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ABSTRACT
Background: The nitrite-dependent anaerobic methane oxidation (N-DAMO)
pathway, which plays an important role in carbon and nitrogen cycling in aquatic
ecosystems, is mediated by “Candidatus Methylomirabilis oxyfera” (M. oxyfera)
of the NC10 phylum. M. oxyfera-like bacteria are widespread in nature, however,
the presence, spatial heterogeneity and genetic diversity of M. oxyfera in the
rhizosphere of aquatic plants has not been widely reported.
Method: In order to simulate the rhizosphere microenvironment of submerged
plants, Potamogeton crispus was cultivated using the rhizobox approach. Sediments
from three compartments of the rhizobox: root (R), near-rhizosphere (including five
sub-compartments of one mm width, N1–N5) and non-rhizosphere (>5 mm, Non),
were sampled. The 16S rRNA gene library was used to investigate the diversity
of M. oxyfera-like bacteria in these sediments.
Results: Methylomirabilis oxyfera-like bacteria were found in all three sections,
with all 16S rRNA gene sequences belonging to 16 operational taxonomic units
(OTUs). A maximum of six OTUs was found in the N1 sub-compartment of the
near-rhizosphere compartment and a minimum of four in the root compartment
(R) and N5 near-rhizosphere sub-compartment. Indices of bacterial community
diversity (Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively.
Phylogenetic analysis showed that OTU1-11 were classified into group b, while
OTU12 was in a new cluster of NC10.
Discussion: Our results confirmed the existence of M. oxyfera-like bacteria in
the rhizosphere microenvironment of the submerged plant P. crispus. Group b of
M. oxyfera-like bacteria was the dominant group in this study as opposed to previous
findings that both group a and b coexist in most other environments. Our results
indicate that understanding the ecophysiology of M. oxyfera-like bacteria group b
may help to explain their existence in the rhizosphere sediment of aquatic plant.
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INTRODUCTION
The region known as the rhizosphere of submerged aquatic plants is generally several
millimeters in thickness and surrounds the plant roots. It is a “hotspot” for many
biogeochemical interactions between the plant root system and microbial processes
(Hartmann, Rothballer & Schmid, 2008). Environmental factors related to sediment
processes and plant metabolism, including oxygen consumed or produced (Bodelier, 2003)
and nutrient exudates secreted by plants (Haichar et al., 2014), influence the community
structure of the rhizosphere and make microbial diversity of this region distinct from
that of the surrounding sediments. Microbial activity related to nitrogen transformations
is especially active in the plant rhizosphere. It is mediated by nitrogen cycling bacteria
which exist in close association with plant roots.

The diversity and abundance of ammonia-oxidizing bacteria have been reported to be
higher in the plant rhizosphere than in the bulk soils in calcareous regions (Ai et al., 2013).
The abundance of denitrifying bacteria in the rhizosphere of rice and wheat have also
been found to be higher than in the non-rhizosphere soil (Hussain et al., 2011; Hamonts
et al., 2013). Ativities of the rhizosphere microbial community, notably microbial
nitrogen cycling, are often influenced by the species of host plant (Ruiz-Rueda, Hallin &
Bañeras, 2009; Hu et al., 2015). For example, Iris pseudacorus and Typha orientalis have
been found to support higher diversity of anaerobic ammonium oxidizing bacteria in
rhizosphere sediments than in Thalia dealbata (Chu et al., 2015). Nitrogen cycling
microbes are the main drivers of denitrification in lakes (Zhao et al., 2015) and therefore
understanding microbial diversity in rhizosphere sediments could assist with enhancing
remediation of lake eutrophication.

Candidatus Methylomirabilis oxyfera, or M. oxyfera bacteria, belong to the NC10
phylum and are not currently available from pure cultures (Ettwig et al., 2010). Some
M. oxyfera-like bacteria can couple the oxidation of methane with nitrite reduction
under anaerobic conditions using a process called nitrite-dependent anaerobic methane
oxidation (N-DAMO) (Raghoebarsing et al., 2006; Ettwig et al., 2010). These organisms
have an internal mechanism of oxygen generation, which is considered to be the fourth
major biological pathway for oxygen production, and potentially has a substantial impact
on global cycling of carbon and nitrogen (Wu et al., 2011; Ettwig et al., 2012). Numerous
studies have been undertaken on N-DAMO microbes inhabiting aquatic ecosystems
and the existence of M. oxyfera-like bacteria. The 16S rRNA genes of M. oxyfera-like
bacteria have been detected in marine (Chen, Zhou & Gu, 2014), estuarine (Shen et al.,
2014b; Chen, Zhou & Gu, 2015; Yan et al., 2015), lake (Deutzmann & Schink, 2011; Kojima
et al., 2012; Wang et al., 2017), river (Shen et al., 2014a), natural wetland (Wang et al.,
2016), peatland (Zhu et al., 2012), and constructed wetland ecosystems (Zhu et al., 2015).
Ettwig et al. (2009) divided the 16S rRNA genes of NC10 bacteria into four groups: a, b, c,
and d. Group a and group b are considered to be the dominant branches. Currently
known M. oxyfera-like bacteria with N-DAMO function belong to group a (Welte et al.,
2016). However, group b were found in most natural environments and occupy the
majority of the M. oxyfera-like bacteria community in many freshwater environments
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(Wang et al., 2016; Kojima et al., 2012; Shen et al., 2015). Although M. oxyfera-like
bacteria of the NC10 phylum are widespread, they have not been reported in the
rhizosphere of aquatic plants.

Many studies have shown that anaerobic microbes, such as denitrifying bacteria
and anaerobic ammonia-oxidizing bacteria, existed in the rhizosphere of aquatic plants
(Lu et al., 2014; Zheng et al., 2016), therefore we speculated that M. oxyfera-like
bacteria may also exist in this region. In this study, a rhizobox approach was used to
experimentally cultivate submerged plants from a freshwater lake to detect the occurrence
and diversity of M. oxyfera-like bacteria in the rhizosphere and non-rhizosphere zones
of the submerged plants.

MATERIALS AND METHODS
Test sediments and plants
Sediment samples were collected from Liangzi Lake (114�38′23″N, 30�14′28″E), located
in Hubei Province of China. The basic characteristics of the sediments were 72.5 ± 1.3%
water content, 8.85 ± 0.86 g kg-1 of organic matter (OM), 0.50 ± 0.06 g kg-1 of total
nitrogen and 0.45 ± 0.05 g kg-1 of total phosphorus. The chemical composition of the
interstitial water was 4.39 ± 1.29 mg l-1 of ammonium-nitrogen (NH4

+ - N), 0.22 ±
0.07 mg l-1 of nitrate-nitrogen (NO3

- - N) and pH of 6.99 ± 0.08. Potamogeton crispus
(Potmogetonaceae), a common, perennial, herbaceous, submerged plant, was selected
as the plant host in this experiment. This plant is also a native of lakes of southern China.

Design of rhizobox
Potamogeton crispus was cultivated using a three-compartment rhizobox with multiple
interlayers. The rhizobox was modified under the design of He et al. (2005) (Fig. 1).
Each plant was fully submerged into the bottom of a water tank (height of 350 mm) during
cultivation. Air-dried sediment was used to fill the three compartments. The rhizobox

Figure 1 Schematic diagram of the rhizobox (175 � 175 � 115 mm) used for cultivation of
submerged P. crispus (modified from He et al., 2005). Full-size DOI: 10.7717/peerj.6041/fig-1
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had three sections: a root compartment (20 mm in width), near-rhizosphere compartment
(five mm), and non-rhizosphere compartment (>5 mm). The near-rhizosphere
compartment was further separated into five sub-compartments (one mm thick) by
nylon mesh (<25 mm) in order to prevent root hairs entering the adjacent sediment
interlayers and to keep microbial and root exudates separated in the sediment interlayers.

Plant cultivation and sample collection
Six P. crispus turions showing similar germination times and growth characteristics
were selected to plant in the root compartment. Plants were cultivated for 6 months,
from November 2014 to May 2015. In order to simulate three nutritional conditions
(low, intermediate and eutrophic nutrient status) of freshwater lakes, three regimes of
slow-release urea (Luxi Chemical Co., Ltd, Liaocheng, Shandong, China) as a nutrient input
were used at concentrations of 0, 400, and 600 mg urea per kg sediment. Each concentration
nutrient input experiment consists of three replicate rhizoboxes. After 5 months, the root
systems of the plants filled the root compartments and slow-release urea was injected
into the sediments. Three parallel sediment samples for each nutritional condition were
collected from the root compartment (R), five near-rhizosphere sub-compartments
(N1–N5), and the non-rhizosphere compartment (Non) at 14-day intervals, starting at day 0,
for 56 days after urea injection. The sediment samples collected from the same interlayer
were combined and then seven mixed samples were used for DNA extraction, cloning
and sequencing to detect whether M. oxyfera-like bacteria exist in every interlayer.

Physicochemical measurement and genomic DNA extraction
Before the sediments were collected, the dissolved oxygen (DO) and pH of the rhizosphere
sediment were measured in situ using a microelectrode system (Unisense, Aarhus, Denmark).
The measured depth was 48 mm due to limited length of probe of the microelectrode system.
Depth of oxygen permeation (Dop, DO > 6.25 mmol l-1) in each near-rhizosphere
sub-compartment was identified based on the measured DO values. The collected sediments
were centrifuged for 10 min at 4,000 rpm to obtain interstitial water. The concentration of
NH4

+ -N and NO3
- -N of interstitial water was measured using flow injection analysis (SEAL

Analytical AA3; SEAL Analytical, Norderstedt, Germany).
The genomic DNA of the sediments was extracted using a Fast DNA Spin Kit for

Soil (MP Biomedicals, Fountain Parkway Solon, OH, USA) according to the
manufacturer’s instructions. Approximately 0.5 g of sediment was used for DNA isolation.
The extracted DNA were then stored at -20 �C until further analysis. Concentrations of
the DNA were determined using a NanoDrop 2000 UV–Vis Spectrophotometer (Thermo
Fisher Scientific, Waltham, MA, USA), and the quality was checked by electrophoresis on a
1.2% agarose gel.

Amplification, cloning, and sequencing
The 16S rRNA genes of M. oxyfera-like bacteria were amplified by nested PCR. The
primers 202F (5′-GACCAAAGGGGGCGAGCG-3′) (Ettwig et al., 2009) and 1545R
(5′-CAKAAAGGAGGTGATCC-3′) (Juretschko et al., 1998) were used in the first step,
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and the specific primers for NC10 bacteria qP1F (5′-GGGCTTGACATCCCACGAACC
TG-3′) and qP2R (5′-CGCCTTCCTCCAGCTTGACGC-3′) (Ettwig et al., 2009) were used
in the second step. The reaction mixture was: 12.5 ml of 2 � High-Fidelity Master Mix
(blue), one ml primer F (10 mM), one ml primer R (10 mM), one ml DNA template (20–50 ng
ml-1) and 9.5 ml ddH2O. PCR condition was 98 �C pre-denaturation for 5 min, followed
by 35 cycles of 98 �C denaturation for 10 s, 56 �C annealing for 10 s, 72 �C elongation
for 20 s, and a final elongation step at 72 �C for 5 min. The PCR products were cloned
using the pClone 007 Vector Linker Kit (TSING KE, Beijing, China). About 50 positive
clones were randomly selected from each interlayer and sequenced to construct clone
libraries.

Statistical analysis
Analysis of variation (Least—Significant Difference (LSD) and Tukey’s test) was used to
detect significant differences amongst physicochemical indices of sediments and interstitial
water. Operational taxonomic unit (OTU) cut-off values of 3% were applied to
determine the 16S rRNA genetic diversity ofM. oxyfera-like bacteria, and furthest neighbor
method was used in sequences clustering using Mothur program (v.1.34.4) (Schloss et al.,
2009). Multiple sequence alignment was conducted with ClustalW 1.6 program.
Phylogenetic analyses of the 16S rRNA gene sequences were conducted with Mega 6
software using the neighbor-joining method. The calculation model was Jukes–Cantor
model. Bootstrap analysis with 1,000 replicates was applied to examine the confidence levels
of the clustering of the trees (Shen et al., 2014a). The Chao1 estimator and the Shannon
index were generated using Mothur software (v.1.34.4) to assess diversity. Sequences
obtained in this study were BLAST with M. oxyfera bacteria sequence (FP565575) in the
NCBI database to get their similarities and uploaded to GenBank under accession numbers
MH092300–MH092623.

RESULTS
Physical and chemical indicators of rhizosphere sediment
The concentration of NO3

- - N in the N2 near-rhizosphere sub-compartment was highest
(1.46 ± 1.66 mg l-1) and that in the root and non-rhizosphere compartment was
lowest (0.30 ± 0.14 and 0.39 ± 0.16 mg l-1, respectively) (F = 3.611, P = 0.003) (Table 1).
The concentration of NH4

+ - N (10.61 ± 7.80 to 13.28 ± 9.49 mg l-1) (F = 0.169, P = 0.984)
and pH (7.56 ± 0.23 to 7.62 ± 0.14) (F = 0.151, P = 0.962) did not change significantly
between rhizobox compartments. The Dop decreased from 14.4 ± 6.6 to 10.6 ± 4.5 mm
between compartments, but this was not significant (F = 1.136, P = 0.349).

Diversity of M. oxyfera-like bacteria 16S rRNA genes
A total of 324 sequences of NC10 phylum bacteria were obtained in this study (Table 2).
All sequences were divided into 16 OTUs based on 97% similarity. Approximately 45–50
sequences were detected in each rhizobox interlayer, representing four to six separate
OTUs (Table 2). A maximum of six OTUs was found in the N1 near-rhizosphere sub-
compartment while a minimum of four OTUs was found in the root compartment (R) and
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N5 near-rhizosphere sub-compartment. The library coverage values ranged from 0.94 to
1.00, indicating that the 16S rRNA gene sequences of M. oxyfera-like bacteria in
rhizosphere sediment of P. crispus were sufficiently over-represented in these clone
libraries. The N2 near-rhizosphere sub-compartment had the highest diversity, with the
Shannon index and Chao1 richness estimators of 1.16 and 5, respectively. The lowest
diversity was observed in the N3 near-rhizosphere sub-compartment, with Shannon index
and Chao1 richness estimators of 0.73 and 6, respectively.

Phylogenetic diversity of M. oxyfera-like bacterial 16S rRNA genes
Representative sequences of OTU1-11 were classified into group b according to Ettwig
et al. (2009), with 88–93% identity to the 16S rRNA gene of M. oxyfera (Table 3). The
group b sequences were sorted into sub-clades designated clusters from 1 to 5. OTU12
represents a new cluster of NC10 bacteria and does not belong to group a, b, c, or d (Fig. 2).

The sequence in cluster 1 showed 92% identity with the 16S rRNA gene of M. oxyfera
from the non-rhizosphere compartment. Cluster 2 comprised OTU2, OTU8, OTU10,
OTU11, and OTU15. This cluster contained 73 sequences from all interlayers except

Table 1 Physicochemical properties of submerged P. crispus rhizosphere and non-rhizosphere
sediment and interstitial water. Values are means (SD); n = 12.

Sample NO3
- - N mg l-1 NH4

+ - N mg l-1 pH Dop mm

R 0.30 ± 0.14b 10.61 ± 7.80a – –

N1 1.34 ± 1.61a,b 11.09 ± 8.30a 7.62 ± 0.14a 14.4 ± 6.6a

N2 1.46 ± 1.66a 12.38 ± 9.39a 7.59 ± 0.22a 12.3 ± 4.7a

N3 1.23 ± 1.26a,b 11.97 ± 8.74a 7.56 ± 0.23a 11.2 ± 5.2a

N4 0.79 ± 0.59a,b 13.28 ± 9.49a 7.60 ± 0.20a 10.6 ± 4.5a

N5 1.25 ± 1.65a,b 12.85 ± 8.84a 7.59 ± 0.20a 10.8 ± 4.5a

Non 0.39 ± 0.16b 10.90 ± 8.16a * *

Notes:
R and Non represent sediment samples in root compartment and non-rhizosphere compartment, respectively. N1–N5
represent sediment samples taken from one to five mm of near-rhizosphere sub-compartments.
– Indicates that the root system hindered microelectrode measurement in the root compartment.
Different letters after values in the same column indicate significant difference (P < 0.05).
* Indicates that the non-rhizosphere was not measured.

Table 2 Diversity indices of M. oxyfera-like bacteria in submerged P. crispus rhizosphere and
non-rhizosphere sediments.

Sample Sequence OTU Coverage Shannon Chao1

R 45 4 1.00 0.92 4

N1 47 6 0.94 1.14 9

N2 45 5 0.98 1.16 5

N3 50 5 0.96 0.73 6

N4 48 5 0.98 1.00 5

N5 44 4 0.98 0.80 4

Non 45 5 0.96 0.87 6

Note:
R and Non represent sediment samples in root and non-rhizosphere compartment, respectively; N1–N5 represent
sediment samples taken from one to five mm of near-rhizosphere sub-compartments.
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the N5 near-rhizosphere sub-compartment and had 90–92% similarity to M. oxyfera.
The cluster 3 was the dominant in group b, which consisted of the largest number of
sequences (205 of the total found of 324). Cluster 3 members recorded in all interlayers
and showed 91–92% identity with the M. oxyfera. Cluster 4 had the highest similarity
to M. oxyfera (93%), and it contained 42 sequences from all interlayers except the root
compartment. Cluster 5 and OTU12 were detected from N1 and N3 near-rhizosphere
sub-compartments, showing 88–89% sequence similarity with M. oxyfera (Table 3).

DISCUSSION
In this study, we used a rhizobox approach to investigate the occurrence and diversity of
M. oxyfera-like bacteria in the rhizosphere and non-rhizosphere of a common submerged
plant. The results show that these bacteria are present in both the rhizosphere and the non-
rhizosphere sediments. Most of the OTUs were classified into group b. There were four to
six OTUs in every rhizobox interlayer. And indices of bacterial community diversity
(Shannon) and richness (Chao1) were 0.73–1.16 and 4–9, respectively.

The diversity for the compartments ranked near-rhizosphere > root compartment >
non-rhizosphere (Table 2), indicating that the near-rhizosphere are more favorable for the
M. oxyfera-like bacteria community. Some studies have found that denitrifying bacteria
(Ruiz-Rueda, Hallin & Bañeras, 2009), including anaerobic ammonium oxidation bacteria
(Li et al., 2016) and anaerobic methane-oxidizing bacteria (Vaksmaa et al., 2016)
distributed around the root systems of submerged aquatic plants. In our study, both the

Table 3 Distribution and similarity of M. oxyfera-like bacterial 16S rRNA genes in rhizosphere and
non-rhizosphere sediments of submerged P. crispus.

OTU Total R N1 N2 N3 N4 N5 Non Similarity to
M. oxyfera

OTU1 162 0 21 24 38 18 28 33 0.91

OTU2 63 28 16 12 0 4 0 3 0.92

OTU3 29 0 2 0 2 21 4 0 0.92

OTU4 19 0 3 4 3 1 5 3 0.93

OTU5 13 10 1 1 0 0 1 0 0.92

OTU6 12 0 0 1 5 1 5 0 0.93

OTU7 7 0 0 1 0 2 0 4 0.93

OTU8 4 2 1 1 0 0 0 0 0.91

OTU9 4 0 0 1 1 1 1 0 0.93

OTU10 3 3 0 0 0 0 0 0 0.91

OTU11 2 2 0 0 0 0 0 0 0.90

OTU12 2 0 1 0 1 0 0 0 0.88

OTU13 1 0 0 0 0 0 0 1 0.91

OTU14 1 0 0 0 0 0 0 1 0.92

OTU15 1 0 1 0 0 0 0 0 0.91

OTU16 1 0 1 0 0 0 0 0 0.89

Note:
R and Non represent sediment samples in root and non-rhizosphere compartment, respectively; N1–N5 represent
sediment samples taken from one to five mm of near-rhizosphere sub-compartments.
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root and near-rhizosphere compartments had high diversity of the M. oxyfera-like
bacteria, possibly as a result of increased methane and nitrite concentrations around plant
roots. Root exudates and OM provided by the plant residues can be converted into

Candidatus Methylomirabilis oxyfera (FP565575.1) 
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Figure 2 Neighbor-joining phylogenetic tree of M. oxyfera-like bacterial 16S rRNA gene sequences in rhizosphere and non-rhizosphere
sediments of P. crispus. R and Non represent sediment samples in root compartment and non-rhizosphere, respectively. N1–N5 represent sedi-
ment samples taken from one to five mm of near-rhizosphere sub-compartments. The numbers in the brackets represent the ratio of the number of
sequences out of the total number in the corresponding interlayer. The numbers at the nodes are percentages that indicate the levels of bootstrap
support based on 1,000 replicates, and only percentages more than 50% are shown. The scale bar represents 1% sequence divergence.

Full-size DOI: 10.7717/peerj.6041/fig-2
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methane (CH4) by methanogenic archaea (Kerdchoechuen, 2005). Furthermore, both
partial denitrification and nitrification in the rhizosphere may produce nitrite (Nie et al.,
2015). These substrates are conducive for the growth of M. oxyfera-like bacteria in the
near-rhizosphere sediments.

Sequences obtained in the seven interlayers of this study had high similarity to the
M. oxyfera-like bacterial 16S rRNA gene sequences recovered from other aquatic
ecosystems. Clusters in our study were closely related to the sequences in the sediments
of an estuary (Yan et al., 2015), wetlands (Wang et al., 2012, 2016; Hu et al., 2014), lakes
(Wang et al., 2015, 2017; Kojima et al., 2012) and anaerobic sewage sludge (Ma et al., 2017).
The sequences of group b dominated M. oxyfera-like bacteria in the rhizosphere and
non-rhizosphere of P. crispus (Fig. 2). Functional gene pmoA was not amplified in this
study. Similarly, only group b of M. oxyfera-like bacterial 16S rRNA genes sequences
has been found in sediments of two freshwater lakes in China, Lake Dongchang, and Lake
Dongping (Wang et al., 2017). In the sediments of the Three Gorges reservoir, most of the
sequences (65/67) were group b (Wang et al., 2016) and similarly in the sediments of
Lake Biwa (5/6 OTUs belonged to group b) (Kojima et al., 2012) and an urban wetland
(8/11 OTUs belonged to group b) (Shen et al., 2015). In contrast, more than 87% M.
oxyfera-like 16S rRNA genes sequences in sediments of the Jiaojiang estuary (Shen et al.,
2014b) were classified into group a. There is no evidence that communities consisting
primarily of group b bacteria can dominate N-DAMOwithout group, a and the two appear
to coexist in the majority of natural environments. The functions attributed to group
b need to be further studied to improve our understanding of NC10 bacterial communities
in rhizospheres.

The diversity indices of M. oxyfera-like bacteria of this study were similar to that
in other freshwater sediments from rivers (Shen et al., 2014a) and wetlands (Wang et al.,
2016). However, in natural environments, a higher diversity of M. oxyfera-like bacteria
is often found in marine and estuarine sediments (Chen, Zhou & Gu, 2014) compared
with freshwater sediments from rivers and wetlands (Yan et al., 2015; Shen et al., 2014a;
Wang et al., 2016) and particularly lakes (Deutzmann & Schink, 2011; Kojima et al., 2012;
Wang et al., 2017). Recently, a global analysis on the distribution pattern of theM. oxyfera-
like bacteria demonstrated that a significant community difference was found between
the marine and freshwater habitats (Zhang, Liu & Gu, 2018). Therefore, community
difference might be a major reason why the diversity of this bacteria is higher in ocean
than in freshwater.

In this experiment, samples of the same interlayer were mixed and sequenced.
Although the mixture was able to detect all M. oxyfera-like bacteria, this method could
not statistically analyze the significant differences of OTUs in different interlayers.
Therefore, the spatial distribution of this bacteria was not analyzed in this paper.

CONCLUSION
Methylomirabilis oxyfera-like 16S rRNA genes were detected in sediment of all the
three compartments of P. crispus. There were less OTU in rhizoshpere and only four to six
OTUs existed in each interlayer. The Shannon and Chao1 indices were similar to that
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in sediments of freshwater wetlands and rivers. Phylogenetic analysis showed that all
the OTUs were classified into group b of M. oxyfera-like 16S rRNA genes, except for
one OTU into a new cluster of NC10 bacteria, which suggests that the group b bacteria
may be important for nitrogen biogeochemical cycles and may play an important role
in regulating eutrophication in freshwater systems.
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