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Modern scientific studies from many diverse areas of research abound with multiple

hypothesis testing concerns. The false discovery rate is one of the most commonly used

approaches for measuring and controlling error rates when performing multiple tests.

Adaptive false discovery rates rely on an estimate of the proportion of null hypotheses

among all the hypotheses being tested. This proportion is typically estimated once for

each collection of hypotheses. Here we propose a regression framework to estimate the

proportion of null hypotheses conditional on observed covariates. This may then be used

as a multiplication factor with the Benjamini-Hochberg adjusted p-values, leading to a

plug-in false discovery rate estimator. We apply our method to a genome-wise association

meta-analysis for body mass index. In our framework, we are able to use the sample sizes

for the individual genomic loci and the minor allele frequencies as covariates. We further

evaluate our approach via a number of simulation scenarios. We provide an

implementation of this novel method for estimating the proportion of null hypotheses in a

regression framework as part of the Bioconductor package swfdr.
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Abstract11

Modern scientific studies from many diverse areas of research abound with multiple hypothesis12

testing concerns. The false discovery rate is one of the most commonly used approaches for13

measuring and controlling error rates when performing multiple tests. Adaptive false discovery14

rates rely on an estimate of the proportion of null hypotheses among all the hypotheses being15

tested. This proportion is typically estimated once for each collection of hypotheses. Here we16

propose a regression framework to estimate the proportion of null hypotheses conditional on17

observed covariates. This may then be used as a multiplication factor with the Benjamini-18

Hochberg adjusted p-values, leading to a plug-in false discovery rate estimator. We apply our19

method to a genome-wise association meta-analysis for body mass index. In our framework, we20

are able to use the sample sizes for the individual genomic loci and the minor allele frequencies as21

covariates. We further evaluate our approach via a number of simulation scenarios. We provide22

an implementation of this novel method for estimating the proportion of null hypotheses in a23

regression framework as part of the Bioconductor package swfdr.24

1 Introduction25

Multiple testing is a ubiquitous issue in modern scientific studies. Microarrays [21], next-26

generation sequencing [24], and high-throughput metabolomics [17] make it possible to simulta-27

neously test the relationship between hundreds or thousands of biomarkers and an exposure or28

outcome of interest. These problems have a common structure consisting of a collection of vari-29

ables, or features, for which measurements are obtained on multiple samples, with a hypothesis30

test being performed for each feature.31

When performing thousands of hypothesis tests, one of the most widely used frameworks for32

controlling for multiple testing is the false discovery rate (FDR). For a fixed unknown parameter33

µ, and testing a single null hypothesis H0 : µ = µ0 versus some alternative hypothesis, for34

example, H1 : µ = µ1, the null hypothesis may either truly hold or not for each feature.35

Additionally, the test may lead to H0 either being rejected or not being rejected. Thus, when36

performing m hypothesis tests for m different unknown parameters, Table 1 shows the total37

number of outcomes of each type, using the notation from [1]. We note that U , T , V , and S,38

and as a result, also R = V +S, are random variables, while m0, the number of null hypotheses,39

is fixed and unknown.40

The FDR, introduced in [1], is the expected fraction of false discoveries among all discoveries.41

The false discovery rate depends on the overall fraction of null hypotheses, namely π0 = m0

m
.42

This proportion can also be interpreted as the a priori probability that a null hypothesis is43

true, π0.44

When estimating the FDR, incorporating an estimate of π0 can result in a more powerful45

procedure compared to the original [1] procedure (BH); moreover, asm increases, the estimate of46

π0 improves, which means that the power of the multiple-testing approach does not necessarily47

decrease when more hypotheses are considered [25]. The popularity of this approach can be48

seen in the extensive use of the qvalue package [26], which implements this method, which49

is among the top 5% most downloaded Bioconductor packages, having been downloaded more50

than 78,000 times in 2017.51

Most modern adaptive false discovery rate procedures rely on an estimate of π0 using the52

data of all tests being performed. But additional information, in the form of meta-data, may53

be available to aid the decision about whether to reject the null hypothesis for a particular54

feature. The concept of using these feature-level covariates, which may also be considered55

“prior information,” arose in the context of p-value weighting [5]. We focus on an example from56

a genome-wide association study (GWAS) meta-analysis, in which millions of genetic loci are57

tested for associations with an outcome of interest - in our case body mass index (BMI) [18].58
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Different loci may not all be genotyped in the same individuals, leading to loci-specific sample59

sizes. Additionally, each locus will have a different population-level frequency. Thus, the sample60

sizes and the frequencies may be considered as covariates of interest. Other examples exist in61

set-level inference, including gene set analysis, where each set has a different fraction of false62

discoveries. Adjusting for covariates independent of the data conditional on the truth of the null63

hypothesis has also been shown to improve power in RNA-seq, eQTL, and proteomics studies64

[9].65

In this paper, we develop and implement an approach for estimating false discovery rates66

conditional on covariates and apply it to a genome-wide analysis study. Specifically, we seek to67

better understand the impact of sample sizes and allele frequencies in the BMI GWAS data anal-68

ysis by building on the approaches of [1], [4], and [25] and the more recent work of [22], which69

frames the concept of FDR regression and extends the concepts of FDR and π0 to incorporate70

covariates, represented by additional meta-data. Our focus will be on estimating the covariate-71

specific π0, which will then be used in a plug-in estimator for the false discovery rate, similar to72

the work of [25]. We thus provide a more direct approach to estimating the FDR conditional on73

covariates and compare our estimates to those of [22], as well as to the BH and [25] approaches.74

Our method for estimating the covariate-specific π0 is implemented in the Bioconductor pack-75

age swfdr (https://bioconductor.org/packages/release/bioc/html/swfdr.html). Sim-76

ilar very recent approaches include work by [16] and [15], which also estimate π0 based on77

existing covariates, using different approaches. The approach of [9] considers p-value weight-78

ing but conservatively estimates π0 ≡ 1. An overview of the differences between these various79

approaches for incorporating meta-data and the relationships between them is provided in [8].80

In Section 2 we introduce the motivating case study, a BMI GWAS meta-analysis, which81

will be discussed throughout the paper. In Section 3, we review the definitions of FDR and π082

and their extensions to consider conditioning on specific covariates. In Section 4, we discuss83

estimation and inference procedures in our FDR regression framework, provide a complete84

algorithm, and apply it to the GWAS case study. In Section 5 we describe results from a85

variety of simulation scenarios. Finally, Section 6 provides our statement of reproducibility and86

Section 7 provides the discussion. Special cases, theoretical properties of the estimator, and87

proofs of the results can be found in the Supplementary Materials.88

2 Motivating case study: adjusting for sample size and allele89

frequency in GWAS meta-analysis90

As we have described, there are a variety of situations where meta-data could be valuable for91

improving the decision of whether a hypothesis should be rejected in a multiple testing frame-92

work, our focus being on an example from the meta-analysis of data from a GWAS for BMI [18].93

Using standard approaches such as that of [25], we can estimate the fraction of single nucleotide94

polymorphisms (SNPs) - genomic positions (loci) which show between-individual variability -95

which are not truly associated with BMI and use it in an adaptive FDR procedure. However, our96

proposed method allows further modeling of this fraction as a function of additional study-level97

meta-data.98

In a GWAS, data are collected for a large number of SNPs in order to assess their associations99

with an outcome or trait of interest [6]. Each person usually has one copy of the DNA at each100

SNP inherited from their mother and one from their father. At each locus there are usually101

one of two types of DNA, called alleles, that can be inherited, which we denote A and a. In102

general, A refers to the variant that is more common in the population being studied and a to103

the variant that is less common, usually called the minor allele. Each person has a genotype for104

that SNP of the form AA, Aa, or aa. For example, for a particular SNP, of the 4 possible DNA105

nucleotides, adenine, guanine, cytosine, and thymine, an individual may have either a cytosine106

(C) or a thymine (T) at a particular locus, leading to the possible genotypes CC, CT, and TT.107
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If the C allele is less common in the population, then C is the minor allele. The number of108

copies of a, which is between 0 and 2, is often assumed to follow a binomial distribution, which109

generally differs between SNPs.110

Typically, a GWAS involves performing an association test between each SNP and the111

outcome of interest by using a regression model, including the calculation of a p-value. While112

GWAS studies are often very large, having sample sizes of tens of thousands of individuals113

genotyped at hundreds of thousands of SNPs, due to the small effect sizes being detected,114

meta-analyses combining multiple studies are often considered [19, 6]. In these studies, the115

sample size may not be the same for each SNP, for example if different individuals are measured116

with different technologies which measure different SNPs. Sample size is thus a covariate of117

interest, as is the minor allele frequency (MAF) of the population being studied, which will118

also vary between SNPs. The power to detect associations increases with MAF. This is related119

to the idea that logistic regression is more powerful for outcomes that occur with a frequency120

close to 0.5. Our approach will allow us to better quantify this dependence in order to guide121

the planning of future studies and improve understanding of already-collected data.122

We consider data from the Genetic Investigation of ANthropometric Traits (GIANT) con-123

sortium, specifically the genome-wide association study for BMI [18]. The GIANT consortium124

performed a meta-analysis of 339,224 individuals measuring 2,555,510 SNPs and tested each125

for association with BMI. 322,154 of the individuals considered in [18] are of European descent126

and the study uses the HapMap CEU population - which consists of individuals from Utah of127

Northern and Western European ancestry [10] - as a reference. We used the set of results from128

the GIANT portal at http://portals.broadinstitute.org/collaboration/giant/index.129

php/GIANT_consortium_data_files, which provides the SNP names and alleles, effect allele130

frequencies (EAFs) in the HapMap CEU population and results from the regression-based asso-131

ciation analyses for BMI, presented as beta coefficients, standard errors, p-values, and sample132

size for each SNP.133

We removed the SNPs that had missing EAFs, leading to 2,500,573 SNPs. For these SNPs,134

the minimum sample size considered was 50,002, the maximum sample size 339,224, and the135

median sample size 235,717 - a relatively wide range. Figure 1 shows the dependence of p-values136

on sample sizes within this dataset. As we considered the MAF to be a more intuitive covariate137

than the effect allele frequency (EAF), we also converted EAF values > 0.5 to MAF=1−EAF138

and changed the sign of the beta coefficients for those SNPs. The MAFs spanned the entire139

possible range from 0 to 0.5, with a median value of 0.208.140

3 Covariate-specific π0 and FDR141

We will now review the main concepts behind the FDR and the a priori probability that a null142

hypothesis is true, and consider the extension to the covariate-specific FDR, and the covariate-143

specific a priori probability. A natural mathematical definition of the FDR would be:144

FDR = E

(

V

R

)

.

However, R is a random variable that can be equal to 0, so the version that is generally used is:145

FDR = E

(

V

R

∣

∣

∣

∣

R > 0

)

Pr(R > 0), (1)

namely the expected fraction of false discoveries among all discoveries, conditional on at least146

one rejection, multiplied by the probability of making at least one rejection.147

We index them null hypotheses being considered by 1 ≤ i ≤ m: H01, H02, . . . , H0m. For each148

i, the corresponding null hypothesis H0i can be considered as being about a binary parameter149

θi, such that:150

θi = 1(H0i false).
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Thus, assuming that θi are identically distributed, the a priori probability that a feature is null151

is:152

π0 = Pr(θi = 0). (2)

For the GWAS meta-analysis dataset, π0 represents the proportion of SNPs which are not truly153

associated with BMI or, equivalently, the prior probability that any of the SNPs is not associated154

with BMI.155

We now extend π0 and FDR to consider conditioning on a set of covariates concatenated in156

a column vector Xi of length c, possibly with c = 1:157

π0(xi) = Pr(θi = 0|Xi = xi),

FDR(xi) = E

(

V

R

∣

∣

∣

∣

R > 0,Xi = xi

)

Pr(R > 0|Xi = xi).

4 Algorithm for performing estimation and inference for covariate-158

specific π0 and FDR159

Assuming that a hypothesis test is performed for each feature i, summarized by a p-value Pi,160

the following algorithm can be used to obtain estimates of π0(xi) and FDR(xi), denoted by161

π̂0(xi) and F̂DR(xi), and perform inference.162

Algorithm 1: Estimation and inference for π̂0(xi) and F̂DR(xi)163

a) Obtain the p-values P1, P2, . . . , Pm, for the m hypothesis tests.164

b) For a given threshold λ, obtain Yi = 1(Pi > λ) for 1 ≤ i ≤ m.165

c) Estimate E(Yi|Xi = xi) via logistic regression using a design matrix Z and π0(xi) by:166

π̂λ

0 (xi) =
Ê(Yi|Xi = xi)

1− λ
, (3)

thresholded at 1 if necessary.167

d) Smooth π̂λ
0
(xi) over a series of thresholds λ ∈ (0, 1) to obtain π̂0(xi), by taking the smoothed168

value at the largest threshold considered. Take the minimum between each value and 1 and169

the maximum between each value and 0.170

e) Take B bootstrap samples of P1, P2, . . . , Pm and calculate the bootstrap estimates π̂b
0
(xi) for171

1 ≤ b ≤ B using the procedure described above.172

f) Form a 1 − α confidence interval for π̂0(xi) by taking the 1 − α/2 quantile of the π̂b
0
(xi) as173

the upper confidence bound, the lower confidence bound being α/2.174

g) Obtain an F̂DR(xi) by multiplying the BH adjusted p-values by π̂0(xi).175

In Step (c) in Algorithm 1, Z is a m×p design matrix matrix with p < m and rank(Z) = d ≤ p,176

which can either be equal to X - the matrix of dimension m × (c + 1), which has the ith row177

consisting of (1 X
T
i
) - or includes additional columns that are functions of the covariates in X,178

such as polynomial or spline terms. The estimator is similar to:179

π̂0 =

∑
m

i=1
Yi

m

1− λ
=

m−R

(1− λ)m
, (4)
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which is used by [25] for the case without covariates. In Step (c) we focus on maximum likelihood180

estimation of E(Yi|Xi = xi), assuming a logistic model. A linear regression approach would181

be a more direct generalization of [25], but a logistic model is more natural for estimating182

means between 0 and 1. In particular, we note that a linear regression approach would amplify183

relatively small differences between large values of π0(xi), which are likely to be common in many184

scientific situations, especially when considering GWAS, where one may expect a relatively low185

number of SNPs to be truly associated with the outcome of interest. In the swfdr package, we186

provide users the choice to estimate π0(xi) via either the logistic or linear regression model. In187

Step (d), we consider smoothing over a series of thresholds to obtain the final estimate, as done188

by [27]. In particular, in the remainder of this manuscript, we used cubic smoothing splines with189

3 degrees of freedom over the series of thresholds 0.05, 0.10, 0.15, . . . , 0.95, following the example190

of the qvalue package [26], with the final estimate being the smoothed value at λ = 0.95. We191

note that the final Step (g) results in a simple plug-in estimator for FDR(xi).192

We provide further details in the Supplementary Materials: In Section S1, we present the193

assumptions and main results used to derive Algorithm 1; in Section S2, we detail how the case194

of no covariates and the case where the features are partitioned into sets, such as in [7], can195

be seen as special cases of our more general framework when the linear regression approach is196

applied; in Section S3 we provide theoretical results for this estimator; in Section S4, we present197

proofs of the analytical results. We note that a major assumption is that conditional on the198

null, the p-values do not depend on the covariates. Our theoretical results are based on the199

more restrictive assumption that the null p-values have a Uniform(0, 1) distribution, whereas200

the distribution of the alternative p-values may depend on the covariates.201

This means that the probability of a feature being from one of the two distributions depends202

on the covariates but the actual test statistic and p-value under the null do not depend on the203

covariates further.204

The model we considered for the GWAS meta-analysis dataset models the SNP-specific sam-205

ple size using natural cubic splines, in order to allow for sufficient flexibility. It also considers206

3 discrete categories for the CEU MAFs, corresponding to cuts at the 1/3 and 2/3 quan-207

tiles, leading to the intervals [0.000, 0.127) (838,070 SNPs), [0.127, 0.302) (850,600 SNPs), and208

[0.302, 0.500] (811,903 SNPs).209

Figure 2 shows the estimates of π0(xi) plotted against the SNP-specific sample size N for210

the data analysis, stratified by the CEU MAFs for a random subset of 50,000 SNPs. We note211

that the results are similar for λ = 0.8, λ = 0.9, and for the final smoothed estimate. A212

95% bootstrap confidence interval based on 100 iterations is also shown for the final smoothed213

estimate. Our approach is compared to that of [22], which assumes that the test statistics are214

normally distributed. We considered both the theoretical and empirical null Empirical Bayes215

(EB) estimates of [22], implemented in the FDRreg package [23]. The former assumes a N(0, 1)216

distribution under the null, while the latter estimates the parameters of the null distribution.217

Both approaches show similar qualitative trends to our estimates, although the empirical null218

tends to result in much higher values over the entire range of N, while the theoretical null219

leads to lower values for smaller N and larger or comparable values for larger N. Our results are220

consistent with intuition - larger sample sizes and larger MAFs lead to a smaller fraction of SNPs221

estimated to be null. They do however allow for improved quantification of this relationship:222

For example, we see that the range for π̂0(xi) is relatively wide ([0.697, 1] for the final smoothed223

estimate), while the [25] smoothed estimate of π0 without covariates is 0.949. In the swfdr224

package, we include a subset of the data - for 50,000 randomly selected SNPs - and show how225

to generate plots similar to Fig. 2. Users may of course consider the full dataset and reproduce226

our entire analysis (see Section 6 on reproducibility below.)227

The results for the number of SNPs with estimated FDR ≤ 0.05 are given in Table S1.228

Our approach results in a slightly larger number of discoveries compared to the [25] and [1]229

approaches. Due to the plug-in approaches of both our procedure and the one of [25], all the230
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discoveries from [1] are also present in our approach. The total number of shared discoveries be-231

tween our method and that of [25] is 12,740. The [22] approaches result in either a substantially232

larger number of discoveries (theoretical null) or a substantially smaller number of discoveries233

(empirical null). In particular, the number of discoveries for the empirical null is also much234

smaller than that when using [1]. The overlap between the theoretical null and [1] is 12,251;235

between the theoretical null and our approach it is 13,119.236

5 Simulations237

We consider simulations to evaluate how well π̂0(xi) estimates π0(xi), as well as the usefulness238

of our plug-in estimator, F̂DR(xi), in terms of both controlling the true FDR and having good239

power - measured by the true positive rate (TPR) - under a variety of scenarios. We consider240

a nominal FDR value of 5%, meaning that any test with an FDR less than or equal to 5% is241

considered a discovery. In each simulation, the FDR is calculated as the fraction of truly null242

discoveries out of the total number of discoveries and the TPR is the fraction of truly alternative243

discoveries out of the total number of truly alternative features. In the case of no discoveries,244

the FDR is estimated to be 0.245

We focus on 5 different possible functions π0(xi), shown in Fig. 3. Scenario I considers a flat246

function π0 = 0.9, to illustrate a case where there is no dependence on covariates and scenarios247

II-IV are similar to the BMI GWAS meta-analysis. Scenarios II-IV are chosen to be similar to248

the BMI GWAS meta-analysis. Thus, scenario II is a smooth function of one variable similar249

to Fig. 2C, scenario III is a function which is smooth in one variable within categories of a250

second variable - similar to the stratification of SNPs within MAFs - and scenario IV is the same251

function as in scenario III multiplied by 0.6, to show the effect of having much lower fractions252

of null hypotheses, respectively higher fractions of alternative hypotheses. Finally, scenario V253

is chosen to represent a case where the covariate is very informative; specifically, it represents254

the linear function π0(x1) = x1. The exact functions are given in the Supplementary Materials255

for this paper. For scenarios I and V we focus on fitting a model that is linear in x1 on the256

logistic scale, whereas for scenarios II-IV we consider a model that is linear in x1 and a model257

that fits cubic splines with 3 degrees of freedom for x1, both on the logistic scale. For scenarios258

III and IV, all models also consider different coefficients for the categories of x2.259

Our first set of simulations considers independent test statistics with either m = 1, 000 or260

m = 10, 000 features. For each simulation run, we first randomly generated whether each feature261

was from the null or alternative distribution, so that the null hypothesis was true for the features262

for which a success was drawn from the Bernoulli distribution with probability π0(xi). Within263

each scenario, we allowed for different distributions for the alternative test statistics/p-values:264

beta distribution for the p-values or normal, t, or chi-squared distribution for the test statistics.265

For the beta distribution, we generated the alternative p-values directly from a Beta(1, 20)266

distribution and the null p-values from a Unif(0, 1) distributions. For the other simulations,267

we first generated the test statistics, then calculated the p-values from them. For the normally268

distributed and t-distributed test statistics, we drew the means µi of approximately half the269

alternative features from a N(µ = 3, σ2 = 1), with the remaining alternative features from a270

N(µ = −3, σ2 = 1) distribution, with the mean of the null features being 0. We then drew271

the actual test statistic for feature i from either a N(µ = µi, σ
2 = 1) or T(µ = µi, df = 10)272

distribution (df = degrees of freedom). Note that 10 degrees of freedom for a t-distribution273

is obtained from a two-sample t-test with 6 samples per group, assuming equal variances in274

the groups. We also considered chi-squared test statistics with either 1 degree of freedom275

(corresponding to a test of independence for a 2 x 2 table) or 4 degrees of freedom (corresponding276

to a test of independence for a 3 x 3 table). In this case, we first drew the non-centrality277

parameter (ncpi) from the square of a N(µ = 3, σ2 = 1) distribution for the alternative and278

took it to be 0 for the null, then generated the test statistics from χ2(ncpi = µi, df = 1 or 4).279

7
PeerJ reviewing PDF | (2018:06:29096:1:1:NEW 23 Oct 2018)

Manuscript to be reviewed



Figure 4 considers the case of normally-distributed test statistics with m = 1, 000 features.280

Each panel displays the true function π0(xi) along with the empirical means of π̂0(xi), estimated281

from our approach (BL = Boca-Leek), the [25] approach as implemented in the qvalue package282

[26], and the theoretical approach in [22] (Scott T), implemented in the FDRreg package. For283

both our approach and the Scott T approach, we plotted both the results for both the linear284

the cubic spline models. For scenario I (π0 = 0.9), the results for the 3 methods are nearly285

indistinguishable. For scenarios II-V, the covariates are informative, with both of our approach286

and the Scott T approach being able to flexibly model the dependence of the function π0 on287

xi. For scenarios II-III, our approach does show some amount of anti-conservative behavior for288

the higher values of π0, especially for the spline model fit. For scenario V, both our approach289

and the Scott T approach show a clear increase of π0 with xi1; given that we are using a290

logistic model, we are not expecting an exact linear estimate. Figure S1 presents the m = 1, 000291

case with t-distributed test statistics. The [22] methods use z-values, as opposed to the other292

methods, which use p-values; as a result, in this case we input the t-statistics into the Scott T293

approach, leading to a more pronounced anti-conservative behavior in some cases. This is not294

the case for our approach or the Storey approach, which rely on p-values. Figures 5 and S2 are295

similar to Fig. 4, but consider the m = 10, 000 case instead. We note that we see less anti-296

conservativeness for m = 10, 000, as the estimation is based on a higher number of features.297

For all these simulation frameworks, we note that for scenario I, the overall mean across all298

simulations for our method was between 0.88 and 0.91, very close to the true value of 0.9.299

Tables 2 and 3 show the results for the FDR and TPR of the plug-in estimators for the300

scenarios from Fig. 3. In addition to our method, Scott T, Storey, and BH, we consider the null301

EB approach of [22] (Scott E). We only report the results for the Scott T and Scott E approaches302

for the cases of the z-statistics and t-statistics, where these are inputted directly in the methods303

implemented in the FDRreg package. We see in Tables 2 and 3 that our approach had a true304

FDR close to the nominal value of 5% in most scenarios. As expected, its performance is better305

for m = 10, 000, with some slight anticonservative behavior for m = 1, 000, especially when306

considering the spline models, also noted from the plots of π̂0(xi). We also include the results307

when fitting splines for our method and the Scott approaches for scenarios I and V in Table S2.308

The [22] approaches perform the best in the case where the test statistics are normally309

distributed, as expected. In particular, the FDR control of the theoretical null approach is310

also close to the nominal level and the TPR can be 15% higher in absolute terms than that of311

our approach for scenarios II and III. The empirical null performs less well. However, the [22]312

approaches lose control of the FDR when used with t-statistics and are not applicable to the313

other scenarios. We always see a gain in power for our method over the BH approach, however314

it is often marginal (1-3%) for scenarios I-III, which have relatively high values of π0(xi), which315

is to be expected, since BH in essence assumes π0(xi) ≡ 1. For scenario IV, however, the316

average TPR may increase by as much as 6% to 11% in absolute terms for m = 10, 000 while317

still maintaining the FDR. The gains over the [25] approach are much more modest in scenarios318

II-IV, as expected (0-2% in absolute terms while maintaining the FDR for m = 10, 000). In319

scenario V, where the covariate is highly informative, the gains in power of our approach over320

both BH and Storey are much higher. For the Beta(1,20) case, the difference in TPR is threefold321

for m = 1, 000 and fivefold for m = 10, 000 over Storey. Even for the other cases, which may322

be more realistic, the differences are between 5% and 9% in absolute TPR over Storey and as323

high as >20% in absolute TPR over BH.324

To further explore the potential gain in power over the Storey approach, we expanded325

scenario V to other functions π0(xi1) = xk
i1
, where the exponent k ∈ {1, 1.25, 1.5, 2, 3}. The326

k = 1 case corresponds to scenario V and used a linear function in the logistic regression, whereas327

the remaining cases used cubic splines with 3 degrees of freedom. The estimated FDR and TPR328

for our approach compared to Storey are shown in Figs. 6 and 7. We note that FDR control329

is maintained and that in all the simulations, the TPR for our approach is better compared330
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to that for the Storey approach. The gain in power is around 5-7% for all the simulations331

with normally-distributed test statistics (Fig. 6) and around 9-11% for all the simulations with332

t-distributed test statistics (Fig. 7).333

Additionally, we explored the case of the “global null,” i.e. π0 ≡ 1. We consideredm = 1, 000334

features, with all the test statistics generated from N(0, 1) and 1,000 simulation runs. The mean335

estimates of π0(xi1) are shown in Fig. 8, considering linear models for both our approach and336

the Scott T approach. The overall mean for our approach was 0.94, close to the true value of337

1 and to the Storey mean estimate of 0.96. At a nominal FDR of 5%, our approach had an338

estimated FDR of 5.2%, Scott T of 1.7%, Scott empirical of 21.4%, Storey of 5%, and BH of339

4.5%. Interestingly, although the Scott T approach is conservative in terms of the FDR, the340

estimate of π0(xi1) is lower than the estimate obtained from our method, on average. Results341

were similar when considering splines (5.3% for our approach, 2.1% for Scott T, 22.3% for Scott342

empirical.)343

Finally, we used simulations to explore what happens when there are deviations from in-344

dependence. Tables S3 and S4 consider simulation results for m = 1, 000 features and several345

dependence structures for the test statistics (200 simulation runs per scenario). We considered346

multivariate normal and t distributions, with the means drawn as before and block-diagonal347

variance-covariance matrices with the diagonal entries equal to 1 and a number of blocks equal348

to either 20 (50 features per block) or 10 (100 features per block). The within-block correlations,349

ρ, were set to 0.2, 0.5, or 0.9. For the multivariate normal distribution, as expected, the FDR350

was generally closer to the nominal value of 5% for 20 blocks than for 10 blocks, as 20 blocks351

leads to less correlation. Increasing ρ also leads to worse control of the FDR. Interestingly, for352

the multivariate t distribution, our method often results in conservative FDRs, with the excep-353

tion of the spline models and of the case with 10 blocks and ρ = 0.9. These same trends are also354

present for the [22] approaches, but generally with worse control. Furthermore, for ρ = 0.5, the355

empirical null leads to errors in 1% or fewer of the simulation runs; however, for ρ = 0.9 it leads356

to errors in as many as 33% of the runs. In contrast, [25] shows estimated FDR values closer357

to 5% and results in a single error for ρ = 0.9 and 10 blocks for the t distribution. We also358

note that the TPR is generally very low for the multivariate t distributions, except in scenarios359

IV and V. Overall, while control of the FDR is worse with increasing correlation, as would be360

anticipated, it is still < 0.09 for a nominal value of 0.05 for all scenarios with ρ ∈ {0.2, 0.5},361

with the control being even better when the estimation uses the linear model.362

6 Reproducibility363

All analyses and simulations in this paper are fully reproducible and the code is available on364

Github at: https://github.com/SiminaB/Fdr-regression365

7 Discussion366

We have introduced an approach to estimating false discovery rates conditional on covariates367

in a multiple testing framework, by first estimating the proportion of true null hypotheses368

via a regression model - a method implemented in the swfdr package - and then using this369

in a plug-in estimator. This plug-in approach was also used in [16], although the estimation370

procedure therein for π0(xi) is different, involving a more complicated constrained maximum371

likelihood solution; it also requires convexity of the set of possible values of π0(xi), which is372

only detailed in a small number of cases (order structure, group structure, low total variation or373

local similarity). One specific caveat is that multiplying by the estimate of π0(xi) is equivalent374

to weighing by 1/π0(xi), which has been shown to not be Bayes optimal [15]. However, we note375

that our approach has good empirical properties - further work may consider using our estimate376

with different weighting schemes.377
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Our motivating case study considers a GWAS meta-analysis of BMI-SNP associations, where378

we are interested in adjusting for sample sizes and allele frequencies of the individual SNPs.379

Using extensive simulations, we compared our approach to FDR regression as proposed by [22],380

as well as to the approaches of [1] and [25], which estimate the FDR without covariates. While381

the [22] approaches outperform our approach for normally-distributed test statistics, which is382

one of modeling assumptions therein, that approach tends to lose FDR control for test statistics383

from the t-distribution and cannot be applied in cases where the test statistics come from other384

distributions, such as the chi-squared distribution, which may arise from commonly performed385

analyses; the loss of FDR control for t-statistics has been pointed out before for this approach386

[9]. In general, our method provides the flexibility of performing the modeling at the level of387

the p-values. Our approach always shows a gain in true positive rate over [1]; the gains over388

the [25] approach were more modest, but did rise to 5-11% in absolute TPR in cases where389

the covariates were especially informative. Furthermore, considering a regression context allows390

for improved modeling flexibility of the proportion of true null hypotheses; future work may391

build on this method to consider different machine learning approaches in the case of more392

complicated or high-dimensional covariates of interest. We further show that control of the393

FDR is maintained in the presence of moderate correlation between the test statistics. We394

also note that we generally considered models that we thought researchers could be believably395

interested in fitting - not necessarily the exact models used to generate the simulated data - and396

our simulations generally showed robustness to misspecifications, including when fitting splines397

instead of linear terms and in the global null scenario. While beyond the scope of this work,398

we believe that the issue of model selection will become extremely important as the number of399

meta-data covariates available increases.400

Applying our estimator to GWAS data from the GIANT consortium demonstrated that, as401

expected, the estimate of the fraction of null hypotheses decreases with both sample size and402

minor allele frequency. It is a well-known and problematic phenomenon that p-values for all403

features decrease as the sample size increases. This is because the null is rarely precisely true404

for any given feature. One interesting consequence of our estimates is that we can calibrate405

what fraction of p-values appear to be drawn from the non-null distribution as a function of406

sample size, potentially allowing us to quantify the effect of the “large sample size means small407

p-values” problem directly. Using an FDR cutoff of 5%, our approach leads to 13,384 discoveries,408

compared to 12,771 from the [25] method; given the fact that they are both multiplicative factors409

to the [1] approach, which in effect assumes the proportion of true null hypotheses to be 1, they410

both include the 12,500 discoveries using this approach. Thus, our approach leads to additional411

insights due to incorporating modeling of the fraction of null hypotheses on covariates, as well412

as to a number of new discoveries. By contrast, the [22] approach leads to very different results413

based on whether the theoretical null or empirical null is assumed.414

We note that our approach relies on a series of assumptions, such as independence of p-values415

and independence of the p-values and the covariates conditional on the null. Assuming that the416

p-values are independent of the covariates conditional on the null is also an assumption used in417

[9]. Therein, diagnostic approaches for checking this assumption are provided, namely examining418

the histograms of p-values stratified on the covariates. In particular, it is necessary for the419

distribution to be approximately uniform for larger p-values. We perform this diagnostic check420

in Fig. S3 and note that it appears to hold approximately. The slight conservative behavior seen421

for smaller values of N in Figs. 1 and S3 may be the result of publication bias, with SNPs that422

have borderline significant p-values potentially being more likely to be considered in additional423

studies and thus becoming part of larger meta-analyses. It is interesting that the estimated424

proportion of nulls in Fig. 2 also starts decreasing substantially right at the median sample size425

(of 235,717). This may also be due to the same publication bias. Modeling the dependence of426

π0 on meta-data covariates can thus be a good starting place for understanding possible biases427

and planning future studies.428
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In conclusion, our approach shows good performance across a range of scenarios and allows429

for improved interpretability compared to the [25] method. In contrast to the [22] approaches, it430

is applicable outside of the case of normally distributed test statistics. It always leads to an im-431

provement in estimating the true positive rate compared to the now-classical [1] method, which432

becomes more substantial when the proportion of null hypotheses is lower. While in very high433

correlation cases, our method does not appropriately control the FDR, we note that in practice434

methods are often used to account for such issues at the initial modeling stage, meaning that435

we generally expect good operating characteristics for our approach. In particular, for GWAS,436

correlations between sets of SNPs (known as linkage disequilibrium) are generally short-range,437

being due to genetic recombination during meiosis [10]; longer-range correlations can result438

from population structure, which can be accounted for with approaches such as the genomic439

control correction [3] or principal components analysis [20]. For gene expression studies, batch440

effects often account for between-gene correlations; many methods exist for removing these,441

including [12, 14] and [13]. We also note the subtle issue that the accuracy of the estimation442

is based on the number of features/tests considered, not on the sample sizes within the tests.443

Thus, our “large-sample” theoretical results are to be interpreted within this framework. In444

our simulations, for example, we see that using 10,000 rather than 1,000 features improved the445

FDR control. In particular, the models with splines estimated a larger number of parameters,446

leading to poorer FDR control for the case with a smaller number of features; there is also447

worse control for spline models when simulating dependent statistics, as the effective number of448

features in that case is even smaller. Thus, in general we recommend considering simpler models449

in scenarios that have a small number of features. We note that our motivating data analysis450

had over 2.5 million features and that many high-dimensional problems have features in the451

tens of thousands or higher. A range of other applications for our methodology are also possible452

by adapting our regression framework, including estimating false discovery rates for gene sets453

[2], estimating science-wise false discovery rates [11], or improving power in high-throughput454

biological studies [9]. Thus, this is a general problem and as more applications accumulate, we455

anticipate our approach being increasingly used to provide additional discoveries and scientific456

insights.457
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Tables and figures585

Table 1: Outcomes of testing multiple hypotheses.

Fail to reject null Reject null Total

Null true U V m0

Null false T S m−m0

m−R R m
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Table 2: Simulation results for m = 1, 000 features, 200 runs for each scenario, independent
test statistics. “Reg. model” = specific logistic regression model considered, BL = Boca-Leek,
Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.
A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for
scenarios which generate z-statistics or t-statistics.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I Beta(1,20) Linear 5.0 5.2 3.9 0.2 0.2 0.1
II Beta(1,20) Linear 4.8 4.8 4.1 0.2 0.1 0.1
II Beta(1,20) Spline 6.5 4.8 4.1 0.2 0.1 0.1
III Beta(1,20) Linear 5.2 5.4 5.4 0.2 0.2 0.2
III Beta(1,20) Spline 6.2 5.4 5.4 0.3 0.2 0.2
IV Beta(1,20) Linear 6.4 5.1 3.4 12.2 5.4 0.3
IV Beta(1,20) Spline 7.9 5.1 3.4 15.4 5.4 0.3
V Linear 3.5 4.9 3.1 66.6 20.6 0.4

I Norm Linear 5.0 5.2 6.6 4.9 4.4 51.0 50.9 49.7 50.8 49.7
II Norm Linear 5.4 5.7 8.1 5.3 4.9 48.5 63.5 61.3 47.6 47.0
II Norm Spline 5.6 5.9 8.3 5.3 4.9 49.3 63.5 61.5 47.6 47.0
III Norm Linear 5.8 5.9 9.9 5.4 5.1 45.1 60.3 57.9 44.0 43.4
III Norm Spline 5.9 6.0 10.1 5.4 5.1 45.6 60.9 58.2 44.0 43.4
IV Norm Linear 5.0 4.9 2.4 4.7 2.8 71.6 71.8 60.6 71.2 65.4
IV Norm Spline 5.2 5.0 2.4 4.7 2.8 72.0 71.9 60.7 71.2 65.4
V Norm Linear 4.4 4.8 21.4 4.7 2.4 79.2 83.2 73.4 74.1 67.1

I T Linear 5.7 21.3 23.4 5.5 4.8 15.7 55.4 56.9 15.2 13.6
II T Linear 4.8 20.7 23.8 5.0 4.4 13.0 64.5 65.5 11.6 10.6
II T Spline 4.7 21.1 24.5 5.0 4.4 13.8 64.8 65.6 11.6 10.6
III T Linear 6.2 26.8 31.0 5.9 5.4 9.4 54.6 54.7 8.2 7.6
III T Spline 6.8 27.3 31.3 5.9 5.4 10.0 55.2 55.3 8.2 7.6
IV T Linear 5.0 9.3 2.8 4.7 2.9 52.5 72.9 44.4 52.0 40.3
IV T Spline 5.4 9.3 2.8 4.7 2.9 53.0 73.0 44.6 52.0 40.3
V T Linear 4.1 7.4 7.8 4.7 2.5 66.4 80.3 50.0 57.1 43.3

I Chisq 1 df Linear 5.0 4.8 4.4 51.2 50.9 49.7
II Chisq 1 df Linear 4.8 4.8 4.4 48.3 47.1 46.3
II Chisq 1 df Spline 5.0 4.8 4.4 48.9 47.1 46.3
III Chisq 1 df Linear 5.0 4.9 4.8 44.3 43.1 42.5
III Chisq 1 df Spline 5.3 4.9 4.8 44.8 43.1 42.5
IV Chisq 1 df Linear 5.1 4.7 2.8 71.6 71.1 65.1
IV Chisq 1 df Spline 5.3 4.7 2.8 71.9 71.1 65.1
V Chisq 1 df Linear 4.4 4.8 2.5 78.9 73.9 66.8

I Chisq 4 df Linear 5.3 5.4 4.8 30.8 30.6 29.6
II Chisq 4 df Linear 5.3 5.3 5.0 28.4 27.5 26.7
II Chisq 4 df Spline 5.4 5.3 5.0 29.2 27.5 26.7
III Chisq 4 df Linear 5.9 5.4 5.3 24.8 24.0 23.4
III Chisq 4 df Spline 5.9 5.4 5.3 25.2 24.0 23.4
IV Chisq 4 df Linear 5.1 4.7 2.8 52.3 51.7 44.5
IV Chisq 4 df Spline 5.5 4.7 2.8 52.7 51.7 44.5
V Chisq 4 df Linear 4.0 4.6 2.4 62.8 55.3 46.2
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Table 3: Simulation results for m = 10, 000 features, 200 runs for each scenario, independent
test statistics. “Reg. model” = specific logistic regression model considered, BL = Boca-Leek,
Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.
A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for
scenarios which generate z-statistics or t-statistics.

FDR % TPR %

π0(x) Dist. under H1 Reg. model BL
Scott
T

Scott
E

Storey BH BL
Scott
T

Scott
E

Storey BH

I Beta(1,20) Linear 3.7 3.7 3.6 0.0 0.0 0.0
II Beta(1,20) Linear 3.1 3.1 3.0 0.0 0.0 0.0
II Beta(1,20) Spline 3.1 3.1 3.0 0.0 0.0 0.0
III Beta(1,20) Linear 4.0 3.5 3.5 0.0 0.0 0.0
III Beta(1,20) Spline 4.5 3.5 3.5 0.0 0.0 0.0
IV Beta(1,20) Linear 4.4 4.8 2.5 1.2 0.5 0.0
IV Beta(1,20) Spline 5.0 4.8 2.5 2.0 0.5 0.0
V Beta(1,20) Linear 3.1 5.1 2.3 66.7 13.1 0.0

I Norm Linear 5.0 5.0 5.9 5.0 4.5 50.6 50.6 52.1 50.7 49.6
II Norm Linear 4.9 5.2 5.3 4.9 4.6 48.4 63.9 62.9 47.3 46.6
II Norm Spline 4.9 5.2 5.3 4.9 4.6 48.8 64.0 63.0 47.3 46.6
III Norm Linear 4.9 5.2 5.5 4.9 4.7 44.2 60.2 59.3 43.5 43.0
III Norm Spline 4.9 5.2 5.4 4.9 4.7 44.4 60.6 59.7 43.5 43.0
IV Norm Linear 4.8 5.0 2.3 4.8 2.8 71.3 71.8 62.2 71.2 65.3
IV Norm Spline 4.8 5.0 2.3 4.8 2.8 71.3 71.8 62.2 71.2 65.3
V Norm Linear 4.2 5.0 23.8 4.7 2.5 79.0 83.3 74.8 74.1 66.9

I T Linear 5.2 21.7 20.8 5.1 4.7 14.1 55.3 53.2 14.1 12.6
II T Linear 4.6 20.0 19.9 4.9 4.5 11.5 65.7 65.4 10.2 9.2
II T Spline 4.5 20.2 20.1 4.9 4.5 12.0 65.7 65.4 10.2 9.2
III T Linear 4.9 24.7 26.8 5.2 5.2 6.8 62.5 63.7 6.0 5.5
III T Spline 4.8 24.8 26.9 5.2 5.2 7.0 62.6 63.9 6.0 5.5
IV T Linear 4.8 9.3 1.2 4.8 2.9 51.8 72.8 28.5 51.6 40.2
IV T Spline 4.8 9.3 1.2 4.8 2.9 51.9 72.9 28.6 51.6 40.2
V T Linear 3.9 7.4 7.3 4.6 2.5 66.0 80.7 41.1 57.1 43.4

I Chisq 1 df Linear 5.0 5.0 4.5 50.7 50.6 49.6
II Chisq 1 df Linear 4.9 5.0 4.6 48.2 47.2 46.4
II Chisq 1 df Spline 4.8 5.0 4.6 48.6 47.2 46.4
III Chisq 1 df Linear 5.0 5.0 4.8 44.0 43.2 42.7
III Chisq 1 df Spline 5.0 5.0 4.8 44.2 43.2 42.7
IV Chisq 1 df Linear 4.8 4.8 2.8 71.1 71.0 65.2
IV Chisq 1 df Spline 4.8 4.8 2.8 71.2 71.0 65.2
V Chisq 1 df Linear 4.2 4.7 2.5 78.9 73.9 66.9

I Chisq 4 df Linear 5.0 5.0 4.5 29.7 29.7 28.7
II Chisq 4 df Linear 4.9 5.0 4.7 28.0 27.1 26.5
II Chisq 4 df Spline 4.9 5.0 4.7 28.4 27.1 26.5
III Chisq 4 df Linear 5.2 5.2 5.0 24.3 23.6 23.2
III Chisq 4 df Spline 5.2 5.2 5.0 24.4 23.6 23.2
IV Chisq 4 df Linear 4.7 4.7 2.8 51.8 51.7 44.8
IV Chisq 4 df Spline 4.7 4.7 2.8 51.9 51.7 44.8
V Chisq 4 df Linear 3.9 4.6 2.5 62.3 55.5 46.7
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Figure 1: Histograms of p-values for the SNP-BMI tests of association from the GIANT
consortium. Panel A) shows the distribution for all sample sizes N (2,500,573 SNPs), while
panel B) shows the subset N <200,000 (187,114 SNPs).
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Figure 2: Plot of the estimates of π0(xi) against the sample size N, stratified by the MAF
categories for a random subset of 50,000 SNPs. The 90% bootstrap intervals for the final
smoothed estimates using our approach - based on 100 iterations - are shown in grey. The
vertical line represents the median sample size.
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Figure 3: The five simulation scenarios considered for π0(xi). Scenarios I, II, and V consider
smooth functions of a single covariate, whereas scenarios III and IV consider smooth functions
of a single covariate (x1) within categories of a second covariate (x2).
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Figure 4: Simulation results for m=1,000 features and normally-distributed independent test
statistics. Plots show the true function π0(xi) in black and the empirical means of π̂0(xi),
assuming different modelling approaches in orange (for our approach, Boca-Leek = BL), blue (for
the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach).
The scenarios considered are those in Fig. 3.
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Figure 5: Simulation results for m=10,000 features and normally-distributed independent test
statistics. Plots show the true function π0(xi) in black and the empirical means of π̂0(xi),
assuming different modelling approaches in orange (for our approach, Boca-Leek = BL), blue (for
the Scott approach with the theoretical null = Scott T), and brown (for the Storey approach.)
The scenarios considered are those in Fig. 3.
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Figure 6: Simulation results for m=1,000 features and normally-distributed independent test
statistics comparing our proposed approach (BL) to the Storey approach in terms of FDR and
TPR. Results are averaged over 200 simulation runs. We considered π0(xi) = xk

i
and varied the

exponent k ∈ {1, 1.25, 1.5, 2, 3}.
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Figure 7: Simulation results for m=1,000 features and t-distributed independent test statistics
comparing our proposed approach (BL) to the Storey approach in terms of FDR and TPR.
Results are averaged over 200 simulation runs. We considered π0(xi) = xk

i
and varied the

exponent k ∈ {1, 1.25, 1.5, 2, 3}.
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Figure 8: Simulation results for m=1,000 features, considering the global null π0 ≡ 1. Plot shows
the true function π0(xi) in black and the empirical means of π̂0(xi), assuming different modelling
approaches in orange (for our approach, Boca-Leek = BL), blue (for the Scott approach with
the theoretical null = Scott T), and brown (for the Storey approach.)
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Figure 1(on next page)

Simulation results for $m=1,000$ features, 200 runs for each scenario, independent

test statistics.

``Reg. model" = specific logistic regression model considered, BL = Boca-Leek, Scott T =

Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg. A nominal

FDR = 5\% was considered. Results for the Scott approaches are only presented for scenarios

which generate z-statistics or t-statistics.
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Figure 2(on next page)

Plot of the estimates of $\pi_0(\bx_i)$ against the sample size N, stratified by the MAF

categories for a random subset of 50,000 SNPs.

The 90\% bootstrap intervals for the final smoothed estimates using our approach - based on

100 iterations - are shown in grey. The vertical line represents the median sample size.
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Figure 3(on next page)

The five simulation scenarios considered for $\pi_0(\bx_i)$.

Scenarios I, II, and V consider smooth functions of a single covariate, whereas scenarios III

and IV consider smooth functions of a single covariate ($x_1$) within categories of a second

covariate ($x_2$).
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Figure 4(on next page)

Simulation results for m=1,000 features and normally-distributed independent test

statistics.

Plots show the true function $\pi_0(\bx_i)$ in black and the empirical means of

$\hat{\pi}_0(\bx_i)$, assuming different modelling approaches in orange (for our approach,

Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown

(for the Storey approach). The scenarios considered are those in Fig. \ref{fig:sim-scen-pi0-x}.
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Figure 5(on next page)

Simulation results for m=10,000 features and normally-distributed independent test

statistics.

Plots show the true function $\pi_0(\bx_i)$ in black and the empirical means of

$\hat{\pi}_0(\bx_i)$, assuming different modelling approaches in orange (for our approach,

Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown

(for the Storey approach.) The scenarios considered are those in Fig. \ref{fig:sim-scen-pi0-x}.
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Figure 6(on next page)

Simulation results for m=1,000 features and normally-distributed independent test

statistics comparing our proposed approach (BL) to the Storey approach in terms of FDR

and TPR.

Results are averaged over 200 simulation runs. We considered $\pi_0(x_i) = x_i^k$ and

varied the exponent $k \in \{1,1.25,1.5,2,3\}$.
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Figure 7(on next page)

Simulation results for m=1,000 features and t-distributed independent test statistics

comparing our proposed approach (BL) to the Storey approach in terms of FDR and TPR.

Results are averaged over 200 simulation runs. We considered $\pi_0(x_i) = x_i^k$ and

varied the exponent $k \in \{1,1.25,1.5,2,3\}$.
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Figure 8

Simulation results for m=1,000 features, considering the global null $\pi_0 \equiv 1$.

Plot shows the true function $\pi_0(\bx_i)$ in black and the empirical means of

$\hat{\pi}_0(\bx_i)$, assuming different modelling approaches in orange (for our approach,

Boca-Leek = BL), blue (for the Scott approach with the theoretical null = Scott T), and brown

(for the Storey approach.)
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