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Background. Inter-patches movements may lead to genetic mixing, decreasing both

inbreeding and population extinction risks, and is hence a crucial step in amphibian meta-

population dynamics. Traveling heterogeneous landscapes might be particularly risky for

amphibian species that are sensitive to both terrestrial and aquatic environmental

changes. Understanding how amphibians perceive their environment and how they

actually move in heterogeneous habitats is an essential step in metapopulation functioning

and can be important for conservation policy and management. Methods. Using an

experimental approach, the present study focused on the movement behavior (crossing

speed) on different substrates mimicking landscape components (human-made and

natural substrates) on two contrasting amphibian species, the common toad (Bufo bufo), a

hopping and burrowing toad, and the marbled newt (Triturus marmoratus), a walking

salamander. Considering those species allowed testing the hypothesis that species could

react differently to substrate nature, depending on specific ecological requirements or

locomotion modes because of morphological and behavioral differences. Results. In both

species, substrate types influenced individual crossing speed, with individuals moving

faster on soil than on cement. We also demonstrated that morphological traits were

related to movement behavior (body index or leg length) but depending on sexes.

Discussion. The simultaneous and comparative study of both amphibian species (anuran

vs urodele) provides additional insights into the processes that drive population dynamics

and persistence, providing valuable knowledge for biodiversity conservation and

management.
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18 Abstract

19

20 Background. Inter-patches movements may lead to genetic mixing, decreasing both inbreeding 

21 and population extinction risks, and is hence a crucial step in amphibian meta-population 

22 dynamics. Traveling heterogeneous landscapes might be particularly risky for amphibian species 

23 that are sensitive to both terrestrial and aquatic environmental changes. Understanding how 

24 amphibians perceive their environment and how they actually move in heterogeneous habitats is 

25 an essential step in metapopulation functioning and can be important for conservation policy and 

26 management.

27 Methods. Using an experimental approach, the present study focused on the movement behavior 

28 (crossing speed) on different substrates mimicking landscape components (human-made and 

29 natural substrates) on two contrasting amphibian species, the common toad (Bufo bufo), a 

30 hopping and burrowing toad, and the marbled newt (Triturus marmoratus), a walking 

31 salamander. Considering those species allowed testing the hypothesis that species could react 

32 differently to substrate nature, depending on specific ecological requirements or locomotion 

33 modes because of morphological and behavioral differences. 

34 Results. In both species, substrate types influenced individual crossing speed, with individuals 

35 moving faster on soil than on cement. We also demonstrated that morphological traits were 

36 related to movement behavior (body index or leg length) but depending on sexes.

37 Discussion. The simultaneous and comparative study of both amphibian species (anuran vs 

38 urodele) provides additional insights into the processes that drive population dynamics and 

39 persistence, providing valuable knowledge for biodiversity conservation and management.

40
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47 Introduction

48

49 Inter-patches movements, and dispersal in particular, is a key process for maintaining gene flow 

50 among populations (Kareiva & Wennergren, 1995; Ronce, 2007) with strong consequences on 

51 metapopulation dynamics and population persistence (Clobert et al., 2001; Bowler & Benton, 

52 2005; Clobert et al., 2012). Since many decades, the architecture of landscapes has severely 

53 changed with the development of human activities. The anthropogenic practices, such as 

54 agriculture, urbanization or the expansion of road network, have led to the emergence of 

55 discontinuities in the habitat matrix: the continuous patches of habitats became smaller and more 

56 isolated from each other, resulting in the well-known habitat fragmentation pattern, associated to 

57 habitat loss (Collinge, 2009; Wilson et al., 2016). To ensure a sufficient connectivity among 

58 populations in spite of these environmental changes, individuals could be force to adapt their 

59 movement behavior (Arendt, 1988; Andreassen & Ims, 1998; Kuefler et al., 2010) and to move 

60 further and/or longer across the habitat matrix. This change in movement behavior may increase 

61 the costs associated to dispersal by exposing individuals to higher mortality rate during the 

62 transience phase (when crossing roads for example; Carr, Pope & Fahrig, 2002) and increasing 

63 the population extinction risk. Elucidating how individuals react and adapt their movement 

64 pattern in the disturbed landscapes might improve our knowledge in evolutionary ecology.

65 Due to ecological requirements, amphibians are exposed to a variety of habitat types (i.e. 

66 both terrestrial and aquatic) throughout their life cycle, often in patchy and heterogeneous 

67 landscapes (Marsh & Trenham, 2001). During the terrestrial phase, individual movements are 

68 more risky, through predator and UV-B exposures, and desiccation risk (Joly, Morand & Cohas, 

69 2003). Many studies have considered the multiple effects of habitat fragmentation -and their 

70 related landscape components- on amphibian populations, both at the individual and population 
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71 levels. Particularly, agricultural landscapes, urban areas and human-made infrastructures 

72 negatively affect these species, with a reduction of species richness (Riley et al., 2005; Rubbo & 

73 Kiesecker, 2005; Youngquist & Boone, 2014) or gene flow events (Lenhardt et al., 2017). Roads 

74 have also been found to be an important barrier to amphibian dispersal, limiting dispersal events 

75 (Marsh et al., 2005) and increasing the mortality risk occurring during crossing (Mazerolle, 

76 2004a). Nevertheless, some amphibian species can also benefit from certain landscape elements. 

77 For instance, drainage ditches may facilitate movement events in the green frog (Mazerolle, 

78 2004b), and cane toads seemed to use roads as dispersal corridors in Australia (Brown et al., 

79 2006). Habitat-species interactions are complex and highly specific, as already demonstrated in 

80 previous studies (Kolozsvary & Swihart, 1999; Trochet et al., 2016) suggesting that adaptation of 

81 movement behaviors to landscape conversion could strongly diverge between species. 

82 The costs associated to inter-patches movement can be high (Van Dyck & Baguette, 

83 2005) and could lead to high selective pressures on dispersal and associated phenotypic traits 

84 (Bonte et al., 2012). According to this expectation, many studies focus on the correlation 

85 between movement and phenotypic traits. At the intra-specific level, phenotypic differences 

86 related to dispersal ability between individuals have been reported. For instance, larger and/or 

87 longer individuals are generally expected to be dispersers, because they should benefit from high 

88 level of competition to disperse further (Léna et al., 1998). Evidence for this relationship 

89 between body size and movement has been described in many taxa (in insects: Anholt, 1990; 

90 Legrand et al., 2015; in mammals: Gundersen, Andreassen & Ims, 2002; Holekamp & Sherman, 

91 1989; O’Riain, Jarvis & Faulkes, 1996; in reptiles: Léna et al., 1998; in birds: Barbraud, Johnson 

92 & Bertault, 2003; Delgado et al., 2010; in fishes: Radinger & Wolter, 2014). For walking and/or 

93 hopping animals, selection for efficient displacement might lead to leg elongation. As a result, 
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94 morphological adaptations to movement are also expected to be deduced from estimates of leg 

95 length (Moya-Laraño et al., 2008). This correlation between movement and leg length (i.e. hind-

96 limb length, hereafter HLL) was demonstrated in some species (in reptiles: Losos, 1990; in 

97 spiders: Moya-Laraño et al., 2008; in amphibians: Bennett, Garland & Else, 1989; Choi, Shim & 

98 Ricklefs, 2003; Phillips et al., 2006), but still remains unclear.

99 One third of the amphibian species are currently threatened worldwide, with 43% of 

100 species having declined in the last decades (Stuart et al., 2004). Habitat fragmentation has been 

101 identified as one of the most important factor affecting amphibians (Cushman, 2006). 

102 Understanding how amphibians perceive their environment and how they actually move in 

103 heterogeneous habitats is an essential step in metapopulation functioning and can be important 

104 for conservation policy and management. However, despite the crucial importance of inter-patch 

105 movements in altered landscapes, little is known about the direct inter-specific interaction 

106 between individual movements and the different substrates that individuals can encounter during 

107 transience in the habitat matrix (Ims & Yoccoz, 1997; Wiens, Schooley & Weeks, 1997; Wiens, 

108 2001; Stevens et al., 2004). To that purpose, the present study focused on the movement 

109 behavior (crossing speed) on different substrates mimicking landscape components (human-

110 made and natural substrates) on two contrasting amphibian species, the common toad (Bufo 

111 bufo), a hopping and burrowing toad, and the marbled newt (Triturus marmoratus), a walking 

112 salamander. Common toads and marbled newts can live into the same habitat, such as grassland, 

113 woodland or agricultural areas, and could therefore face the same environmental pressures 

114 during terrestrial movements. Considering those species allowed testing the hypothesis that 

115 species could react differently to substrate nature, depending on specific ecological requirements 

116 or locomotion modes because of morphological and behavioral differences. 
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117

118 Materials & Methods

119

120 Studied species

121

122 The common toad (B. bufo) is the most widely distributed, and one of the most abundant anuran 

123 species in Europe (Gasc et al., 1997). This species occupies various habitats such as coniferous, 

124 mixed and deciduous forests, bushlands, but also urban areas such as gardens and parks. 

125 Common toads hibernate singly or in groups from September to February, on land and 

126 occasionally in streams and springs. Usually, reproduction occurs in February, and large 

127 numbers of toads disperse to breeding sites (i.e. ponds) where the males compete for mating. 

128 After an explosive breeding season, toads leave ponds and return to terrestrial habitats (Gittins, 

129 1983). 

130 The marbled newt (T. marmoratus) is a large-bodied urodele species from Western 

131 Europe, found in France, Spain and Portugal (Sillero et al., 2014). Reproduction takes place in a 

132 large range of aquatic habitats, including well-vegetated ponds, pools, ditches and streams, from 

133 the beginning of March until the middle of August. After breeding, adults leave water bodies by 

134 walking, and join deciduous or mixed woodland, where they found refuges under dead and 

135 rotting wood, and other hiding places (Jehle & Arntzen, 2000). 

136

137 Sampling and morphological measurements

138
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139 Our work complies with the international animal care guidelines of the Association for the Study 

140 of Animal Behaviour, and all required French permits relating to an authorization of capture, 

141 marking, transport, detention, use and release of protected amphibian species; and animal 

142 experimentation accreditation n°A09-1) have been obtained (permit nos. 09-2014-14 and 32-

143 2014-07) from the DREAL Occitanie (“Direction Régionale de l'Environnement, de 

144 l'Aménagement et du Logement”). Ethical approval was included under the protected species 

145 handling permit from the DREAL Occitanie. The project was approved by the "Conseil National 

146 de la Protection de la Nature" the 14th of September 2014 and by the "Conseil Scientifique 

147 Régional du Patrimoine Naturel (CSRPN)" of the region Midi-Pyrénées the 14th of October 

148 2014. 

149 In total, 83 common toads (68 males and 15 females) and 46 marbled newts (23 males 

150 and 23 females) were captured in different ponds to avoid our potential impact on populations in 

151 south of France (geographical coordinates: 43.671781 ° N, 0.504308 ° E; 43.076347 ° N, 

152 1.351639 ° E), then brought back to the lab for experimentation and released between June and 

153 July 2015. During experiments, animals were housed at the Station d'Ecologie Théorique et 

154 Expérimentale (Moulis, France) in same-species groups of 4 to 6 individuals in semi-aquatic 

155 terrarium of 60×30×30 cm at room temperature. They were fed ad libitum with live mealworms 

156 and tubifex worms. For unambiguous identification, all individuals were PIT-tagged (RFID 

157 Standards ISO 11784 & 11785 type FDX-B, 1.4×8 mm, 134.2 khz from BIOLOG-ID, France; 

158 animal experimentation accreditation n°A09-1) before the experiments following the protocol 

159 developed in Le Chevalier et al. (2017). We then measured snout-to-vent length (SVL) and hind 

160 limb length (HLL) to the nearest 1 mm and body weight (mass) to the nearest 0.01 g. 

161
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162 Movement tests

163

164 All tests were performed in June and July 2015, after the breeding season when all individuals 

165 were in the terrestrial phase. In order to test the crossing capacities of both species, we made 

166 them move along two tracks (200 cm long × 10 cm wide × 20 cm high), each filled with two 

167 different substrates: cement (human-made) or soil (natural). During the experiments all 

168 individuals were chased down the tracks and forced to move by gently poking their back after 

169 each stop. Only one individual was tested at a time and we recorded the number of stops (stops) 

170 and the crossing speed (in cm/sec) to the nearest 0.1s to travel 200 cm from departure to arrival 

171 line. In order to provide reliable estimates of crossing capacity using repeated-measure design 

172 while minimizing stress, every individual was tested three times on each substrate with only one 

173 trial per day. Each animal were therefore kept in captivity for six days in average (mean ± SD: 

174 6.37 ± 11.62; min-max = 1-35 days; individuals were kept for another experiment not detailed 

175 here), during which animals were returned to the aquaria. Because locomotion in amphibians are 

176 influenced by temperature (Herrel & Bonneaud, 2012; James et al., 2012; Šamajová & Gvoždík, 

177 2010), all tests were performed in a greenhouse under controlled-temperature conditions (mean ± 

178 SD: 25°C ± 1°C). 

179 Some individuals (n = 32) did not complete the 200 cm run (stopping completely or 

180 turning back), these individuals and their replicates were removed from the analyses for 

181 statistical reasons. We therefore included 77 toads (77 toads × 3 replicates × 2 substrates = 462 

182 tests) and 20 marbled newts (20 newts × 3 replicates × 2 substrates = 120 tests) in the analyses.

183

184 Statistical analyses
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185

186 Mass and HLL were strongly related to SVL (rs = 0.866, P < 0.001, and rs = 0.691, P < 0.001 

187 respectively). To avoid collinearity in our model, we used a body index (BI), estimated by the 

188 residuals of the regression of log(mass) on log(SVL) (Jakob, Marshall & Uetz, 1996; Denoël et 

189 al., 2002), and the relative size of the HLL (named after leg) estimated by the residuals of the 

190 linear regression between HLL and SVL. We built linear mixed-effect models (LMMs) for each 

191 species using the crossing speed (log-transformed) as response variable, individual as a random 

192 factor and BI, leg, substrate, sex and first order interactions as fixed effects. Because the crossing 

193 speed was strongly related to the number of stops in both species (T. marmoratus: rs = 0.543, P < 

194 0.001; B. bufo: rs = 0.767, P < 0.001), we also added stops as covariate in our models. LMMs 

195 were performed using the lme4 R-package (Bates et al., 2017).

196 Model selection was performed using backward selection. Interactions were removed 

197 when they were not significant, and the less significant variable was then removed step by step. 

198 Between each step, successive models were compared using likelihood ratio tests (LRT) to 

199 determine the significance of the variable removed, as recommended by Burnham & Anderson 

200 (2002). If the effect of this variable was not significant, the new model was kept and the 

201 backward selection was continued. The procedure was stopped when all explanatory variables 

202 had a significant effect on the response variable. Models were run using R 2.14.2 (R 

203 Development Core Team 2011).

204

205 Results

206
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207 After model selection, the best models explaining variation in crossing speed retained substrates 

208 (soil and cement), sex and interactions between morphological traits and sex in both species (T. 

209 marmoratus: χ² = 5.925, d.f. = 1, P = 0.015; B. bufo: χ² = 4.769, d.f. = 1 , P = 0.029). Crossing 

210 speed was significantly lower on soil than on cement (Table 1; Figure 1). 

211 Crossing speed was also correlated to several morphological traits depending on species. 

212 In the marbled newt, crossing speed was related to BI with an influence of sexes. Female newts 

213 with a high BI moved slowly while in males, individuals with a high BI crossed faster (Table 1; 

214 Fig. 2A). No relationship between crossing speed and leg was found in the marbled newt. In the 

215 common toad, long-legged males moved faster while females with long legs had a weak crossing 

216 speed (Table 1; Fig. 2B). In the common toad the crossing speed was not related to BI.

217

218 Discussion

219

220 Inter-patches movements may lead to genetic mixing, decreasing both inbreeding and population 

221 extinction risks, and is hence a crucial step in amphibian meta-population dynamics. Traveling 

222 heterogeneous landscapes might be particularly risky for amphibian species that are sensitive to 

223 both terrestrial and aquatic environmental changes. Despite being generally considered as poor-

224 dispersers -even if toads and frogs have a better potential to disperse than newts- many studies 

225 showed that amphibians are strongly affected by the landscape structure at a large spatial scale 

226 (Riley et al., 2005; Rubbo & Kiesecker, 2005; Youngquist & Boone, 2014; Lenhardt et al., 

227 2017). By comparing movement behavior in both an anuran and an urodele species, we 

228 experimentally investigated the influence of substrates and morphological characteristics on 

229 movements in species with distinct modes of locomotion. Our results demonstrated that both 
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230 species were affected by substrate types, moving significantly slower on a human-made (cement) 

231 than on a natural (soil) substrate. Movement behavior was also related to morphological traits, 

232 but depending on sexes in both species. 

233

234 Influence of substrate type on crossing speed

235

236 Inter-patches movement is expected to depend on the nature of the substrate crossed. Some 

237 landscape features may be associated with high resistance to movement while others facilitate 

238 movement (low resistance). In a previous study, Stevens et al. (2006) experimentally 

239 demonstrated that the natterjack toad (Bufo calamita) significantly preferred substrates 

240 mimicking forest and bare than those mimicking agricultural lands. In our experiment, the 

241 cement substrate represented linear roads, both in its nature (mixture of bitumen and gravel) and 

242 length (2 meters wide road), that are often associated with a high mortality rate in amphibians 

243 (Fahrig et al., 1995). Moreover, roads constitute a very hostile environment for amphibians (dry 

244 and warm substrate that could induce a desiccation risk). According to our assumptions, our 

245 results showed that substrate type influenced the movement behavior of both species tested, with 

246 individuals moving faster (higher crossing speed, Fig. 1; Table 1) on soil than on cement. 

247 Consequently on roads, both marbled newts and common toads could be more exposed to traffic, 

248 and suffer more from both desiccation and mortality risks (Petronilho & Dias, 2005; Santos et 

249 al., 2007; Sillero, 2008; Elzanowski et al., 2009; Matos, Sillero & Argaña, 2012). In the context 

250 of a contrasted and fragmented landscape, our results corroborated such negative effect of roads 

251 on amphibians, a finding already demonstrated in studies on population movement at large 

252 spatial scale (Fahrig et al., 1995; Carr, Pope & Fahrig, 2002; Sotiropoulos et al., 2013). Here, we 
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253 highlighted a direct influence of the substrate on the displacement of two amphibian species, 

254 with divergent ecological requirements and locomotion modes. Those results emphasized the 

255 importance of road-crossing structure and landscape management at a small spatial scale for 

256 amphibian conservation.

257

258 Movement-related traits in both species

259

260 According to our expectations, our results showed an influence of morphological traits on the 

261 crossing speed in both species. Various morphological variables enable organisms to be adapted 

262 for ecologically effective movement (Bennett, Garland & Else, 1989; Losos, 1990; Choi, Shim & 

263 Ricklefs, 2003; Phillips et al., 2006; Moya-Laraño et al., 2008). Anurans have a streamline body 

264 with elongated hind limbs, which could make them efficient jumpers. Based on this hypothesis, a 

265 meta-analysis among several anuran species actually demonstrated that jumping performances 

266 were strongly correlated to hind limbs after correcting by snout-to-vent length (Gomes et al., 

267 2009). We also demonstrated that movement behavior was related to the limb length (leg) in the 

268 common toad, an association already found in few anuran species (Choi, Shim & Ricklefs, 2003; 

269 Phillips et al., 2006). Indeed, long-legged males moved faster than females with long legs (Table 

270 1), which corroborates the idea that limb length may be tightly associated to movement behavior 

271 adaptations in anurans. In males, longer legs could facilitate more rapid or longer-distance 

272 displacement events for populations (Phillips et al., 2006), as well as generating other advantages 

273 such as improved predator evasion and simplifying the negotiation of barriers and obstacles. As a 

274 consequence, the mortality risk of longer-legged males could be lower than individuals with 

275 short legs. Differences between sexes may be driven by divergent breeding benefits, which could 

PeerJ reviewing PDF | (2018:06:29054:0:1:NEW 30 Jun 2018)

Manuscript to be reviewed

DLK
Highlight

DLK
Highlight

DLK
Highlight

DLK
Highlight

DLK
Highlight

DLK
Highlight

DLK
Highlight

DLK
Sticky Note
hind limb length?

DLK
Sticky Note
delete

DLK
Highlight



276 lead to a trade-off between movement and high energetic costs of reproduction in females. We 

277 did not find a similar relationship between leg length and movement behavior in the marbled 

278 newts. Indeed in salamander species, authors suggested a trade-off between speed and 

279 endurance, which seemed to be not adapted to efficient movement abilities (Bennett, Garland & 

280 Else, 1989). More studies on the movement behavior in salamanders are needed to tackle this 

281 issue. On the other hand in the marbled newt, we found that males with high body index moved 

282 faster than individuals with low body index, independently of substrate (Table 1). Evidence for 

283 such relationship has been described in many taxa (Léna et al., 1998; Radinger & Wolter, 2014; 

284 Legrand et al., 2015), because larger individuals should benefit from high level of competition to 

285 disperse further (Léna et al., 1998). As for the common toad, this difference depending on sexes 

286 could be explain by divergent breeding benefits. 

287

288 Conclusions

289

290 Inter-patches movement is a multifactorial process, subject to internal and external factors. Our 

291 findings demonstrated effects of substrates and their associated estimated costs to cross them on 

292 the movement behavior in two contrasting amphibian species, having divergent modes of 

293 locomotion. In particular, individuals were slower in the cement, making them more vulnerable 

294 on roads. In both species, we also showed significant relationship between morphological traits 

295 and movement behavior. We underlined the importance of considering spatial scale when 

296 studying population dynamics, which is a crucial issue in ecological management. The 

297 simultaneous and comparative study of both amphibian species (anuran vs urodele) provides 
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298 additional insights into the processes that drive population dynamics and persistence, providing 

299 valuable knowledge for biodiversity conservation and management.
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495 Figure caption

496

497 Figure 1. Crossing speed (in cm/sec) on cement and soil substrates in (a) the marbled newt and 

498 (b) the common toad. **: P < 0.01. Error bars represents standard error.

499

500 Figure 2. Relationships between (a) crossing speed (log-transformed) and body index (residuals 

501 of the regression of log(body mass) on log(snout-to-vent length) depending on sexes in marbled 

502 newts; (b) crossing speed (log-transformed) and leg (residuals between hind limb length and 

503 snout-to-vent length) depending on sexes in common toads. Males are in black points and 

504 females are in grey points. 

505
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Figure 1

Figure 1. Crossing speed (in cm/sec) on cement and soil substrates in (a) the marbled

newt and (b) the common toad.

**: P < 0.01. Error bars represents standard error.
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Figure 2

Figure 2. Relationships between (a) crossing speed (log-transformed) and body index

(residuals of the regression of log(body mass) on log(snout-to-vent length) depending

on sexes in marbled newts; (b) crossing speed (log-transformed) and leg (residuals be

Males are in black points and females are in grey points.
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Table 1(on next page)

Table 1. Summary of the best models showing the influence of significant variables on

the crossing speed for marbled newt (Triturus marmoratus) and common toad (Bufo

bufo). BI: body index; leg: relative hind-limb length.

***: P < 0.001, ** : P < 0.01, * : P < 0.05.
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1 Table 1. Summary of the best models showing the influence of significant variables on the 

2 crossing speed for marbled newt (Triturus marmoratus) and common toad (Bufo bufo). BI: body 

3 index; leg: relative hind-limb length. *** : P < 0.001, ** : P < 0.01, * : P < 0.05.

4

5

6

7

8

9

10

Marbled newt 

(Triturus marmoratus)

Common toad 

(Bufo bufo)

Estimate P Estimate P

(Intercept) 1.415 < 0.001 *** 2.843 < 0.001 ***

Substrate (soil) 0.208 0.003 ** 0.060 0.001 **

leg - - - -0.094 0.114

BI -1.790 0.007 ** - - -

sex (male) -0.007 0.947 0.120 0.082

BI * sex (male) 2.151 0.021 * - - -

leg * sex (male) - - - 0.144 0.032 *

stops -0.066 < 0.001 *** 0.080 < 0.001 ***
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