

Influence of substrate types and morphological traits on movement behavior in a toad and newt species

Audrey Trochet $^{Corresp.,-1,2}$, Hugo Le Chevalier 1,2 , Olivier Calvez 2 , Alexandre Ribéron 1 , Romain Bertrand 2,3 , Simon Blanchet 1,2

Corresponding Author: Audrey Trochet Email address: audrey.trochet@sete.cnrs.fr

Background. Inter-patches movements may lead to genetic mixing, decreasing both inbreeding and population extinction risks, and is hence a crucial step in amphibian metapopulation dynamics. Traveling heterogeneous landscapes might be particularly risky for amphibian species that are sensitive to both terrestrial and aquatic environmental changes. Understanding how amphibians perceive their environment and how they actually move in heterogeneous habitats is an essential step in metapopulation functioning and can be important for conservation policy and management. **Methods**. Using an experimental approach, the present study focused on the movement behavior (crossing speed) on different substrates mimicking landscape components (human-made and natural substrates) on two contrasting amphibian species, the common toad (Bufo bufo), a hopping and burrowing toad, and the marbled newt (Triturus marmoratus), a walking salamander. Considering those species allowed testing the hypothesis that species could react differently to substrate nature, depending on specific ecological requirements or locomotion modes because of morphological and behavioral differences. **Results**. In both species, substrate types influenced individual crossing speed, with individuals moving faster on soil than on cement. We also demonstrated that morphological traits were related to movement behavior (body index or leg length) but depending on sexes. **Discussion**. The simultaneous and comparative study of both amphibian species (anuran vs urodele) provides additional insights into the processes that drive population dynamics and persistence, providing valuable knowledge for biodiversity conservation and management.

¹ Laboratoire Evolution et Diversité Biologique, Université Paul Sabatier (Toulouse III), Toulouse, France

² Station d'Ecologie Théorioque et Expérimentale, CNRS, Moulis, France

³ Center for Biodiversity Theory and Modelling, CNRS, Moulis, France

- 1 Influence of substrate types and morphological traits on movement behavior in a toad and
- 2 newt species
- 3 Audrey Trochet^{1,2}, Hugo Le Chevalier^{1,2}, Olivier Calvez², Alexandre Ribéron¹, Romain
- 4 Bertrand^{2,3} and Simon Blanchet^{1,2}
- 5 ¹ CNRS, ENFA, UMR 5174 EDB (Laboratoire Evolution et Diversité Biologique), Université
- 6 Paul Sabatier, 118 route de Narbonne, Toulouse F-31062, France
- 7 ² CNRS, Université Paul Sabatier Toulouse III, UMR 5321 SETE (Station d'Ecologie Théorique
- 8 et Expérimentale), 2 route du CNRS, Moulis F-09200, France
- 9 ³ CNRS, Université Paul Sabatier Toulouse III, UMR 5321 SETE (Station d'Ecologie Théorique
- 10 et Expérimentale), Centre for Biodiversity Theory and Modelling, 2 route du CNRS, Moulis F-
- 11 09200, France
- 13 Corresponding Author:
- 14 Audrey Trochet^{1,2}
- 16 Email address: trochet.audrey@wanadoo.fr
- 17

12

	L	~4	L	_	_	ı
Α	n	SI	۱r	a	CI	l

1	9

Background. Inter-patches movements may lead to genetic mixing, decreasing both inbreeding 20 and population extinction risks, and is hence a crucial step in amphibian meta-population 21 22 dynamics. Traveling heterogeneous landscapes might be particularly risky for amphibian species 23 that are sensitive to both terrestrial and aquatic environmental changes. Understanding how amphibians perceive their environment and how they actually move in heterogeneous habitats is 24 an essential step in metapopulation functioning and can be important for conservation policy and 25 26 management. 27 **Methods**. Using an experimental approach, the present study focused on the movement behavior (crossing speed) on different substrates mimicking landscape components (human-made and 28 natural substrates) on two contrasting amphibian species, the common toad (Bufo bufo), a 29 hopping and burrowing toad, and the marbled newt (*Triturus marmoratus*), a walking 30 31 salamander. Considering those species allowed testing the hypothesis that species could react 32 differently to substrate nature, depending on specific ecological requirements or locomotion 33 modes because of morphological and behavioral differences. 34 **Results**. In both species, substrate types influenced individual crossing speed, with individuals moving faster on soil than on cement. We also demonstrated that morphological traits were 35 36 related to movement behavior (body index or leg length) but depending on sexes. 37 **Discussion**. The simultaneous and comparative study of both amphibian species (anuran vs 38 urodele) provides additional insights into the processes that drive population dynamics and

persistence, providing valuable knowledge for biodiversity conservation and management.

40

39

PeerJ

41	Kev	words
71	110	WULUS

42

- 43 Matrix permeability, inter-patches movements, roads, fragmented landscapes, common toads,
- 44 marbled newts

45

48

Introduction

49	Inter-patches movements, and dispersal in particular, is a key process for maintaining gene flow
50	among populations (Kareiva & Wennergren, 1995; Ronce, 2007) with strong consequences on
51	metapopulation dynamics and population persistence (Clobert et al., 2001; Bowler & Benton,
52	2005; Clobert et al., 2012). Since many decades, the architecture of landscapes has severely
53	changed with the development of human activities. The anthropogenic practices, such as
54	agriculture, urbanization or the expansion of road network, have led to the emergence of
55	discontinuities in the habitat matrix: the continuous patches of habitats became smaller and more
56	isolated from each other, resulting in the well-known habitat fragmentation pattern, associated to
57	habitat loss (Collinge, 2009; Wilson et al., 2016). To ensure a sufficient connectivity among
58	populations in spite of these environmental changes, individuals could be force to adapt their
59	movement behavior (Arendt, 1988; Andreassen & Ims, 1998; Kuefler et al., 2010) and to move
60	further and/or longer across the habitat matrix. This change in movement behavior may increase
61	the costs associated to dispersal by exposing individuals to higher mortality rate during the
62	transience phase (when crossing roads for example; Carr, Pope & Fahrig, 2002) and increasing
63	the population extinction risk. Elucidating how individuals react and adapt their movement
64	pattern in the disturbed landscapes might improve our knowledge in evolutionary ecology.
65	Due to ecological requirements, amphibians are exposed to a variety of habitat types (i.e.
66	both terrestrial and aquatic) throughout their life cycle, often in patchy and heterogeneous
67	landscapes (Marsh & Trenham, 2001). During the terrestrial phase, individual movements are
68	more risky, through predator and UV-B exposures, and desiccation risk (Joly, Morand & Cohas,
69	2003). Many studies have considered the multiple effects of habitat fragmentation - and their
70	related landscape components-on amphibian populations, both at the individual and population

71	levels. Particularly, agricultural landscapes, urban areas and human-made infrastructures
72	negatively affect these species, with a reduction of species richness (Riley et al., 2005; Rubbo &
73	Kiesecker, 2005; Youngquist & Boone, 2014) or gene flow events (Lenhardt et al., 2017). Roads
74	have also been found to be an important barrier to amphibian dispersal, limiting dispersal events
75	(Marsh et al., 2005) and increasing the mortality risk occurring during crossing (Mazerolle,
76	2004a). Nevertheless, some amphibian species can also benefit from certain landscape elements.
77	For instance, drainage ditches may facilitate movement events in the green frog (Mazerolle,
78	2004b), and cane toads seemed to use roads as dispersal corridors in Australia (Brown et al.,
79	2006). Habitat-species interactions are complex and highly specific, as already demonstrated in
80	previous studies (Kolozsvary & Swihart, 1999; Trochet et al., 2016) suggesting that adaptation of
81	movement behaviors to landscape conversion could strongly diverge between species.
82	The costs associated to inter-patches movement can be high (Van Dyck & Baguette,
83	2005) and could lead to high selective pressures on dispersal and associated phenotypic traits
84	(Bonte et al., 2012). According to this expectation, many studies focus on the correlation
85	between movement and phenotypic traits. At the intra-specific level, phenotypic differences
86	related to dispersal ability between individuals have been reported. For instance, larger and/or
87	longer individuals are generally expected to be dispersers, because they should benefit from high
88	level of competition to disperse further (Léna et al., 1998). Evidence for this relationship
89	between body size and movement has been described in many taxa (in insects: Anholt, 1990;
90	Legrand et al., 2015; in mammals: Gundersen, Andreassen & Ims, 2002; Holekamp & Sherman,
91	1989; O'Riain, Jarvis & Faulkes, 1996; in reptiles: Léna et al., 1998; in birds: Barbraud, Johnson
92	& Bertault, 2003; Delgado et al., 2010; in fishes: Radinger & Wolter, 2014). For walking and/or
93	hopping animals, selection for efficient displacement might lead to leg elongation. As a result,

morphological adaptations to movement are also expected to be deduced from estimates of leg length (Moya-Laraño et al., 2008). This correlation between movement and leg length (i.e. hind-95 limb length, hereafter HLL) was demonstrated in some species (in reptiles: Losos, 1990; in 96 spiders: Moya-Laraño et al., 2008; in amphibians: Bennett, Garland & Else, 1989; Choi, Shim & 97 Ricklefs, 2003; Phillips et al., 2006), but still remains unclear. 98 99 One third of the amphibian species are currently threatened worldwide, with 43% of species having declined in the last decades (Stuart et al., 2004). Habitat fragmentation has been 100 identified as one of the most important factor affecting amphibians (Cushman, 2006). 101 Understanding how amphibians perceive their environment and how they actually move in 102 heterogeneous habitats is an essential step in metapopulation functioning and can be important 103 for conservation policy and management. However, despite the crucial importance of inter-patch 104 movements in altered landscapes, little is known about the direct inter-specific interaction 105 between individual movements and the different substrates that individuals can encounter during 106 107 transience in the habitat matrix (Ims & Yoccoz, 1997; Wiens, Schooley & Weeks, 1997; Wiens, 2001; Stevens et al., 2004). To that purpose, the present study focused on the movement 108 behavior (crossing speed) on different substrates mimicking landscape components (human-109 made and natural substrates) on two contrasting amphibian species, the common toad (Bufo 110 bufo), a hopping and burrowing toad, and the marbled newt (Triturus marmoratus), a walking 111 112 salamander. Common toads and marbled newts can live into the same habitat, such as grassland, woodland or agricultural areas, and could therefore face the same environmental pressures 113 during terrestrial movements. Considering those species allowed testing the hypothesis that 114 115 species could react differently to substrate nature, depending on specific ecological requirements 116 or locomotion modes because of morphological and behavioral differences.

PeerJ

L17	
18	Materials & Methods
119	
L 2 0	Studied species
L 21	
122	The common toad (B. bufo) is the most widely distributed, and one of the most abundant anurar
L 2 3	species in Europe (Gasc et al., 1997). This species occupies various habitats such as coniferous,
L 2 4	mixed and deciduous forests, bushlands, but also urban areas such as gardens and parks.
L 2 5	Common toads hibernate singly or in groups from September to February, on land and
2 6	occasionally in streams and springs. Usually, reproduction occurs in February, and large
. 27	numbers of toads disperse to breeding sites (i.e. ponds) where the males compete for mating.
28	After an explosive breeding season, toads leave ponds and return to terrestrial habitats (Gittins,
L 2 9	1983).
130	The marbled newt $(T. marmoratus)$ is a large-bodied urodele species from Western
131	Europe, found in France, Spain and Portugal (Sillero et al., 2014). Reproduction takes place in a
L32	large range of aquatic habitats, including well-vegetated ponds, pools, ditches and streams, from
133	the beginning of March until the middle of August. After breeding, adults leave water bodies by
L34	walking, and join deciduous or mixed woodland, where they found refuges under dead and
135	rotting wood, and other hiding places (Jehle & Arntzen, 2000).
136	
L37	Sampling and morphological measurements
138	

139	Our work complies with the international animal care guidelines of the Association for the Study
140	of Animal Behaviour, and all required French permits relating to an authorization of capture,
141	marking, transport, detention, use and release of protected amphibian species; and animal
142	experimentation accreditation n A09-1) have been obtained (permit nos. 09-2014-14 and 32-
143	2014-07) from the DREAL Occitanie ("Direction Régionale de l'Environnement, de
144	l'Aménagement et du Logement"). Ethical approval was included under the protected species
145	handling permit from the DREAL Occitanie. The project was approved by the "Conseil National
146	de la Protection de la Nature" the 14 th of September 2014 and by the "Conseil Scientifique
147	Régional du Patrimoine Naturel (CSRPN)" of the region Midi-Pyrénées the 14 th of October
148	2014.)
149	In total, 83 common toads (68 males and 15 females) and 46 marbled newts (23 males
150	and 23 females) were captured in different ponds to avoid our potential impact on populations in
151	south of France (geographical coordinates: 43.671781 ° N, 0.504308 ° E; 43.076347 ° N,
152	1.351639 ° E), then brought back to the lab for experimentation and released between June and
153	July 2015. During experiments, animals were housed at the Station d'Ecologie Théorique et
154	Expérimentale (Moulis, France) in same-species groups of 4 to 6 individuals in semi-aquatic
155	terrarium of 60×30×30 cm at room temperature. They were fed <i>ad libitum</i> with live mealworms
156	and tubifex worms. For unambiguous identification, all individuals were PIT-tagged (RFID
157	Standards ISO 11784 & 11785 type FDX-B, 1.4×8 mm, 134.2 khz from BIOLOG-ID, France;
158	animal experimentation accreditation n°A09-1) before the experiments following the protocol
159	developed in Le Chevalier et al. (2017). We then measured snout-to-vent length (SVL) and hind
160	limb length (HLL) to the nearest 1 mm and body weight (mass) to the nearest 0.01 g.
161	

162 Mc	ovement	tosts

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

All tests were performed in June and July 2015, after the breeding season when all individuals were in the terrestrial phase. In order to test the crossing capacities of both species, we made them move along two tracks (200 cm long × 10 cm wide × 20 cm high), each filled with two different substrates: cement (human-made) or soil (natural). During the experiments an individuals were chased down the tracks and forced to move by gently poking their back after each stop. Only one individual was tested at a time and we recorded the number of stops (stops) and the crossing speed (in cm/sec) to the nearest 0.1s to travel 200 cm from departure to arrival line. In order to provide reliable estimates of crossing capacity using repeated-measure design while minimizing stress, every individual was tested three times on each substrate with only one trial per day. Each animal were therefore kept in captivity for six days in average (mean \pm SD: 6.37 ± 11.62 ; min-max = 1-35 days; individuals were kept for another experiment not detailed here), during which animals were returned to the aquaria. Because locomotion in amphibians are influenced by temperature (Herrel & Bonneaud, 2012; James et al., 2012; Šamajová & Gvoždík, 2010), all tests were performed in a greenhouse under controlled-temperature conditions (mean \pm SD: $25^{\circ}C \pm 1^{\circ}C$). Some individuals (n = 32) did not complete the 200 cm run (stopping completely or turning back), these individuals and their replicates were removed from the analyses for statistical reasons. We therefore included 77 toads (77 toads \times 3 replicates \times 2 substrates = 462

tests) and 20 marbled newts (20 newts \times 3 replicates \times 2 substrates = 120 tests) in the analyses.

183

184

182

Statistical analyses

1	О	Е
Т	0	Э

187

188

189

190

191

192

193

194

195

Mass and HLL were strongly related to SVL ($r_s = 0.866$, P < 0.001, and $r_s = 0.691$, P < 0.001respectively). To avoid collinearity in our model, we used a body index (BI), estimated by the residuals of the regression of log(mass) on log(SVL) (Jakob, Marshall & Uetz, 1996; Denoël et al., 2002), and the relative size of the HLL (named after leg) estimated by the residuals of the linear regression between HLL and SVL. We built linear mixed-effect models (LMMs) for each species using the *crossing speed* (log-transformed) as response variable, individual as a random factor and BI, leg, substrate, sex and first order interactions as fixed effects. Because the crossing speed was strongly related to the number of stops in both species (T. marmoratus: $r_s = 0.543$, P <0.001; B. bufo: $r_s = 0.767$, P < 0.001), we also added stops as covariate in our models. LMMs were performed using the lme4 R-package (Bates et al., 2017).

Model selection was performed using backward selection. Interactions were removed

(2002). If the effect of this variable was not significant, the new model was kept and the

had a significant effect on the response variable. Models were run using R 2.14.2 (R

backward selection was continued. The procedure was stopped when all explanatory variables

196

when they were not significant, and the less significant variable was then removed step by step. 197 198 Between each step, successive models were compared using likelihood ratio tests (LRT) to determine the significance of the variable removed, as recommended by Burnham & Anderson

199

200 201

202

203

204

205 Results

206

Development Core Team 2011).

After model selection, the best models explaining variation in *crossing speed* retained *substrates* (soil and cement), *sex* and interactions between morphological traits and *sex* in both species (T. *marmoratus*: $\chi^2 = 5.925$, d.f. = 1, P = 0.015; B. *bufo*: $\chi^2 = 4.769$, d.f. = 1, P = 0.029). *Crossing speed* was significantly lower on soil than on cement (Table 1; Figure 1). *Crossing speed* was also correlated to several morphological traits appending on species.

In the marbled newt, *crossing speed* was related to *BI* with an influence of sexes. Female newts with a high *BI* moved slowly while in males, individuals with a high *BI* crossed faster (Table 1; Fig. 2A). No relationship between *crossing speed* and *leg* was found in the marbled newt. In the common toad, long-legged males moved faster while females with long legs had a weak crossing speed (Table 1; Fig. 2B). In the common toad the *crossing speed* was not related to *BI*.

Discussion

Inter-patches movements may lead to genetic mixing, decreasing both inbreeding and population extinction risks, and is hence a crucial step in amphibian meta-population dynamics. Traveling heterogeneous landscapes might be particularly risky for amphibian species that are sensitive to both terrestrial and aquatic environmental changes. Despite being generally considered as poor-dispersers—even if toads and frogs have a better potential to disperse than newts—many studies showed that amphibians are strongly affected by the landscape structure at a large spatial scale (Riley et al., 2005; Rubbo & Kiesecker, 2005; Youngquist & Boone, 2014; Lenhardt et al., 2017). By comparing movement behavior in both an anuran and an urodele species, we experimentally investigated the influence of substrates and morphological characteristics on movements in species with distinct modes of locomotion. Our results demonstrated that both

species were affected by substrate types, moving significantly slower on a human-made (cement) 230 than on a natural (soil) substrate. Movement behavior was also related to morphological traits, 231 but depending on sexes in both species. 232 233 Influence of substrate type on crossing speed 234 235 Inter-patches movement is expected to depend on the nature of the substrate crossed. Some 236 237 landscape features may be associated with high resistance to movement while others facilitate movement (low resistance). In a previous study, Stevens et al. (2006) experimentally 238 demonstrated that the natterjack toad (Bufo calamita) significantly preferred substrates 239 mimicking forest and bare than those mimicking agricultural lands. In our experiment, the 240 cement substrate represented linear roads, both in its nature (mixture of bitumen and gravel) and 241 length (2 meters wide road), that are often associated with a high mortality rate in amphibians 242 243 (Fahrig et al., 1995). Moreover, roads constitute a very hostile environment for amphibians (dry and warm substrate that could induce a desiccation risk). According to our assumptions, our 244 results showed that substrate type influenced the movement behavior of both species tested, with 245 individuals moving faster (higher crossing speed, Fig. 1; Table 1) on soil than on cement. 246 Consequently on roads, both marbled newts and common toads could be more exposed to traffic, 247 248 and suffer more from both desiccation and mortality risks (Petronilho & Dias, 2005; Santos et 249 al., 2007; Sillero, 2008; Elzanowski et al., 2009; Matos, Sillero & Argaña, 2012). In the context of a contrasted and fragmented landscape, our results corroborated such negative effect of roads 250 251 on amphibians, a finding already demonstrated in studies on population movement at large 252 spatial scale (Fahrig et al., 1995; Carr, Pope & Fahrig, 2002; Sotiropoulos et al., 2013). Here, we

highlighted a direct influence of the substrate on the displacement of two amphibian species, with divergent ecological requirements and locomotion modes. Those results emphasized the importance of road-crossing structure and landscape management at a small spatial scale for amphibian conservation.

257

258

253

254

255

256

Movement-related traits in both species

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

According to our expectations, our results showed an influence of morphological traits on the crossing speed in both species. Various morphological variables enable organisms to be adapted for ecologically effective movement (Bennett, Garland & Else, 1989; Losos, 1990; Choi, Shim & Ricklefs, 2003; Phillips et al., 2006; Moya-Laraño et al., 2008). Anurans have a streamline body with elongated hind limbs, which could make them efficient jumpers. Based on this hypothesis, a meta-analysis among several anuran species actually demonstrated that jumping performances were strongly correlated to hind limbs after correcting by snout-to-vent length (Gomes et al., 2009). We also demonstrated that movement behavior was related to the limb length (*leg*) in the common toad, an association already found in few anuran species (Choi, Shim & Ricklefs, 2003; Phillips et al., 2006). Indeed, long-legged males moved faster than females with long legs (Table 1), which corroborates the idea that limb length may be tightly associated to movement behavior adaptations in anurans. In males, longer legs could facilitate more rapid or longer-distance displacement events for populations (Phillips et al., 2006), as well as generating other advantages such as improved predator evasion and simplifying the negotiation of barriers and obstacles. As a consequence, the mortality risk of longer-legged males could be lower than individuals with short legs. Differences between sexes may be driven by divergent breeding benefits, which could

lead to a trade-off between movement and high energetic costs of reproduction in females. We did not find a similar relationship between leg length and movement behavior in the marbled newts. Indeed in salamander species, authors suggested a trade-off between speed and endurance, which seemed to be not adapted to efficient movement abilities (Bennett, Garland & Else, 1989). More studies on the movement behavior in salamanders are needed to tackle this issue. On the other hand in the marbled newt, we found that males with high body index moved faster than individuals with low body index, independently of substrate (Table 1). Evidence for such relationship has been described in many taxa (Léna et al., 1998; Radinger & Wolter, 2014; Legrand et al., 2015), because larger individuals should benefit from high level of competition to disperse further (Léna et al., 1998). As for the common toad, this difference depending on sexes could be explain by divergent breeding benefits.

Conclusions

Inter-patches movement is a multifactorial process, subject to internal and external factors. Our findings demonstrated effects of substrates and their associated estimated costs to cross them on the movement behavior in two contrasting amphibian species, having divergent modes of locomotion. In particular, individuals were slower in the cement, making them more vulnerable on roads. In both species, we also showed significant relationship between morphological traits and movement behavior. We underlined the importance of considering spatial scale when studying population dynamics, which is a crucial issue in ecological management. The simultaneous and comparative study of both amphibian species (anuran vs urodele) provides

298	additional insights into the processes that drive population dynamics and persistence, providing
299	valuable knowledge for biodiversity conservation and management.
300	
301	Funding Statement
302	
303	Financial support was provided by a post-doctoral fellow to AT from the Fondation de France.
304	This work was supported by the French Laboratory of Excellence project "TULIP" (ANR-10-
305	LABX-41; ANR-11-IDEX-0002-02) and benefited from both "Investissement d'Avenir" grants
306	managed by Agence Nationale de la Recherche (AnaEE, ANR-11-INBS-0001AnaEE-Services).
307	
308	Data Availability
309	
310	The raw data has been supplied as a Supplementary File.

311	References
312	Andreassen HP, Ims RA. 1998. The effects of experimental habitat destruction and patch
313	isolation on space use and fitness parameters in female root vole Microtus oeconomus.
314	Journal of Animal Ecology 67:941–52 DOI: <u>10.1046/j.1365-2656.1998.6760941.x</u> .
315	Anholt B. 1990. Size-biased dispersal prior to breeding in a damselfly. <i>Oecologia</i> 83:385–387
316	DOI: <u>10.1007/BF00317564</u> .
317	Arendt WJ. 1988. Range expansion of the cattle egret (Bubulcus ibis) in the Greater Caribbean
318	basin. Colonial Waterbirds 11:252–262.
319	Barbraud C, Johnson AR, Bertault G. 2003. Phenotypic correlates of post-fledging dispersal in a
320	population of greater flamingos: The importance of body condition. Journal of Animal
321	Ecology 72:246–257 DOI: <u>10.1046/j.1365-2656.2003.00695.x</u> .
322	Bates D, Maechler M, Bolker B, Walker S. 2017. Lme4: Linear mixed-effects models using S4
323	classes. R package version 1.1-13.
324	Bennett AF, Garland T, Else PL. 1989. Individual correlation of morphology, muscle mechanics
325	and locomotion in a salamander. American Journal of Physiology 256:R1200-R1208 DOI
326	10.1152/ajpregu.1989.256.6.R1200.
327	Bonte D, Van Dyck H, Bullock JM, Coulon A, Delgado M, Gibbs M, Lehouck V, Matthysen E,
328	Mustin K, Saastamoinen M, Schtickzelle N, Stevens VM, Vandewoestijne S, Baguette M,
329	Barton K, Benton TG, Chaput-Bardy A, Clobert J, Dytham C, Hovestadt T, Meier CM,
330	Palmer SCF, Turlure C, Travis JM. 2012. Costs of dispersal. <i>Biological Reviews</i> 87:290–
331	312 DOI: <u>10.1111/j.1469-185X.2011.00201.x</u> .

332	Bowler D, Benton T. 2005. Causes and consequences of animal dispersal strategies: Relating
333	individual behaviour to spatial dynamics. Biological Reviews 80:205-225 DOI:
334	<u>10.1017/S1464793104006645</u> .
335	Brown GP, Phillips BL, Webb JK, Shine R. 2006. Toad on the road: use of roads as dispersal
336	corridors by cane toads (Bufo marinus) at an invasion front in tropical Australia. Biological
337	Conservation 133:88–94 DOI: <u>10.1016/j.biocon.2006.05.020</u> .
338	Burnham K, Anderson D. 2002. Model selection and multimodel inference: A practical
339	information-theoretic approach, 2nd ed. New York: Springer Verlag.
340	Carr L, Pope S, Fahrig L. 2002. Impacts of landscape transformation by roads. In: Gutzwiller KJ,
341	ed. Applying Landscape Ecology in Biological Conservation. New York: Springer Verlag,
342	225-243.
343	Choi I, Shim JH, Ricklefs RE. 2003. Morphometric relationships of take-off speed in anuran
344	amphibians. <i>Journal of Experimental Zoology</i> 299:99-102 DOI: <u>10.1002/jez.a.10293</u> .
345	Clobert J, Baguette M, Benton TG, Bullock JM. 2012. Dispersal ecology and evolution. Oxford:
346	Oxford University Press.
347	Clobert J, Danchin E, Dhondt AA, Nichols JD. 2001. Dispersal. Oxford: Oxford University
348	Press.
349	Collinge SK. 2009. Ecology of fragmented landscapes. Baltimore: Johns Hopkins University
350	Press.
351	Cushman, S. 2006. A Effects of habitat loss and fragmentation on amphibians: A review and
352	prospectus. Biological Conservation 128:231-240 DOI: 10.1016/j.biocon.2005.09.031.

353	Delgado M, Penteriani V, Revilla E, Nams VO. 2010. The effect of phenotypic traits and				
354	external cues on natal dispersal movements. <i>Journal of Animal Ecology</i> 79:620–632 DOI:				
355	10.1111/j.1365-2656.2009.01655.x.				
356	Denoël M, Hervant F, Schabetsberger R, Joly P. 2002. Short- and long-term advantages of an				
357	alternative ontogenetic pathway. Biological Journal of the Linnean Society 77:105-112.				
358	DOI: <u>10.1046/j.1095-8312.2002.00095.x</u> .				
359	Elzanowski A, Ciesiołkiewicz J, Kaczor M, Radwańska J, Urban R. 2009. Amphibian road				
360	mortality in Europe: A meta-analysis with new data from Poland. European Journal of				
361	<i>Wildlife Research</i> 55:33–43 DOI: <u>10.1007/s10344-008-0211-x</u> .				
362	Fahrig L, Pedlar JH, Pope SE, Taylor PD, Wegner JF. 1995. Effect of road traffic on amphibian				
363	density. Biological Conservation 73:177–182 DOI: <u>10.1016/0006-3207(94)00102-V</u> .				
364	Gasc JP, Cabela A, Crnobrnja-Isailovic J, Dolmen D, Grossenbacher K, Haffner P, Lescure J,				
365	Martens H, Martinez-Rica JP, Maurin H, Oliveira ME, Sofianidou TS, Veith M,				
366	Zuiderwijk A. 1997. Atlas of Amphibians and Reptiles in Europe. Paris: Muséum National				
367	d'Histoire Naturelle.				
368	Gittins SP. 1983. The breeding migration of the Common Toad (Bufo bufo) to a pond in mid-				
369	Wales. Journal of Zoology 199:555–562				
370	Gomes FR, Rezende EL, Grizante MB, Navas CA. 2009. The evolution of jumping performance				
371	in anurans: Morphological correlates and ecological implications. Journal of Evolutionary				
372	Biology 22:1088–1097 DOI: 10.1111/j.1420-9101.2009.01718.x.				
373	Gundersen G, Andreassen HP, Ims RA. 2002. Individual and population-level determinants of				
374	immigration success on local habitat patches: an experimental approach. Ecology Letters				
375	5:294–301 DOI: <u>10.1046/j.1461-0248.2002.00320.x</u> .				

376	Herrel A, Bonneaud C. 2012. Temperature dependence of locomotor performance in the tropical
377	clawed frog, Xenopus tropicalis. Journal of Experimental Biology 215:2465–2470 DOI:
378	10.1242/jeb.069765.
379	Holekamp K, Sherman P. 1989. Why male ground squirrels disperse. American Scientist 77:232-
380	239.
381	Ims RA, Yoccoz NG. 1997. Studying transfer processes in metapopulations: emigration,
382	migration, and colonization. In: Hanski IA, Gilpin ME, eds. Metapopulation Biology:
383	Ecology, Genetics, and Evolution. London: Academic Press, 247–265.
384	Jakob EM, Marshall SD, Uetz GW. 1996. Estimating fitness: a comparison of body condition
385	indices. Oikos 77:61-67.
386	James RS, Tallis J, Herrel A, Bonneaud C. 2012. Warmer is better: Thermal sensitivity of both
387	maximal and sustained power output in the iliotibialis muscle isolated from adult Xenopus
388	tropicalis. Journal of Experimental Biology 215:552–558 DOI: 10.1242/jeb.063396.
389	Jehle R, Arntzen JW. 2000. Post-breeding migrations of newts (<i>Triturus cristatus</i> and <i>T</i> .
390	marmoratus) with contrasting ecological requirements. Journal of Zoology 251:297-306
391	DOI: <u>10.1111/j.1469-7998.2000.tb01080.x</u> .
392	Joly P, Morand C, Cohas A. 2003. Habitat fragmentation and amphibian conservation: building a
393	tool for assessing landscape matrix connectivity. Comptes Rendus Biologies 326:132-139
394	DOI: <u>10.1016/S1631-0691(03)00050-7</u> .
395	Kareiva P, Wennergren U. 1995. Connecting landscape patterns to ecosystem and population
396	processes. <i>Nature</i> 373:299–302 DOI: <u>10.1038/373299a0</u> .

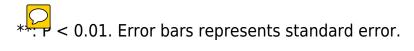
397	Kolozsvary MB, Swihart RK. 1999. Habitat fragmentation and the distribution of amphibians:				
898	patch and landscape correlates in farmland. Canadian Journal of Zoology 77:1288-1299				
899	DOI: <u>10.1139/z99-102</u> .				
100	Kuefler D, Hudgens B, Haddad NM, Morris WF, Thurgate N. 2010. The conflicting role of				
101	matrix habitats as conduits and barriers for dispersal. <i>Ecology</i> 91:944–50 DOI: 10.1890/09				
102	<u>0614.1</u> .				
103	Le Chevalier H, Calvez O, Martinez-Silvestre A, Picard D, Guérin S, Isselin-Nondedeu F,				
104	Ribéron A, Trochet A. 2017. Marking techniques in the Marbled Newt (Triturus				
105	marmoratus): PIT-Tag and tracking device implant protocols. Acta Herpetologica 12:79-				
106	88 DOI: <u>10.13128/Acta_Herpetol-19158</u> .				
107	Legrand D, Trochet A, Moulherat S, Calvez O, Stevens VM, Ducatez S, Clobert J, Baguette M.				
804	2015. Ranking the ecological causes of dispersal in a butterfly. <i>Ecography</i> 38:822–831				
109	DOI: <u>10.1111/ecog.01283</u> .				
110	Léna JP, Clobert J, de Fraipont M, Lecomte J, Guyot G. 1998. The relative influence of density				
111	and kinship on dispersal in the common lizard. Behavioral Ecology 9:500-507 DOI:				
112	10.1093/beheco/9.5.500.				
113	Lenhardt PP, Brühl CA, Leeb C, Theissinger K. 2017. Amphibian population genetics in				
114	agricultural landscapes: does viniculture drive the population structuring of the European				
115	common frog (Rana temporaria)? PeerJ 5:e3520 DOI: 10.7717/peerj.3520.				
116	Losos JB. 1990. Ecomorphology, performance capability, and scaling of West Indian Anolis				
117	lizards: an evolutionary analysis. <i>Ecological Monographs</i> 60:369–388 DOI:				
118	10.2307/1943062.				

419	Marsh DM, Milam GS, Gorham N, Beckham NG. 2005. Forest roads as partial barriers to				
120	terrestrial salamander movement. Conservation Biology 19:2004–2008 DOI:				
121	10.1111/j.1523-1739.2005.00238.x				
122	Marsh DM, Trenham PC. 2001. Metapopulation dynamics and amphibian conservation.				
12 3	Conservation Biology 15:40–49. DOI: <u>10.1111/j.1523-1739.2001.00129.x</u> .				
124	Matos C, Sillero N, Argaña E. 2012. Spatial analysis of amphibian road mortality levels in				
125	northern Portugal country roads. Amphibia-Reptilia 33:469–483 DOI: 10.1163/15685381-				
126	<u>00002850</u> .				
127	Mazerolle MJ. 2004a. Amphibian road mortality in response to nightly variations in traffic				
128	intensity. <i>Herpetologica</i> 60: 45–53. DOI: <u>10.1655/02-109</u> .				
129	Mazerolle MJ. 2004b. Drainage ditches facilitate frog movements in a hostile landscape.				
130	Landscape Ecology 20:579–590. DOI: https://doi.org/10.1007/s10980-004-3977-6.				
131	Moya-Laraño J, Macías-Ordóñez R, Blanckenhorn WU, Fernández-Montraveta C. 2008.				
132	Analysing body condition: Mass, volume or density? Journal of Animal Ecology 77:1099-				
133	1108 DOI: <u>10.1111/j.1365-2656.2008.01433.x</u> .				
134	O'Riain M, Jarvis J, Faulkes C. 1996. A dispersive morph in the naked mole-rat. Nature				
135	380:619–621 DOI: <u>10.1038/380619a0</u> .				
136	Petronilho JMS, Dias CMM. 2005. Impact of two forest roads upon wildlife after a road				
137	pavement change in a coastal area in the center of Portugal. Wildlife Biology in Practice				
138	1:128–139.				
139	Phillips BL, Brown GP, Webb JK, Shine R. 2006. Invasion and the evolution of speed in toads.				
140	<i>Nature</i> 439:803 DOI: <u>10.1038/439803a</u> .				

141	R Development Core Team. 2014. R: A language and environment for statistical computing.				
142	Vienna: The R Foundation for Statistical Computing.				
143	Radinger J, Wolter C. 2014. Patterns and predictors of fish dispersal in rivers. Fish and Fisheries				
144	15:456–473. DOI: http://dx.doi.org/10.1111/faf.12028				
145	Riley SPD, Busteed GT, Kats LB, Vandergon TL, Lee LFS, Dagit RG, Kerby JL, Fisher RN,				
146	Sauvajot RM. 2005. Effects of urbanization on the distribution and abundance of				
147	amphibians and invasive species in southern California streams. Conservation Biology				
148	19:1894–1907 DOI: <u>10.1111/j.1523-1739.2005.00295.x</u> .				
149	Ronce O. 2007. How does it feel to be like a rolling stone? Ten questions about dispersal				
150	evolution. Annual Review of Ecology, Evolution, and Systematics 38:231–253 DOI:				
151	10.1146/annurev.ecolsys.38.091206.095611.				
152	Rubbo MJ, Kiesecker JM. 2005. Amphibian breeding distribution in an urbanized landscape.				
153	Conservation Biology 19:504–511 DOI: <u>10.1111/j.1523-1739.2005.000101.x</u> .				
154	Šamajová P, Gvoždík L. 2010. Inaccurate or disparate temperature cues? Seasonal acclimation of				
155	terrestrial and aquatic locomotor capacity in newts. Functional Ecology 24:1023-1030				
156	DOI: <u>10.1111/j.1365-2435.2010.01720.x</u> .				
157	Santos X, Llorente GA, Montori A, Carretero MA, Franch M, Garriga N, Richter-Boix A. 2007.				
158	Evaluating factors affecting amphibian mortality on roads: The case of the Common Toad				
159	Bufo bufo, near a breeding place. Animal Biodiversity and Conservation 1:97-104.				
160	Sillero N, Campos J, Bonardi A, Corti C, Creemers R, Crochet PA, Crnobrnja Isailović J, Denoël				
161	M, Ficetola GF, Gonçalves J, Kuzmin S, Lymberakis P, de Pous P, Rodrigez A, Sindaco R,				
162	Speybroeck J, Toxopeus B, Vieites DR, Vences M. 2014. Updated distribution and				

463	biogeography of amphibians and reptiles of Europe. Amphibia-Reptilia 35:1–31 DOI:
464	<u>10.1163/15685381-00002935</u> .
465	Sillero N. 2008. Amphibian mortality levels on Spanish country roads: Descriptive and spatial
466	analysis. <i>Amphibia-Reptilia</i> 29:337–347 DOI: <u>10.1163/156853808785112066</u> .
467	Sotiropoulos K, Eleftherakos K, Tsaparis D, Kasapidis P, Giokas S, Legakis A, Kotoulas G
468	2013. Fine scale spatial genetic structure of two syntopic newts across a network of ponds:
469	Implications for conservation. <i>Conservation Genetics</i> 14:385–400 DOI: <u>10.1007/s10592-</u>
470	<u>013-0452-4</u> .
471	Stevens VM, Leboulengé E, Wesselingh RA, Baguette M. 2006. Quantifying functional
472	connectivity: Experimental assessment of boundary permeability for the Natterjack toad
473	Bufo calamita. Oecologia 150:161–171 DOI: <u>10.1007/s00442-006-0500-6</u> .
474	Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues ASL, Fischman DL, Waller RW. 2004.
475	Status and trends of amphibian declines and extinctions worldwide. Science 306:1783-
476	1786 DOI: 10.1126/science.1103538.
477	Trochet A, Dechartre J, Le Chevalier H, Baillat B, Calvez O, Blanchet S, Riberon A. 2016.
478	Effects of habitat and fragmented-landscape parameters on amphibian distribution at a
479	large spatial scale. The Herpetological Journal 26: 73.
480	Van Dyck H, Baguette M. 2005. Dispersal behaviour in fragmented landscapes: Routine or
481	special movements? Basic and Applied Ecology 6:535-545 DOI:
482	10.1016/j.baae.2005.03.005.
483	Wiens JA, Schooley RL, Weeks RD. 1997. Patchy landscapes and animal movements: Do
484	beetles percolate? Oikos 78:257–264.

185	Wiens JA. 2001. The landscape context of dispersal. In: Clobert J, Danchin E, Dhondt AA,
186	Nichols JD, eds. Dispersal. Oxford: Oxford University Press, 96-109.
487	Wilson MC, Chen XY, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hugues
188	AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS
189	Wu J, Yu M. 2016. Habitat fragmentation and biodiversity conservation: key findings and
490	future challenges. <i>Landscape Ecology</i> 31:219–227. DOI: <u>10.1007/s10980-015-0312-3</u> .
491	Youngquist MB, Boone MD. 2014. Movement of amphibians through agricultural landscapes:
192	The role of habitat on edge permeability. <i>Biological Conservation</i> 175:148–155 DOI:
193	10.1016/j.biocon.2014.04.028.
194	



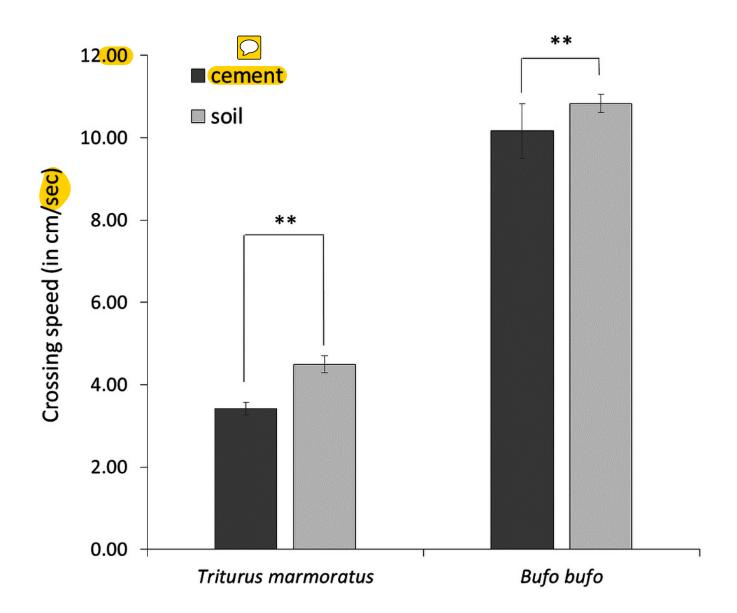

495	Figure caption
496	
497	Figure 1. Crossing speed (in cm/sec) on cement and soil substrates in (a) the marbled newt and
498	(b) the common toad. **: $P < 0.01$. Error bars represents standard error.
499	
500	Figure 2. Relationships between (a) crossing speed (log-transformed) and body index (residuals
501	of the regression of log(body mass) on log(snout-to-vent length) depending on sexes in marbled
502	newts; (b) crossing speed (log-transformed) and leg (residuals between hind limb length and
503	snout-to-vent length) depending on sexes in common toads. Males are in black points and
504	females are in grey points.
505	

Figure 1

Figure 1. Crossing speed (in cm/sec) on cement and soil substrates in (a) the marbled newt and (b) the common toad.

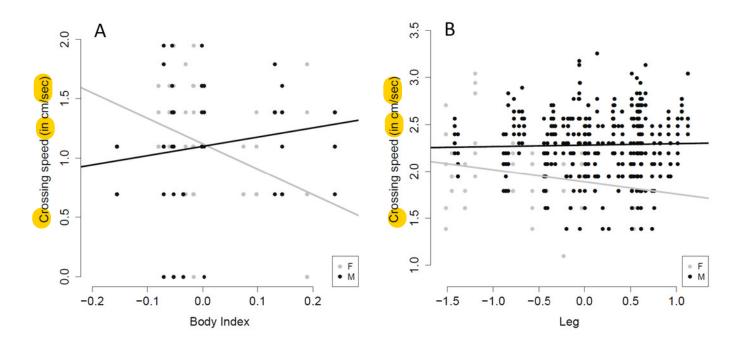


Figure 2

Figure 2. Relationships between (a) crossing speed (log-transformed) and body index (residuals of the regression of log(body mass) on log(snout-to-vent length) depending on sexes in marbled newts; (b) crossing speed (log-transformed) and leg (residuals be

Males are in black points and females are in grey points.

Table 1(on next page)

Table 1. Summary of the best models showing the influence of significant variables on the crossing speed for marbled newt (*Triturus marmoratus*) and common toad (*Bufo bufo*). BI: body index; leg: relative hind-limb length.

***: P < 0.001, ** : P < 0.01, * : P < 0.05.

- 1 Table 1. Summary of the best models showing the influence of significant variables on the
- 2 crossing speed for marbled newt (*Triturus marmoratus*) and common toad (*Bufo bufo*). BI: body
- 3 index; leg: relative hind-limb length. ***: P < 0.001, **: P < 0.01, *: P < 0.05.

5		Marbled newt (Triturus marmoratus)		Common toad (Bufo bufo)			
6		Estimate	P		Estimate	P	
7	(Intercept)	1.415	< 0.001	***	2.843	< 0.001	***
8	Substrate (soil)	0.208	0.003	**	0.060	0.001	**
0	leg	-	-	-	-0.094	0.114	
9	BI	-1.790	0.007	**	-	-	-
10	sex (male)	-0.007	0.947		0.120	0.082	
	BI * sex (male)	2.151	0.021	*	-	-	-
	leg * sex (male)	-	-	_	0.144	0.032	*
	stops	-0.066	< 0.001	***	0.080	< 0.001	***