a maximum age of early Pliocene (Johnson and Ledesma-Vasquez, 2001), therefore indicating a minimum age of early Pliocene for the Tirabuzón Formation. Shark and marine mammal fossils have previously been reported from the Tirabuzón Formation near Santa Rosalia, including 34 shark taxa (including *Otodus megalodon*), an indeterminate otoriid, two balaenopterid mysticetes, a small pontoporiid dolphin (aff. *Pontoporia*), an indeterminate phocoenid, two delphinids (*Delphinus* or *Stenella* sp., and aff. *Lagenorhynchus* sp.), two kogiids (aff. *Kogia* sp. and cf. *Scaphokogia* sp.), and an indeterminate physeterid (Applegate, 1978; Applegate and Espinosa-Arrubarrena, 1981; Barnes, 1998). This occurrence of *O. megalodon* is estimated to be late Miocene to early Pliocene (Messinian-Zanclean equivalent; 6.76-3.6 Ma).

Small teeth of *Otodus megalodon* are relatively abundant in the Tirabuzón Formation (Fig. 8), and include 14 partial teeth: LACM 29064-29067, and 29069-29078. Most of these
teeth, except for smaller fragments, exhibit the characteristic V-shaped chevron and most still retain their fine serrations. The most complete specimens are two left posterolateral upper teeth, LACM 29065 (Fig. 8I-J), missing portions of the root lobes, and LACM 29076 (Fig. 8G-H), missing the apex of the crown and parts of the root lobes.

Corrections to the Pimiento and Clements (2014) dataset and Optimal Linear Estimation results

Prior to conducting the Optimal Linear Estimation (OLE) we thoroughly vetted every fossil occurrence in the dataset published by Pimiento and Clements (2014: table S1; Table 2). We encountered a number of issues requiring adjustments. Much of their dataset (88% of occurrences) consists of dates artificially stretched to fit stage ‘bins’. This is standard practice for paleobiological analyses (e.g. Pimiento et al., 2016) like richness counts, but it artificially expanded the age range (e.g. older maxima and younger minima) for occurrences where finer geochronological age control is available in the literature. This artificially inflated the number of Piacenzian-stage occurrences of *Otodus megalodon* which actually have older minimum dates. In other cases, we updated out-of-date geochronologic data; out of occurrences we did not exclude, we were able to update 25 out of 32 occurrences (78% of the dataset) originally reported by Pimiento and Clements (2014) based upon stratigraphic and geochronologic studies not cited by these authors (Table 2).

We excluded 10 out of the original 42 occurrences for a number of reasons (see Materials and Methods, Appendix 2). Several occurrences did not possess subepochal age control, and we excluded any occurrence data for *Otodus megalodon* teeth where the finest age control possible was provided by a statement in the literature like “this locality is mapped as Pliocene” or “middle
Miocene to Pliocene” without finer age control (Luanda Formation, Angola; Canimar Formation, Cuba; Salada Formation, Mexico). Several occurrences reported by Pimiento and Clements (2014) consist of unpublished records of *O. megalodon* teeth from the Bone Valley Formation in various mines in Florida, dated to early Pliocene; however, their stratigraphic justification refers to unpublished data in the FLMNH online data base. Despite an early Pliocene age being consistent with other exposures of the upper Bone Valley Formation (Morgan, 1994), we excluded these occurrences because the stratigraphic interpretation cannot be evaluated based upon the published literature. Other occurrences simply lacked strong provenance; for example, one specimen of *O. megalodon* reported by Keyes (1972) from New Zealand had locality data on a label stating “probably from the upper Miocene beds Older Wanganui Series of NZ Geological Survey from between Wanganui and N. Plymouth”; 180 km of coastline separate these two cities. We excluded this record for its lack of provenance. One purported Pliocene tooth of *O. megalodon* was reported from the Highlands Limestone of Barbuda (Flemming and McFarlane, 1998); we excluded this record because geological studies indicate this unit is actually middle Miocene in age (Brasier and Mather, 1975, and references therein). In one case, teeth reported from the Bahia Inglesa Formation of Chile (Long, 1993) lacked intraformational stratigraphic control, and were unable to be assigned to the Miocene or Pliocene section of the formation. The age control for two other localities (Luanda Formation, Angola; “Main Vertebrate spot”, Libya) was based on biochronology of the shark assemblage, with a minimum age of early Pliocene being based on the presence of *O. megalodon* itself (Antunes, 1978; Pawellek et al., 2012). We excluded these records because inclusion of these records within the OLE would be circular reasoning. Other occurrences were excluded because they are misidentified teeth of *Carcharodon carcharias* (Cameron Inlet Formation, Australia; Kemp, 1991: plate 30C) or the
596 specimens in question still reside in a private collection and therefore cannot be evaluated by
597 scientists (Tangahoe Formation, New Zealand; McKee 1994a).
598 We were also able to add several occurrences to the dataset (Table 2; Appendix 1),
599 including some published after the publication of Pimiento and Clements (2014) and some that
600 they were unaware of (e.g. Carrillo Puerto Formation, Mexico; Tokomaru Formation, New
601 Zealand); at least one occurrence (Daito Limestone, Kita-daito-jima, Japan) originally excluded
602 by Pimiento and Clements (2014) was found to have stronger age control than acknowledged by
603 these authors, and was included within the OLE.
604
605 Our revised age data was incorporated into the OLE model of extinction, resulting in a
606 modal extinction date of 3.51 Ma, suggesting that *O. megalodon* was most likely extinct by this
607 date. The oldest possible extinction date is 4.14 Ma, and the youngest possible extinction is 3.17
608 Ma.
609
610 Discussion
611
612 *Purported Pleistocene and Holocene records of Otodus megalodon*
613 The record of *Otodus megalodon* from the Lomita Marl (Jordan, 1922) is substantially younger
614 than many other records from California. However, as noted by Mount (1974), numerous sharks
615 and other marine vertebrates from the Lomita Quarry locality are only found elsewhere in middle
616 and late Miocene localities, such as *Allodesmus* (Jordan and Hannibal, 1923: plate 9J) and
617 *Carcharodon hastalis* (Jordan and Hannibal, 1923: plate 9E-F). Furthermore, shark teeth
618 including *O. megalodon* teeth were collected by quarry manager H. M. Purple (Anonymous,
619 1921; Mount 1974), without accompanying stratigraphic information, and it is unclear where in
the Lomita Quarry these specimens were collected. Hanna (in Jordan and Hannibal, 1923) notes that the base of the Lomita Marl within the Lomita Quarry was a glauconitic sandstone with abundant abraded whale bones, and that in addition to Miocene marine mammals and sharks, Pleistocene terrestrial mammals and a single Pleistocene pinniped were present in the quarry. This curious mixture of taxa suggests stratigraphic reworking of older fossil material; indeed, the holotype specimen of the gastropod *Mediargo mediocris* was considered by Wilson and Bing (1970:7) to be reworked from Pliocene sediments into the Lomita Marl. Woodring et al. (1946) report that the Lomita Marl includes "beds of gravel consisting chiefly or entirely of limestone pebbles and cobbles derived from the “Monterey” Shale. Locally huge boulders of soft Miocene mudstone and Pliocene siltstone are embedded in calcareous strata." These specimens of *O. megalodon* (RMM A597-1, A597-9A, and A597-9B) are fragmented, and strongly abraded with polished enameloid, indicating reworking. Only RMM A597-12 showed little evidence of abrasion, although taphonomic experiments on fossil teeth by Argast et al. (1987) noted that abrasion is not a guaranteed outcome of transport or reworking. Lastly, anthropogenic mixing of multiple strata during mining operations is also a possibility for seemingly older taxa in younger beds. Dynamite was used for mining in the quarry, which apparently “[brought] down bones of whales, sea lions, land animals, chipped flints, pieces of charcoal, sea shells, shark’s teeth, arrowheads, all mixed together” (Anonymous, 1921). The report of *O. megalodon* from the Pleistocene Lomita Marl could be due to reworking from the “Monterey” Formation, anthropogenic mixing from mining operations, collection from underlying rocks, poor record keeping, or any combination of the above. In this context, teeth of *O. megalodon* from the Lomita Marl are considered to be allochthonous (either by sedimentologic or anthropogenic
reworking) and thus not relevant to the consideration of the timing of the extinction of the
species.

Three teeth of *Otodus megalodon* (LACM 10141, 11194, and 159028) are questionably
recorded from the upper Pleistocene Palos Verdes Sand and unnamed strata at Newport Bay
Mesa (Fig. 9). LACM 11194 is now missing, but was found by an unknown collector prior to
1915 from the North Pacific Avenue and Bonita Avenue intersection in northern San Pedro,
California. The locality is now built over, but was mapped as Palos Verdes Sand by Woodring et
al. (1946). LACM 10141, is a fragmentary tip of a tooth with longitudinally cracked enameloid
and abraded serrations (Fig. 9c-d), and was collected from unnamed strata along the Newport
Bay Mesa formerly considered to belong to the Palos Verdes Sand (collector and collection date
unknown); it is alternatively possible that this specimen was collected from an exposure (now
covered) of the Pliocene Fernando Formation (see Mount, 1969). LACM 159028 (Fig. 9a-b)
possesses the following dubious locality information: “Rosecranz Ave. Long Beach, Orange
Co.?“ We note that Rosecrans Avenue is far from the Palos Verdes Hills and from Long Beach,
and that both Rosecrans Avenue and Long Beach are located within Los Angeles County. It is
also possible that this specimen is reworked from the underlying Puente Formation (L.G. Barnes,
pers. comm., 2015). Alternatively, some Pliocene rocks are known in the Coyote Hills near
Rosecrans Avenue (Powell and Stevens, 2000), and the specimen may have been collected there.
It is not possible to unambiguously recognize any of these specimens as genuine Pleistocene
records of *O. megalodon* given the lack of provenance for the other specimens. We also note the
similarity in preservation (chiefly color) between LACM 159028 and teeth of *O. megalodon*
from some localities at Sharktooth Hill (middle Miocene “Temblor” Formation, Kern County).
Kanakoff (1956) only listed *C. carcharias* from this unit. Furthermore, a comprehensive study of
the ichthyofauna by Fitch (1970) only recorded *C. carcharias*. We hypothesize that LACM 11194 was a misidentified or mistranscribed specimen of *C. carcharias* and that the other two specimens originated from a separate locality. Therefore, we conclude that no reliable records of *O. megalodon* exist for Pleistocene deposits in the Los Angeles Basin.

Several studies have reported teeth of *Otodus megalodon* dredged from the seafloor and considered to be Pleistocene or even Holocene in age (Tschernezky, 1959; Seret, 1987; Roux and Geistdoerfer, 1988). Dredged specimens from the south Pacific were reported by Tschernezky (1959) and Seret (1987), whereas Roux and Geistdoerfer (1988) reported numerous specimens from the Indian Ocean seafloor off the coast of Madagascar. Tschernezky (1959) and Roux and Geistdoerfer (1988) both attempted to determine the age of the teeth by measuring the thickness of adhering manganese dioxide nodules and applying published rates of MnO$_2$ nodule growth. Tschernezky (1959) reported a range of 24,406-11,333 years for the MnO$_2$ nodule formation for these teeth, and Roux and Geistdoerfer (1988) reported specimens with nodules with the equivalent of 60-15 Ka of MnO$_2$ growth. However, both studies assumed a constant rate of nodule development and interpreted these dates as indicating a latest Pleistocene extinction of *O. megalodon* (Tschernezky, 1959; Roux and Geistdoerfer, 1988). Tschernezky (1959) argued that even if *O. megalodon* went extinct during the Middle Pleistocene ca. 500 Ka, his dredged *O. megalodon* teeth should have had MnO$_2$ coatings approximately 75 mm thick. Because conditions favoring the formation and growth of MnO$_2$ nodules are not necessarily constant over geologic time (Purdy et al., 2001), these dates can only indicate when these teeth were exposed to seawater and do not reflect geochronologic age. It is probable, that these specimens were concentrated on the seafloor through submarine erosion, winnowing, or depositional hiatus (or a combination thereof). Collections of numerous resistant vertebrate hardparts from these
dredgings (e.g. shark teeth and cetacean ear bones) support this suggestion. A more parsimonious scenario is that these specimens are Pliocene (or Miocene) in age and were deposited in areas of slow sedimentation with intermittent erosion, concentrating nodules and resistant marine vertebrate skeletal elements (typically teeth and cetacean skull fragments) on the seafloor. Intermittent periods of favorable chemistry fostered the formation and growth of MnO$_2$ nodules and coatings, and it is possible that these specimens have experienced numerous burial-exhumation cycles (Boessenecker et al., 2014). Lastly, because no extrinsic absolute or biostratigraphic age data exist for these specimens, the maximum age of these specimens is ultimately unknown and cannot be considered to represent post-Pliocene occurrences (Applegate and Espinosa-Arrubarrena, 1996; Purdy et al., 2001).

Timing of the extinction of *Otodus megalodon* in the eastern North Pacific

Although numerically less abundant than in deposits of the Atlantic Coastal Plain, fossil teeth of *Otodus megalodon* have been reported from numerous middle Miocene localities in California and Baja California (Jordan and Hannibal, 1923; Mitchell, 1966; Deméré et al., 1984). Late Miocene occurrences of *O. megalodon* include the Almejas (Barnes, 1992), Monterey (Barnes, 1978), “lower” San Mateo (Domning and Deméré, 1984), Capistrano Formation (Barboza et al., 2017; this study), Purisima formations (Boessenecker, 2016; this study), Santa Cruz Mudstone (Jordan and Hannibal, 1923; this study), and Santa Margarita Sandstone (Barnes, 1978; Domning, 1978). Pliocene occurrences in California (reviewed above) are restricted to the Capistrano, Fernando, “upper” San Mateo, basal San Diego, and the Tirabuzón formations (Fig. 10). In the context of dubious provenance or clear evidence of reworking for specimens younger than these, we do not consider post-early Pliocene records of *O. megalodon* to be reliable and
putative Quaternary specimens are particularly dubious. Several specimens of *O. megalodon* are now recorded from the basal San Diego Formation, which is as old as 4.2 Ma (Wagner et al., 2001; Vendrasco et al., 2012), and we interpret these records as earliest Pliocene (Zanclean equivalent; Fig. 10). The lack of *O. megalodon* specimens and abundant *Carcharodon carcharias* teeth in younger sections of the San Diego Formation is paralleled in the Purisima Formation at Santa Cruz. Although *Carcharodon carcharias* teeth are common within well-sampled bonebeds, no teeth of *O. megalodon* have been discovered from the Pliocene section of either unit. However, teeth of *O. megalodon* are rare within established Miocene marine vertebrate collections relative to *C. hastalis* or *C. carcharias* (e.g., Sharktooth Hill Bonebed). In summary, specimens discussed herein are entirely latest Miocene or earliest Pliocene in age (Messinian-Zanclean equivalent; Fig. 10). Qualitative assessment of the fossil record of *O. megalodon* in California and Baja California thus suggests extinction of this taxon during the early Pliocene, perhaps during the Zanclean stage or near the Zanclean-Piacenzian boundary (ca. 4-3 Ma; Fig. 10).

A worldwide view of *Otodus megalodon* extinction

The fossil record of *Otodus megalodon* in other regions lends support to an early Pliocene (Zanclean) extinction (Fig. 10). Previously described records of Pliocene age possibly relevant to temporally constraining the extinction of *O. megalodon* include occurrences from the eastern U.S.A., Japan, Australia, New Zealand, western Europe (Belgium, Spain, United Kingdom, Denmark), southern Europe (Italy), Africa (Libya), and South America (Chile, Ecuador, Peru, Venezuela).
In deposits around the North Sea, *Otosus megalodon* has been reported from the Miocene (Bendix-Almgreen, 1983). A tooth from the upper Miocene Gram Formation of Denmark was interpreted by Bendix-Almgreen (1983:23-24) as representing the youngest record of *O. megalodon* from the eastern North Atlantic. A tooth of *O. megalodon* from the Pliocene to Pleistocene Red Crag Formation of eastern England was mentioned by Donovan (1988), although the majority of marine vertebrate remains - marine mammals in particular - show evidence of reworking including abrasion, polish, and phosphatization and furthermore typically consist of dense elements with relatively high preservation potential (e.g. cetacean tympanoperiotics, teeth and tusks, and osteosclerotic beaked whale rostra; Owen, 1844, 1870; Lydekker, 1887). This evidence suggests that marine vertebrate material has been reworked from preexisting strata predating the Red Crag Formation; indeed, the Red Crag unconformably overlies the Eocene London Clay and the lower Pliocene Coralline Crag Formation (Zalasiewicz et al., 1988), and marine vertebrate remains may date to the Eocene-Pliocene depositional hiatus (or erosional lacuna) between the London Clay and overlying Red Crag Formation, or may have been reworked from the Coralline Crag Formation. A single record from the Piacenzian of France is cited by Cappetta (2012) from Gervais (1852), but no geographic or stratigraphic information is given by Gervais (1852:173) and this record cannot be evaluated.

In a review of the stratigraphic range of Pliocene to Pleistocene elasmobranchs from Italy, Marsili (2008) indicated that *O. megalodon* disappeared from the record during the Zanclean (~4 Ma) and that no Piacenzian records existed, *contra* Pimiento and Clements (2014: table S1). In their discussion of the shark fauna of Malta, Ward and Bonavia (Ward and Bonavia, 2001) considered *O. megalodon* to have become extinct in the early Pliocene (but without further comment). Other early Pliocene (Zanclean equivalent) records of *O. megalodon* from western
Europe and the Mediterranean region include the Huelva Formation of Spain (Garcia et al., 2009) and unnamed strata in the Sabratah Basin of northwestern Libya (Pawellek et al., 2012). Elsewhere in Africa, *O. megalodon* is recorded from the early Pliocene of Angola (Antunes, 1978).

In a summary of Mesozoic and Cenozoic ichthyofaunas from Japan, Yabumoto and Uyeno (1995) reported that *O. megalodon* is widely known from Miocene strata and occurs in the lower Pliocene, but not from younger upper Pliocene and Pleistocene rocks. Subsequently, a review by Yabe et al. (2004) reported widespread occurrences of *O. megalodon* in the earliest Pliocene (Zanclean) and a few late early Pliocene records (Piacenzian), and considered *O. megalodon* to have gone extinct in the late early Pliocene or late Pliocene. Three post-Zanclean occurrences were listed by Yabe et al. (2004): one is uncertainly Piacenzian, another Zanclean or Piacenzian, and one strictly Piacenzian in age. However, these specimens were not figured by Yabe et al. (2004) and it is unclear whether or not they are reworked.

An early Pliocene (Zanclean or Piacenzian) extinction of *O. megalodon* seems to be reflected in the fossil record of Australia and New Zealand. Late Miocene occurrences of *O. megalodon* are common from both landmasses (Keyes, 1972; Kemp, 1991; Fitzgerald, 2004). Several early Pliocene records of *O. megalodon* have been reported from Australia (Kemp, 1991; Fitzgerald, 2004), including a single specimen from the lower Pliocene Cameron Inlet Formation (Zanclean-Piacenzian correlative; Kemp, 1991; Fitzgerald, 2004). However, judging from Kemp’s (1991: plate 30C) illustration, this specimen is a misidentified *Carcharodon carcharias* tooth owing to its small size, lack of a preserved chevron, and relatively large serrations. Although Keyes (1972) reported several specimens ranging in age from early Pliocene to Pleistocene age, many of them have tenuous provenance. For example, one such specimen
(included in the analysis by Pimiento and Clements 2014) can only be pinpointed to a 180 km section of coastline. Only a single published Pliocene tooth of *Otodus megalodon* from New Zealand has reliable provenance, a specimen collected from Patutahi Quarry on the North Island. According to Keyes (1972), strata at the quarry correspond to the local New Zealand Opoitian Stage (5.33-3.6 Ma); accordingly, this tooth represents the youngest demonstrable record of *O. megalodon* from New Zealand.

In South America, *Otodus megalodon* is known continuously from at least the middle Miocene to the lowermost Pliocene in the Pisco Basin of Peru (Muizon and de Vries, 1985; Ehret et al., 2012). However, owing to the absence of well-sampled younger marine vertebrate assemblages, it is unclear if this simply reflects an artifact of preservation. *Otodus megalodon* has also been reported from the latest Miocene-early Pliocene of Ecuador (Longbottom, 1979). Although *O. megalodon* has been reported from the well-sampled uppermost Miocene to lower Pliocene Bahia Inglesa Formation of Chile (Long, 1993), the exact age of this occurrence is imprecisely known (Walsh and Hume, 2001; Walsh and Naish, 2002). On the Caribbean coast of South America, *O. megalodon* is continuously known from middle Miocene through lower Pliocene deposits, with the youngest specimens occurring in the lowermost Pliocene (Zanclean-correlative; Aguilera et al., 2004).

Paralleling the record in Venezuela, abundant Miocene records of *O. megalodon* exist in the western North Atlantic and Caribbean, with the youngest specimens consistently being earliest Pliocene in age (Flemming and McFarlane, 1998; Purdy et al., 2001; Ward, 2008). In deposits of the Atlantic coastal plain of the United States, teeth of *O. megalodon* are abundant within the lower Pliocene Sunken Meadow Member of the Yorktown Formation (Purdy et al., 2001; Ward, 2008), but absent from the upper Pliocene Rushmere and Moore House members of
The extinction of *O. megalodon* was interpreted by Ward (2008) to have occurred during the time recorded by the unconformity and depositional hiatus of uncertain duration between the Sunken Meadow and Rushmere members. A number of possible Pleistocene occurrences of *O. megalodon* from Florida are present in FLMNH collections, but originate from temporally mixed fossil assemblages and quarry spoil piles (D.J. Ehret, pers. obs. 2015).

We interpret the absence of *O. megalodon* in the Rushmere and Moore House members of the Yorktown Formation, upper San Diego Formation, and “upper” parts of the Purisima Formation to be biochronologically real and reflect the genuine absence of this taxon. Given the intense collecting of these localities by amateur and professional paleontologists alike, collection bias is not likely a factor in determining the stratigraphic occurrence of *O. megalodon*.

Results of the OLE analysis based upon our corrected version of the dataset (Table 2, Appendix 1) incorporating current stratigraphic and geochronologic data indicate that *Otodus megalodon* was most likely extinct by 3.51 Ma and perhaps even as early as 4.14 Ma and certainly no later than 3.17 Ma (Fig. 10), strongly indicating an extinction during the Zanclean stage or close to the Zanclean-Piacenzian boundary (3.6 Ma). This global estimate compares well with the qualitative approach for *O. megalodon* occurrence data in the eastern North Pacific, and consistent identification of minimum ages near the Zanclean-Piacenzian boundaries indeed suggests a globally synchronous extinction at or around 3.6 Ma. We note that the separation between the maximum and minimum inferred extinction dates (~970,000 years) from the OLE are substantially narrower than those results (3.66 million years) reported by Pimiento and Clements (2014). Recently, Wang and Marshall (2015) noted that the "poorly resolved ages of many of the fossil occurrences" of the Pimiento and Clements (2014) dataset led to poor
resolution in their results. Indeed, the results of macroevolutionary studies of extinction timing are sensitive to the quality of available dates (Price et al., 2018). Our finer resolution highlights the importance of carefully vetting the provenance of each reported occurrence and thoroughly exploring the geological literature for such fossil occurrences - critical for any study of biochronology (Price et al., 2018) as well as selecting fossil calibrations for molecular clock dating (Parham et al., 2012).

Possible causes for the extinction of Otodus megalodon

Determination of the timing of the extinction of *Otodus megalodon* is a necessary step in identifying potential causal factors contributing to its demise (Pimiento and Clements, 2014; Pimiento et al., 2016). Although testing various hypotheses in a quantitative manner is beyond the scope of this article, some comments regarding potential biotic and physical drivers are appropriate. Abiotic drivers such as changes in climate, upwelling, currents, sea level, and paleogeography are possible determinants in the decline of the odontid lineage (Pimiento et al., 2016). Physical events coincident with a “mid”-Pliocene extinction include: 1) a decrease in upwelling in the eastern North Pacific (Barron, 1998), 2) increased seasonality of marine climates (Hall, 2002); 3) a period of climatic warming and permanent El-Niño like conditions in the equatorial Pacific (Wara et al., 2005; Fedorov et al., 2013), 4) followed by late Pliocene global cooling (Zachos et al., 2001), 5) initiation of closure of the Panama seaway and restriction of currents and east-west dispersal among marine organisms (Collins et al., 1996; Haug et al., 2001), and 6) stable eustatic sea level during the early Pliocene, 7) followed by eustatic sea level fall related to initial glaciation during the late Pliocene (Miller et al., 2005). Some of these changes in oceanic circulation and upwelling were regional, and therefore do not represent likely
causes in the extinction of \textit{O. megalodon} (if the extinction was indeed globally synchronous; e.g. Pimiento and Clements, 2014); however, these events may have been, in part, responsible for range fragmentation. Long term cooling following the middle Miocene Climatic Optimum (Zachos et al., 2001) cannot be excluded as a contributing factor and certainly may have reduced the geographic range of this species (Purdy, 1996; Dickson and Graham, 2004; but see Pimiento et al., 2016; Ferrón, 2017). A robust analysis of worldwide geographic distribution in \textit{O. megalodon} found no change in the latitudinal distribution coincident with changes in global climate (Pimiento et al., 2016).

The lack of evidence for a climatic driver of \textit{O. megalodon} extinction suggests that a biotic driver is probably responsible (Pimiento et al., 2016). Within the eastern North Pacific (ENP), many "archaic" marine mammal taxa became extinct during the early Pleistocene (Gelasian stage, \approx2 Ma; Boessenecker, 2013a, 2013b), but the extinction of \textit{O. megalodon} predated this (\approx3.51 Ma). The appearance of the modern marine mammal fauna appears to have occurred by the early Pliocene in the North Atlantic and western South Pacific (Whitmore, 1994; Fitzgerald, 2005; Boessenecker, 2013a), suggesting globally asymmetric origination of modern marine mammal genera and species (Boessenecker, 2013a), in contrast with an apparently synchronous extinction of \textit{O. megalodon} (Pimiento and Clements, 2014; this study). Many extant genera of cetaceans first appeared during the Pliocene (Fordyce and Muizon, 2001), apparently temporally coincident with the extinction of \textit{O. megalodon}, but with uncertain relevance. Other biotic effects have been hypothesized to have affected or been driven by \textit{O. megalodon}. Recently described macrophagous sperm whales appear to have been diverse worldwide in the middle and late Miocene, were similar in size to \textit{O. megalodon}, and were likely competing apex predators (Lambert et al., 2010). A high diversity of small-bodied baleen whales during the middle
Miocene is implicated in supporting such an assemblage of gigantic predators (Lambert et al., 2010; Collareta et al., 2017). Similarly, Lindberg and Pyenson (2006) noted that the extinction of *O. megalodon* is roughly contemporaneous with the earliest fossil occurrences of killer whales (*Orcinus*) in the fossil record, and perhaps competition with killer whales during the Pliocene could have acted as a driver in the extinction of *O. megalodon*. However, the Neogene fossil record of *Orcinus* is limited to two occurrences: an isolated tooth from Japan (Kohno and Tomida, 1993), and the well-preserved skull and skeleton of *Or. citoniensis* from the late Pliocene of Italy (Capellini, 1883). Furthermore, *Or. citoniensis* was small in comparison to extant *Or. orca* (est. 4 m body length: Heyning and Dahlheim, 1988) and possessed a higher number of relatively smaller teeth and narrower rostrum (Bianucci, 1996), and was probably not an analogous macrophagous predator. Because fossils of *Orcinus* are not widespread during the Pliocene, claims of competition between *O. megalodon* and *Orcinus* are problematic.

Furthermore, the decline and loss of cosmopolitan macrophagous physeteroids (Tortonian-Messinian; Lambert et al., 2010) appears to have predated the early Pliocene extinction of *O. megalodon* by several million years.

Evolutionary interactions with baleen whales have also been implicated for the *Otodus* lineage (Collareta et al., 2017). Lambert et al. (2010) implicated increased diversity of mysticetes during the middle Miocene to have driven the evolution of killer sperm whales; similarly, this could have driven body size increases in *O. megalodon*. Cetacean diversity peaked in the middle Miocene and began to decrease in the late Miocene (Lambert et al., 2010; Marx and Uhen, 2010), and maximum body length amongst fossil mysticetes increased during the late Miocene and Pliocene (Lambert et al., 2010), heralding the appearance of modern giants such as *Balaena, Balaenoptera, Eschrichtius, Eubalaena*, and *Megaptera*. Despite the increase in maximum body
size among mysticetes and coincidental extinction of *O. megalodon* during the Pliocene,
numerous small-bodied archaic mysticetes persisted into the Pliocene (Bouetel and Muizon, 2006; Whitmore and Barnes, 2008; Collareta et al., 2017) and even Pleistocene (Boessenecker, 2013a), complicating this relationship. A modal extinction date of 3.51 for *O. megalodon* pre-dates the extinction of certain dwarf mysticetes such as *Balaenula* (Piacenzian-Gelasian; Barnes, 1977), *Herpetocetus* (Calabrian-Ionian; Boessenecker, 2013b) and various dwarf balaenopterids (Deméré, 1986; Boessenecker, 2013a). Indeed, further study of rare late Pliocene marine mammals is necessary to further elucidate potential competition with *O. megalodon*, extinctions, and faunal dynamics (Pimiento et al., 2017).

Another potential biotic factor in the extinction of *Otodus megalodon* is the evolution of the modern great white shark, *Carcharodon carcharias* (Pimiento et al., 2016). It gradually evolved from the non-serrated *Carcharodon hastalis* during the late Miocene, transitioning first into the finely serrated *Carcharodon hubbelli* approximately 8-7 Ma, then evolved into the coarsely serrated *C. carcharias* approximately 6-5 Ma (Ehret et al., 2009a, 2012; Long et al., 2014). However, in the western North Atlantic, *C. carcharias* is absent in the early Pliocene Sunken Meadow Member of the Yorktown Formation (Purdy et al., 2001; Ward, 2008), and in its place is *C. hastalis* (= *Isurus hastalis* and *I. xiphodon* in Purdy et al., 2001). *Carcharodon carcharias* instead occurs higher in the Rushmere Member of the Yorktown Formation (Müller, 1999). This suggests that the appearance of *C. carcharias* in the Atlantic may have been delayed relative to the Pacific. Pawellek et al. (2012) reported an earliest Pliocene fish assemblage on the Mediterranean coast of Libya that included *C. carcharias* and *O. megalodon*; clarifying the timing of first appearance of *C. carcharias* in ocean basins outside the Pacific is necessary, but beyond the scope of this study. Nevertheless, the timing of *O. megalodon* extinction appears to
overlap with the final widespread global occurrence of *C. carcharias* in the early Pliocene. It is critical to note that a single putative tooth of *C. carcharias* has been reported from the middle Miocene Calvert Formation and has been identified as evidence supposedly disproving the *C. hastalis-C. hubbelli-C. carcharias* transition (Purdy, 1996; Gottfried and Fordyce, 2001), although Ehret et al. (2012) indicated this specimen is a misidentified juvenile *O. megalodon* tooth.

The development of serrations in *Carcharodon hubbelli* suggests a refined ability to prey upon warm-blooded prey relative to other large lamnid and carcharhinid sharks (Frazzetta, 1988; Ehret et al., 2009a, 2009b, 2012). Perhaps trophic competition with the newly evolved *C. carcharias* contributed to the extinction of *Otodus megalodon*, in which adult *C. carcharias* would have been in the same size range and likely would have competed with juvenile *O. megalodon*. Owing to its global scope, the first appearance of modern *C. carcharias* during the early Pliocene is a likely candidate for the driver behind the extinction of *O. megalodon*. Further investigations regarding body size trends in the *Otodus* and *Carcharodon* lineages, the *C. hastalis-C. hubbelli-C. carcharias* anagenetic lineage in the Pacific basin and elsewhere (Fig. 10), and the timing of *C. carcharias* first appearances and *O. megalodon* last appearances in the Atlantic and other ocean basins are necessary to evaluating these hypotheses of extinction drivers of *O. megalodon*.

Conclusions

Fossil teeth of *Otodus megalodon* have been reported from Miocene, Pliocene, and Pleistocene aged strata in California (USA) and Baja California (Mexico). Critical examination of Pleistocene specimens and their stratigraphic context clearly indicate that they are reworked,
have poor provenance, or the specimens are missing (or some combination thereof), making evaluation impossible. Specimens of late Pliocene age, such as those from the Niguel Formation, also appear to be reworked from older strata. Early Pliocene specimens from the Capistrano Formation, Imperial Formation, lowermost San Diego Formation, upper San Mateo Formation, and Tirabuzón Formation appear to represent the youngest autochthonous (or parautochthonous) records, whereas numerous *O. megalodon* records of middle and late Miocene age have been reported. Optimal Linear Estimation analysis of a revised global dataset of *Otodus megalodon* occurrences strongly suggests that *O. megalodon* was extinct by the end of the early Pliocene (3.51 Ma). This appears to pre-date Pliocene-Pleistocene faunal turnover of marine mammals, and the extinction of *O. megalodon* may instead be related to late Miocene-Pliocene range fragmentation, declining numbers of small-bodied mysticete whales, and the evolution of modern *Carcharodon carcharias*. This study further dispels publicly held opinions that *Otodus megalodon* may still be extant, and that *Otodus megalodon* did not survive to the end of the Pliocene.

Acknowledgments

This study benefited from discussions with J. Ashby, M. Balk, M. DeJong, T.A. Deméré, J. Duran, R.E. Fordyce, A. Gale, J. Geisler, M.D. Gottfried, S. Mansfield, F.A. Perry, C. Pimiento, and K. Shimada. We thank the following, who expedited access to collections under their care: L.G. Barnes, J. Bryant, T.A. Deméré, J. El Adli, M. Goodwin, P. Holroyd, S. McLeod, F.A. Perry, K. Randall, and V. Rhue. Thanks to S. McLeod, V. Rhue, and J. Velez-Juarbe for curatorial assistance. We are grateful for the careful comments of C.L. Powell, II, K. Shimada,
and an anonymous reviewer, whose detailed comments improved the quality of an earlier draft of this study.

References

Hall CA. 2002. Nearshore marine paleoclimatic regions, increasing zoogeographic provinciality, molluscan extinctions, and paleoshorelines, California: Late Oligocene (27 Ma) to Late Pliocene (2.5 Ma). *Geological Society of America Special Paper* 357:1-489.

1270 Long DJ, Boessenecker RW, and Ehret DJ. 2014. Timing of evolution in the *Carcharodon* lineage: Rapid morphological change creates a major shift in a predator’s trophic niche. 2nd Annual Sharks International Conference. Durban, South Africa. p 123.

tectonics, paleoceanography, and faunal change. *Paleobiology* 18:401-424.

Welton BJ. 1979. Late Cretaceous and Cenozoic Squalomorphii of the Northwest Pacific Ocean
Ph.D. University of California.

Whitmore FC. 1994. Neogene climatic change and the emergence of the modern whale fauna of
the North Atlantic Ocean. *Proceedings of the San Diego Society of Natural History*
29:223-227.

Whitmore FC, and Barnes LG. 2008. The Herpetocetinae, a new subfamily of extinct baleen
whales (Mammalia, Cetacea, Cetotheriidae). *Virginia Museum of Natural History Special
Publication* 14:141-180.

Wilson EC. 1985. The spiral trace fossil *Gyrolithes* de Saporta, 1884 in the Pliocene Tirabuzon
Formation near Santa Rosalia, Baja California Sur, Mexico. *Bulletin of the Southern
California Academy of Science* 84:57-66.

Wilson EC, and Bing DE. 1970. Type specimens of fossil Invertebrata in the Los Angeles
County Museum of Natural History, exclusive of Paleontology. *Los Angeles County

Winker CD, and Kidwell SM. 1996. Stratigraphy of a marine rift basin: Neogene of the western

Woodring WP, Bramlette MN, and Kew WSW. 1946. Geology and Paleontology of Palos

Yabe H, Goto M, and Kaneko N. 2004. Age of *Carcharocles megalodon*: a review of the

Yabumoto Y, and Uyeno T. 1995. Late Mesozoic and Cenozoic fish faunas of Japan. *The Island
Arc* 3:255-269.

of the Red Crag and Norwich Crag Formations between Aldeburgh and Sizewell,
Suffolk, England. *Philosophical Transactions of the Royal Society of London Series B,
Biological Sciences* 322:221-272.

Zeigler CV, Chan GL, and Barnes Lg. 1997. A new late Miocene balaenopterid whale (Cetacea:
Mysticeti), *Parabalaenoptera baulinensis*, (new genus and species) from the Santa Cruz
Mudstone, Point Reyes Peninsula, California. *Proceedings of the California Academy of

Figure 1. Map of California (USA) and Baja California (Mexico) showing autochthonous and
parautochthonous late Miocene and Early Pliocene records of *Otodus megalodon*, and
allochthonous Late Pliocene and Pleistocene records.
Figure 2. Teeth of *Otodus megalodon* from the Capistrano Formation. SDNHM 53167 in lingual (A) and labial (B) view; LACM 129982 in lingual (C) and labial (D) view; LACM 59837 in lingual (E) and labial (F) view; LACM 115989 in lingual (G) and labial (H) view; LACM 59836 in lingual (I) and labial (J) view.

Figure 3. Teeth of *Otodus megalodon* from the Fernando Formation. LACM 148312 in lingual (A) and labial (B) view; LACM 148311 in lingual (A) and labial (B) view.

Figure 4. Tooth of *Otodus megalodon* from the Niguel Formation. LACM 59065 in lingual (A) and labial (B) view.

Figure 5. Tooth of *Otodus megalodon* from the Purisima Formation. UCMP 219502 in lingual (A) and labial (B) view.

Figure 6. Teeth of *Otodus megalodon* from the San Diego Formation. SDNHM 29742 in lingual (A) and labial (B) view; LACM 156334 in lingual (C) and labial (D) view; LACM 10152 in lingual (E) and labial (F) view; LACM 103448 in lingual (G) and labial (H) view.

Figure 7. Teeth of *Otodus megalodon* from the San Mateo Formation. LACM 131149 in lingual (A) and labial (B) view; SDNHM 24448 in lingual (C) and labial (D) view; SDNHM 23959 in lingual (E) and labial (F) view; SDNHM 77343 in lingual (G) and labial (H) view; SDNHM 23959 in lingual (I) and labial (J) view; SDNHM 23959 in lingual (K) and labial (L) view; SDNHM 23959 in lingual (M) and labial (N) view.
Figure 8. Teeth of *Otodus megalodon* from the Tirabuzón Formation. LACM 29067 in lingual (A) and labial (B) view; LACM 29064 in lingual (C) and labial (D) view; LACM 29077 in lingual (E) and labial (F) view; LACM 29076 in lingual (G) and labial (H) view; LACM 29065 in lingual (I) and labial (J) view; LACM 29074 in lingual (K) and labial (L) view; LACM 29069 in lingual (M) and labial (N) view; LACM 29073 in lingual (O) and labial (P) view; LACM 29075 in lingual (Q) and labial (R) view; LACM 29072 in lingual (S) and labial (T) view.

Figure 9. Teeth of *Otodus megalodon* of purported Pleistocene age. LACM 159028 in lingual (A) and labial (B) view, supposedly from Palos Verdes Sand; LACM 10141 in lingual (C) and labial (D) view, supposedly from unnamed Pleistocene strata at Newport Bay Mesa.

Figure 10. Geochronologic age range of *Otodus megalodon*-bearing strata and occurrences in the eastern North Pacific. Age control of latest Miocene and Pliocene *O. megalodon*-bearing stratigraphic units represented by thick vertical gray bars. Geochronologic control of *O. megalodon* occurrences depicted as thin vertical black bars. Autochthonous and parautochthonous records in blue; allochthonous (reworked) occurrences in red. Abbreviations: NALMA, North American Land Mammal Age.
Figure 1

Map of California and Baja California showing genuine late Miocene and Early Pliocene records of *Otodus megalodon*, and dubious Late Pliocene and Pleistocene records.
Figure 2

Otodus megalodon teeth from the Capistrano Formation.

SDNHM 53167 in lingual (a) and labial (b) view; LACM 129982 in lingual (c) and labial (d) view; LACM 59837 in lingual (e) and labial (f) view; LACM 115989 in lingual (g) and labial (h) view; LACM 59836 in lingual (i) and labial (j) view.
Figure 3

Otodus megalodon teeth from the Fernando Formation.

LACM 148312 in lingual (a) and labial (b) view; LACM 148311 in lingual (a) and labial (b) view.
Figure 4

Otodus megalodon tooth from the Niguel Formation.

LACM 59065 in lingual (a) and labial (b) view.
Figure 5

Otodus megalodon tooth from the Purisima Formation.

UCMP 219502 in lingual (a) and labial (b) view.
Figure 6

Otodus megalodon teeth from the San Diego Formation.

SDNHM 29742 in lingual (a) and labial (b) view; LACM 156334 in lingual (c) and labial (d) view; LACM 10152 in lingual (e) and labial (f) view; LACM 103448 in lingual (g) and labial (h) view.
Figure 7

Otodus megalodon teeth from the San Mateo Formation.

LACM 131149 in lingual (a) and labial (b) view; SDNHM 24448 in lingual (c) and labial (d) view; SDNHM 23959 in lingual (e) and labial (f) view; SDNHM 77343 in lingual (g) and labial (h) view; SDNHM 23959 in lingual (i) and labial (j) view; SDNHM 23959 in lingual (k) and labial (l) view; SDNHM 23959 in lingual (m) and labial (n) view.
Figure 8

Otodus megalodon teeth from the Tirabuzón Formation.

LACM 29067 in lingual (a) and labial (b) view; LACM 29064 in lingual (c) and labial (d) view; LACM 29077 in lingual (e) and labial (f) view; LACM 29076 in lingual (g) and labial (h) view; LACM 29065 in lingual (i) and labial (j) view; LACM 29074 in lingual (k) and labial (l) view; LACM 29069 in lingual (m) and labial (n) view; LACM 29073 in lingual (o and labial (p) view; LACM 29075 in lingual (q) and labial (r) view; LACM 29072 in lingual (s) and labial (t) view.
Figure 9

Otodus megalodon teeth of purported Pleistocene age.

LACM 159028 in lingual (a) and labial (b) view, supposedly from Palos Verdes Sand; LACM 10141 in lingual (c) and labial (d) view, supposedly from unnamed strata at Newport Bay Mesa.
Figure 10

Geochronologic age range of *Otodus megalodon*-bearing strata and occurrences in the eastern North Pacific.

Age control of latest Miocene and Pliocene *O. megalodon*-bearing stratigraphic units represented by thick vertical gray bars. Stratigraphic range of autochthonous and paraautochthonous *Otodus megalodon* occurrences (allochthonous records excluded) depicted as thin vertical black bars. Abbreviations: NALMA, North American Land Mammal Age.
Table 1 (on next page)

Measurements (in mm), age, and occurrence of *Otodus megalodon* teeth examined during this study.

Measurements after Pimiento et al. (2010). Asterisks (*) denote incomplete measurements; specimens without measurements are incomplete tooth fragments. Note that SDMHN 23959 consists of four partial teeth; a measurement is provided for the only tooth complete enough to measure.
Table 1. Measurements (in mm), age, and occurrence of *Otodus megalodon* teeth examined during this study. Measurements after Pimiento et al. (2010). Asterisks (*) denote incomplete measurements; specimens without measurements are incomplete tooth fragments. Note that SDMHN 23959 consists of four partial teeth; a measurement is provided for the only tooth complete enough to measure.

<table>
<thead>
<tr>
<th>Specimen</th>
<th>Formation</th>
<th>Age</th>
<th>Occurrence</th>
<th>Crown width</th>
<th>Crown height</th>
</tr>
</thead>
<tbody>
<tr>
<td>LACM 29064</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>48.55</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29065</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>42.9</td>
<td>45.1</td>
</tr>
<tr>
<td>LACM 29066</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29067</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29069</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29070</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29071</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29072</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LACM 29073</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>22.3*</td>
<td>18.15*</td>
</tr>
<tr>
<td>LACM 29074</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>31.7</td>
<td>32.45</td>
</tr>
<tr>
<td>LACM 29075</td>
<td>Tirabuzón Fm.</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td>28.3*</td>
<td>29.5*</td>
</tr>
<tr>
<td>LACM 29076</td>
<td>Tirabuzón</td>
<td>Zanclean, Autochthonous</td>
<td>33.4</td>
<td>36.75</td>
<td></td>
</tr>
<tr>
<td>Specimen</td>
<td>Formation</td>
<td>Age</td>
<td>Provenance</td>
<td>Other Notes</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>-----------</td>
<td>-----</td>
<td>------------</td>
<td>-------------</td>
<td></td>
</tr>
<tr>
<td>LACM 29077</td>
<td>Tirabuzón Fm.</td>
<td>5.33-3.6 Ma</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td></td>
</tr>
<tr>
<td>LACM 29078</td>
<td>Tirabuzón Fm.</td>
<td>5.33-3.6 Ma</td>
<td>Zanclean, 5.33-3.6 Ma</td>
<td>Autochthonous</td>
<td></td>
</tr>
<tr>
<td>LACM 10141</td>
<td>“Palos Verdes” Ss.</td>
<td>Pleistocene</td>
<td>Poor provenance</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 10152</td>
<td>San Diego Fm.</td>
<td>Pliocene</td>
<td>Autochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 103448</td>
<td>San Diego Fm.</td>
<td>Pliocene</td>
<td>Autochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 115989</td>
<td>Capistrano Fm.</td>
<td>Messinian-Zanclean, 5.6-3.7 Ma</td>
<td>Autochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 129982</td>
<td>Capistrano Fm.</td>
<td>Messinian-Zanclean</td>
<td>Autochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 131149</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or parautochthonous</td>
<td>57.6* 73.8</td>
<td></td>
</tr>
<tr>
<td>LACM 148311</td>
<td>Fernando Fm.</td>
<td>Pliocene-Pleistocene</td>
<td>Autochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>LACM 148312</td>
<td>Fernando Fm.</td>
<td>Pliocene-Pleistocene</td>
<td>Autochthonous</td>
<td>57.1*</td>
<td></td>
</tr>
<tr>
<td>LACM 156334</td>
<td>San Diego Fm.</td>
<td>Pliocene</td>
<td>Autochthonous</td>
<td>67.5</td>
<td></td>
</tr>
<tr>
<td>LACM 159028</td>
<td>Palos Verdes Ss.</td>
<td>Pleistocene</td>
<td>Poor provenance</td>
<td>101.5 97.1</td>
<td></td>
</tr>
<tr>
<td>SDNHM 23056</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or parautochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>SDNHM 23959</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or parautochthonous</td>
<td>90.07 82.6</td>
<td></td>
</tr>
<tr>
<td>SDNHM 24448</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or parautochthonous</td>
<td>77.39* 74.1</td>
<td></td>
</tr>
<tr>
<td>SDNHM 29742</td>
<td>San Diego Fm.</td>
<td>Zanclean, ~4.2 Ma</td>
<td>Autochthonous or parautochthonous</td>
<td>86.71* 96.89</td>
<td></td>
</tr>
<tr>
<td>SDNHM 53167</td>
<td>Capistrano Fm.</td>
<td>Messinian-Zanclean, 5.6-3.7 Ma</td>
<td>Autochthonous</td>
<td>103.86</td>
<td></td>
</tr>
<tr>
<td>SDNHM</td>
<td>Niguel Fm.</td>
<td>Pliocene</td>
<td>Allochthonous</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>73462</td>
<td>SDNHM 77343</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or paraautochthonous</td>
<td>-</td>
</tr>
<tr>
<td>-------</td>
<td>------------</td>
<td>---------------</td>
<td>----------------------</td>
<td>----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>SDNHM 77430</td>
<td>San Mateo Fm.</td>
<td>Zanclean, 5.33-4.6 Ma</td>
<td>Autochthonous or paraautochthonous</td>
<td>27.53</td>
<td>23.82</td>
</tr>
<tr>
<td>UCMP 219502</td>
<td>Purisima Fm.</td>
<td>Messinian, 6.9-5.33 Ma</td>
<td>Autochthonous or paraautochthonous</td>
<td>114.1*</td>
<td>112.2</td>
</tr>
</tbody>
</table>
Table 2 (on next page)

Summary of corrected ages of *Otodus megalodon* occurrences used in the Optimal Linear Estimation analysis.
Table 2. Summary of corrected ages of *Otodus megalodon* occurrences used in the Optimal Linear Estimation analysis.

<table>
<thead>
<tr>
<th>Locality</th>
<th>Formation</th>
<th>Country</th>
<th>Age (Pimiento & Clements)</th>
<th>Corrected Age</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kingsford Mine</td>
<td>Bone Valley Fm.</td>
<td>USA</td>
<td>10.3-4.9 Ma</td>
<td>10.3-4.9 Ma</td>
</tr>
<tr>
<td>Payne Creek Mine</td>
<td>Bone Valley Fm.</td>
<td>USA</td>
<td>5.3-3.6 Ma</td>
<td>10.3-4.9 Ma</td>
</tr>
<tr>
<td>Four Corners Mine</td>
<td>Bone Valley Fm.</td>
<td>USA</td>
<td>5.3-3.6 Ma</td>
<td>5.8-4.9 Ma</td>
</tr>
<tr>
<td>East Coast Aggregates</td>
<td>Tamiami Formation</td>
<td>USA</td>
<td>5.3-3.6 Ma</td>
<td>4.2-3.9</td>
</tr>
<tr>
<td>Lee Creek Mine</td>
<td>Yorktown Formation</td>
<td>USA</td>
<td>5.3-3.6 Ma</td>
<td>4.9-3.92</td>
</tr>
<tr>
<td>Elsmere Canyon</td>
<td>Towsley Formation</td>
<td>USA</td>
<td>5.3-3.6 Ma</td>
<td>10.0-5.3 Ma</td>
</tr>
<tr>
<td>Lawrence Canyon</td>
<td>San Mateo Formation</td>
<td>USA</td>
<td>10.3-4.9 Ma</td>
<td>5.33-4.6</td>
</tr>
<tr>
<td>San Juan Capistrano</td>
<td>Capistrano Formation</td>
<td>USA</td>
<td>11.6-3.6 Ma</td>
<td>5.6-3.7 Ma</td>
</tr>
<tr>
<td>Santa Cruz</td>
<td>Purisima Formation</td>
<td>USA</td>
<td>N/A</td>
<td>6.9-5.33</td>
</tr>
<tr>
<td>La Joya</td>
<td>San Diego Formation</td>
<td>USA</td>
<td>3.6-2.6 Ma</td>
<td>4.2-3.6 Ma</td>
</tr>
<tr>
<td>Garnet Canyon</td>
<td>Imperial Formation</td>
<td>USA</td>
<td>N/A</td>
<td>6.43-4.187 Ma</td>
</tr>
<tr>
<td>Bolinas</td>
<td>Santa Cruz Mudstone</td>
<td>USA</td>
<td>5.3-2.6 Ma</td>
<td>7.6-6.5 Ma</td>
</tr>
<tr>
<td>Kambul</td>
<td>Carrillo Puerto Formation</td>
<td>Mexico</td>
<td>N/A</td>
<td>10.3-4.6 Ma</td>
</tr>
<tr>
<td>Corkscrew Hill</td>
<td>Tiburazon Formation</td>
<td>Mexico</td>
<td>5.3-2.6 Ma</td>
<td>6.76-3.6 Ma</td>
</tr>
<tr>
<td>Casa el Jebe</td>
<td>Codore Formation</td>
<td>Venezuela</td>
<td>N/A</td>
<td>5.33-3.6</td>
</tr>
<tr>
<td>El Yacural</td>
<td>Paraguana Formation</td>
<td>Venezuela</td>
<td>5.33-3.6 Ma</td>
<td>5.33-3.6 Ma</td>
</tr>
<tr>
<td>Punta la Gorda</td>
<td>Onzole/Borbon Formation</td>
<td>Ecuador</td>
<td>5.33-2.6 Ma</td>
<td>5.33-3.4 Ma</td>
</tr>
<tr>
<td>Punta la Colorada</td>
<td>Onzole/Borbon Formation</td>
<td>Ecuador</td>
<td>5.33-2.6 Ma</td>
<td>5.33-3.4 Ma</td>
</tr>
<tr>
<td>Punta Mansueto</td>
<td>Chagres Formation</td>
<td>Panama</td>
<td>N/A</td>
<td>8.29-5.12</td>
</tr>
<tr>
<td>Sunlands</td>
<td>Loxton Sands</td>
<td>Australia</td>
<td>4.3-3.4 Ma</td>
<td>7.2-3.4 Ma</td>
</tr>
<tr>
<td>Pumping Station</td>
<td>Formation</td>
<td>Location</td>
<td>Age 1</td>
<td>Age 2</td>
</tr>
<tr>
<td>----------------</td>
<td>-----------------------------------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Dutton Way</td>
<td>Whaler’s Bluff Formation</td>
<td>Australia</td>
<td>5.3-3.6 Ma</td>
<td>5.33-3.6 Ma</td>
</tr>
<tr>
<td>Beaumaris</td>
<td>Black Rock Sand</td>
<td>Australia</td>
<td>5.0-3.4 Ma</td>
<td>6.0-4.9 Ma</td>
</tr>
<tr>
<td>Fossil Rock Stack</td>
<td>Grange Burn Formation</td>
<td>Australia</td>
<td>5.0-4.0 Ma</td>
<td>5.4-3.5 Ma</td>
</tr>
<tr>
<td>Pipiriki</td>
<td>Matemateaonga Formation</td>
<td>New Zealand</td>
<td>4.8-3.6 Ma</td>
<td>5.5-4.7 Ma</td>
</tr>
<tr>
<td>Patutahi Quarry</td>
<td>Tokomaru Formation</td>
<td>New Zealand</td>
<td>N/A</td>
<td>7.2-3.7 Ma</td>
</tr>
<tr>
<td>Bonares-Case del Pin</td>
<td>Arenas de Huelva Formation</td>
<td>Spain</td>
<td>5.33-3.6 Ma</td>
<td>5.33-3.6 Ma</td>
</tr>
<tr>
<td>Can Picafort</td>
<td>Son Mir Sequence</td>
<td>Spain</td>
<td>5.3-2.6 Ma</td>
<td>5.33-3.6 Ma</td>
</tr>
<tr>
<td>Vale de Zebro</td>
<td>Esbarrondadoiro Formation</td>
<td>Portugal</td>
<td>N/A</td>
<td>8.58-4.37 Ma</td>
</tr>
<tr>
<td>Santa Margarida</td>
<td>Esbarrondadoiro Formation</td>
<td>Portugal</td>
<td>N/A</td>
<td>8.58-4.37 Ma</td>
</tr>
<tr>
<td>Continental shelf</td>
<td>Unknown</td>
<td>Portugal</td>
<td>N/A</td>
<td>6.1-4.4 Ma</td>
</tr>
<tr>
<td>Cre outcrop</td>
<td>Touril Complex</td>
<td>Portugal</td>
<td>5.3-3.6 Ma</td>
<td>5.33-3.6 Ma</td>
</tr>
<tr>
<td>Castell’Arquato</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Miano</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Colli Piacentini</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Maiatico</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Tra Lorenzana e Lari</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Pienza</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Siena</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Colline Pisane</td>
<td>Unknown</td>
<td>Italy</td>
<td>5.3-2.6 Ma</td>
<td>5.33-4.0 Ma</td>
</tr>
<tr>
<td>Boso Peninsula</td>
<td>Senhata Formation</td>
<td>Japan</td>
<td>N/A</td>
<td>6.3-5.12 Ma</td>
</tr>
<tr>
<td>Kita-Daito-Jima</td>
<td>Daito Limestone</td>
<td>Japan</td>
<td>3.6-0.8 Ma</td>
<td>4.7-3.3 Ma</td>
</tr>
<tr>
<td>Choshi</td>
<td>Na-Araí Formation</td>
<td>Japan</td>
<td>N/A</td>
<td>5.33-4.36 Ma</td>
</tr>
<tr>
<td>Sendai-Iwate area</td>
<td>Tatsunokuchi Formation</td>
<td>Japan</td>
<td>N/A</td>
<td>5.6-3.9 Ma</td>
</tr>
</tbody>
</table>