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Modern scientific studies from many diverse areas of research abound with multiple
hypothesis testing concerns. The false discovery rate is one of the most commonly used
error rates for measuring and controlling rates of false discoveries when performing
multiple tests. Adaptive false discovery rates rely on an estimate of the proportion of null
hypotheses among all the hypotheses being tested. This proportion is typically estimated
once for each collection of hy- potheses. Here we propose a regression framework to
estimate the proportion of null hypotheses conditional on observed covariates. This may
then be used as a multiplication factor with the Benjamini-Hochberg adjusted p-values,
leading to a plug-in false discovery rate estimator. We apply our method to a genome-wise
association meta-analysis which considers associations with body mass index. In our
framework, we are able to use the sample sizes for the individual ge- nomic loci and the
minor allele frequencies as covariates. We further evaluate our approach via a number of
simulation scenarios. We provide an implementation of this novel method for esti- mating
the proportion of null hypotheses in a regression framework as part of the Bioconductor
package swfdr.
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Abstract

Modern scientific studies from many diverse areas of research abound with multiple hypothesis
testing concerns. The false discovery rate is one of the most commonly used error rates for
measuring and controlling rates of false discoveries when performing multiple tests. Adaptive
false discovery rates rely on an estimate of the proportion of null hypotheses among all the
hypotheses being tested. This proportion is typically estimated once for each collection of hy-
potheses. Here we propose a regression framework to estimate the proportion of null hypotheses
conditional on observed covariates. This may then be used as a multiplication factor with the
Benjamini-Hochberg adjusted p-values, leading to a plug-in false discovery rate estimator. We
apply our method to a genome-wise association meta-analysis which considers associations with
body mass index. In our framework, we are able to use the sample sizes for the individual ge-
nomic loci and the minor allele frequencies as covariates. We further evaluate our approach via
a number of simulation scenarios. We provide an implementation of this novel method for esti-
mating the proportion of null hypotheses in a regression framework as part of the Bioconductor
package swfdr.

1 Introduction

Multiple testing is a ubiquitous issue in modern scientific studies. Microarrays (Brown, [1995),
next-generation sequencing (Shendure and Ji, 2008), and high-throughput metabolomics (Lin-
don et al., 2011) make it possible to simultaneously test the relationship between hundreds
or thousands of biomarkers and an exposure or outcome of interest. These problems have a
common structure consisting of a collection of variables, or features, for which measurements
are obtained on multiple samples, with a hypothesis test being performed for each feature.

When performing thousands of hypothesis tests, one of the most widely used frameworks for
controlling for multiple testing is the false discovery rate (FDR). For a fixed unknown parameter
1, and testing a single null hypothesis Hy : u© = pg versus some alternative hypothesis, for
example, Hy : 4 = p1, the null hypothesis may either truly hold or not for each feature.
Additionally, the test may lead to Hy either being rejected or not being rejected. Thus, when
performing m hypothesis tests for m different unknown parameters, Table [I] shows the total
number of outcomes of each type, using the notation from |Benjamini and Hochberg| (1995). We
note that U, T, V, and S, and as a result, also R = V + S, are random variables, while my, the
number of null hypotheses, is fixed and unknown.

The FDR, introduced in Benjamini and Hochbergl (1995), is the expected fraction of false
discoveries among all discoveries. The false discovery rate depends on the overall fraction of null
hypotheses, namely mo = 2. This proportion can also be interpreted as the a priori probability
that a null hypothesis is true, .
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When estimating the FDR, incorporating an estimate of my can result in a more powerful
procedure compared to the original Benjamini and Hochberg (1995) procedure (BH); moreover,
as m increases, the estimate of my improves, which means that the power of the multiple-testing
approach does not necessarily decrease when more hypotheses are considered (Storey, 2002).
The popularity of this approach can be seen in the extensive use of the qvalue package (Storey
et al., [2015), which implements this method, which is among the top 5% most downloaded
Bioconductor packages, having been downloaded more than 78,000 times in 2017.

Most modern adaptive false discovery rate procedures rely on an estimate of my using the
data of all tests being performed. But additional information, in the form of meta-data, may be
available to aid the decision about whether to reject the null hypothesis for a particular feature.
We focus on an example from a genome-wide association study (GWAS) meta-analysis, in which
millions of genetic loci are tested for associations with an outcome of interest - in our case body
mass index (BMI) (Locke et al., [2015)). Different loci may not all be genotyped in the same
individuals, leading to loci-specific sample sizes. Additionally, each locus will have a different
population-level frequency. Thus, the sample sizes and the frequencies may be considered as
covariates of interest. Other examples exist in set-level inference, including gene-set analysis,
where each set has a different fraction of false discoveries. Adjusting for covariates independent
of the data conditional on the truth of the null hypothesis has also been shown to improve
power in RNA-seq, eQTL, and proteomics studies (Ignatiadis et al., 2016]).

In this paper, we develop and implement an approach for estimating false discovery rates
conditional on covariates and apply it to a genome-wide analysis study. Specifically, we seek
to better understand the impact of sample sizes and allele frequencies in the BMI GWAS data
analysis by building on the approaches of |Benjamini and Hochberg| (1995), |[Efron et al.| (2001),
and [Storey| (2002) and the more recent work of [Scott et al.| (2015), which frames the concept of
FDR regression and extends the concepts of FDR and 7 to incorporate covariates, represented
by additional meta-data. Our focus will be on estimating the covariate-specific my, which will
then be used as a plug-in estimator when estimating the false discovery rate, similar to the work
of [Storey! (2002)). We thus provide a more direct approach to estimating the FDR conditional
on covariates and compare our estimates to those of [Scott et al.| (2015)), as well as to the BH and
Storey| (2002) approaches. Our method for estimating the covariate-specific 7y is implemented
in the Bioconductor package swfdr (https://bioconductor.org/packages/release/bioc/
html/swfdr.html)).

In Section [2] we introduce the motivating case study, a BMI GWAS meta-analysis, which
will be discussed throughout the paper. In Section 3 we review the definitions of FDR and mg
and their extensions to consider conditioning on specific covariates. In Section {4} we discuss
estimation and inference procedures in our FDR regression framework, provide a complete
algorithm, and apply it to the GWAS case study. In Section [5| we describe results from a
variety of simulation scenarios. Finally, Section [6] provides our statement of reproducibility and
Section 7] provides the discussion. Special cases, theoretical properties of the estimator, and
proofs of the results can be found in the Supplementary Materials.

2 Motivating case study: adjusting for sample size and allele
frequency in GWAS meta-analysis

As we have described, there are a variety of situations where meta-data could be valuable
for improving the decision of whether a hypothesis should be rejected in a multiple testing
framework, our focus being on an example from the meta-analysis of data from GWAS for
BMI (Locke et al., 2015)). Using standard approaches such as Storey| (2002) we can estimate
the fraction of single nucleotide polymorphisms (SNPs) - genomic positions (loci) which show
between-individual variability - which are not truly associated with BMI and use it in an adap-
tive FDR procedure. However, our proposed approach allows further modeling of this fraction
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as a function of additional study-level meta-data.

In a GWAS, data are collected for a large number of SNPs in order to assess their associations
with an outcome or trait of interest (Hirschhorn and Daly} 2005)). Each person usually has one
copy of the DNA at each SNP inherited from their mother and one from their father. At each
locus there are usually one of two types of DNA, called alleles, that can be inherited, which
we denote A and a. In general, A refers to the variant that is more common in the population
being studied and a to the variant that is less common, usually called the minor allele. Each
person has a genotype for that SNP of the form AA, Aa, or aa. For example, for a particular
SNP, of the 4 possible DNA nucleotides, adenine, guanine, cytosine, and thymine, an individual
may have either a cytosine (C) or a thymine (T) at a particular locus, leading to the possible
genotypes CC, CT, and TT. If the C allele is less common in the population, then C is the
minor allele. The number of copies of a, which is between 0 and 2, - is often assumed to follow
a binomial distribution, which generally differs between SNPs.

Typically, a GWAS involves performing an association test between each SNP and the
outcome of interest by using a regression model, including the calculation of a p-value. While
GWAS studies are often very large, having sample sizes of tens of thousands of individuals
genotyped at hundreds of thousands of SNPs, due to the small effect sizes being detected,
meta-analyses combining multiple studies are often considered (Neale et al., 2010; Hirschhorn
and Daly, 2005)). In these studies, the sample size may not be the same for each SNP, for
example if different individuals are measured with different technologies which measure different
SNPs. Sample size is thus a covariate of interest, as is the minor allele frequency (MAF) of the
population being studied, which will also vary between SNPs. The power to detect associations
increases with MAF. This is related to the idea that logistic regression is more powerful for
outcomes that occur with a frequency close to 0.5. Our approach will allow us to better quantify
this dependence in order to guide the planning of future studies and improve understanding of
already-collected data.

We consider data from the Genetic Investigation of ANthropometric Traits (GIANT) consor-
tium, specifically the genome-wide association study for BMI (Locke et al., [2015). The GIANT
consortium performed a meta-analysis of 339,224 individuals measuring 2,555,510 SNPs and
tested each for association with BMI. 322,154 of the individuals considered in|Locke et al. (2015)
are of European descent and the study uses the HapMap CEU population - which consists of in-
dividuals from Utah of Northern and Western European ancestry (Frazer et al., 2007) - as a refer-
ence. We used the set of results from the GIANT portal at http://portals.broadinstitute.
org/collaboration/giant/index.php/GIANT _consortium_data_files, which provides the
SNP names and alleles, effect allele frequencies (EAFs) in the HapMap CEU population and
results from the regression-based association analyses for BMI, presented as beta coefficients,
standard errors, p-values, and sample size for each SNP.

We removed the SNPs that had missing EAF's, leading to 2,500,573 SNPs. For these SNPs,
the minimum sample size considered was 50,002, the maximum sample size 339,224, and the
median sample size 235,717 - a relatively wide range. Figure[I|shows the dependence of p-values
on sample sizes within this dataset. As we considered the MAF to be a more intuitive covariate
than the effect allele frequency (EAF), we also converted EAF values > 0.5 to MAF=1—-EAF
and changed the sign of the beta coefficients for those SNPs. The MAFs spanned the entire
possible range from 0 to 0.5, with a median value of 0.208.

3 Covariate-specific 7p and FDR

We will now review the main concepts behind the FDR and the a priori probability that a null
hypothesis is true, and consider the extension to the covariate-specific FDR, and the covariate-
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specific a priori probability. A natural mathematical definition of the FDR would be:

14
FDR=E( .

However, R is a random variable that can be equal to 0, so the version that is generally used is:
14
FDR=F §R>O Pr(R > 0), (1)

namely the expected fraction of false discoveries among all discoveries multiplied by the prob-
ability of making at least one rejection.

We index the m null hypotheses being considered by 1 < i < m: Hy1, Hoo, ..., Hpy. For each
i, the corresponding null hypothesis Hy; can be considered as being about a binary parameter
f;, such that:

0; = I(HOZ' true).

Thus, assuming that 6; are identically distributed, the a priori probability that a feature is null
is:

mo = Pr(6; =1). (2)

For the GWAS meta-analysis dataset, mg represents the proportion of SNPs which are not truly
associated with BMI or, equivalently, the prior probability that any of the SNPs is not associated
with BMI.

We now extend g and FDR to consider conditioning on a set of covariates concatenated in
a column vector X; of length ¢, possibly with ¢ = 1:

TF()(XZ') = PT(@i = 1‘X,’ = Xi)7

FDR(X,) = F <Z’R > O,X,‘ = Xi) PT(R > 0|Xz = Xi).

4 Algorithm for performing estimation and inference for covariate-
specific 7p and FDR

Assuming that a hypothesis test is performed for each feature i, summarized by a p-value P;,
the following algorithm can be used to obtain estimates of my(x;) and FDR(x;), denoted by

7ro(x;) and F/D?{(xi), and perform inference.

Algorithm 1: Estimation and inference for 7,(x;) and F/D?{(xz)
a) Obtain the p-values Py, P, ..., Py, for the m hypothesis tests.

b) For a given threshold A, obtain Y; = 1(P; > \) for 1 < i < m.

c) Estimate E(Y;|X; = x;) via logistic regression using a design matrix Z and my(x;) by:

. BE(Yi|X; = x;)
W(S\(Xi) = T 1 (3)

thresholded at 1 if necessary.

d) Smooth 7} (x;) over a series of thresholds A € (0, 1) to obtain 7 (x;), by taking the smoothed
value at the largest threshold considered. Take the minimum between each value and 1 and
the maximum between each value and 0.
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e) Take B bootstrap samples of Py, P, ..., Py, and calculate the bootstrap estimates frg (x;) for
1 < b < B using the procedure described above.

f) Form a 1 — a confidence interval for #(x;) by taking the 1 — /2 quantile of the 75(x;) as
the upper confidence bound, the lower confidence bound being «/2.

g) Obtain an F/DT{(XZ) by multiplying the BH adjusted p-values by 7o(x;).

In Step (c) in Algorithm 1, Z is a m X p design matrix matrix with p < m and rank(Z) = d < p,
which can either be equal to X - the matrix of dimension m x (¢ + 1), which has the i** row
consisting of (1 X7) - or includes additional columns that are functions of the covariates in X,
such as polynomial or spline terms. The estimator is similar to:

i Y
szl m_R

(L e e e )

which is used by |Storey| (2002)) for the case without covariates. In Step (c¢) we focus on maximum
likelihood estimation of E(Y;|X; = x;), assuming a logistic model. A linear regression approach
would be a more direct generalization of Storey| (2002), but a logistic model is more natural
for estimating means between 0 and 1. In particular, we note that a linear regression approach
would amplify relatively small differences between large values of my(x;), which are likely to
be common in many scientific situations, especially when considering GWAS, where one may
expect a relatively low number of SNPs to be truly associated with the outcome of interest.
In the swfdr package, we provide users the choice to estimate m(x;) via either the logistic or
linear regression model. In Step (d), we consider smoothing over a series of thresholds to obtain
the final estimate, as done by |[Storey and Tibshirani (2003). In particular, in the remainder of
this manuscript, we used cubic smoothing splines with 3 degrees of freedom over the series of
thresholds 0.05,0.10,0.15, . ..,0.95, following the example of the qvalue package (Storey et al.,
2015), with the final estimate being the smoothed value at A = 0.95. We note that the final
Step (g) results in a simple plug-in estimator for FDR(x;).

We provide further details in the Supplementary Materials: In Section S1, we present the
assumptions and main results used to derive Algorithm 1; in Section S2, we detail how the case
of no covariates and the case where the features are partitioned into sets, such as in (Boca et al.|
2013)), can be seen as special cases of our more general framework when the linear regression
approach is applied; in Section S3 we provide theoretical results for this estimator in Section S2
of the Supplementary Materials; in Section S4, we present proofs of the analytical results. We
note that a major assumption is that conditional on the null, the p-values do not depend on the
covariates. This means that the probability of a feature being from one of the two distributions
depends on the covariates but the actual test statistic and p-value under the null do not depend
on the covariates further.

The model we considered for the GWAS meta-analysis dataset models the SNP-specific sam-
ple size using natural cubic splines, in order to allow for sufficient flexibility. It also considers
3 discrete categories for the CEU MAFSs, corresponding to cuts at the 1/3 and 2/3 quan-
tiles, leading to the intervals [0.000,0.127) (838,070 SNPs), [0.127,0.302) (850,600 SNPs), and
[0.302,0.500] (811,903 SNPs).

Figure [2| shows the estimates of my(x;) plotted against the SNP-specific sample size N for
the data analysis, stratified by the CEU MAFs for a random subset of 50,000 SNPs. We note
that the results are similar for A = 0.8, A = 0.9, and for the final smoothed estimate. A
95% bootstrap confidence interval based on 100 iterations is also shown for the final smoothed
estimate. Our approach is compared to that of [Scott et al. (2015]), which assumes that the
test statistics are normally distributed. We considered both the theoretical and empirical null
Empirical Bayes (EB) estimates of Scott et al. (2015, implemented in the FDRreg package
(Scott et al., 2015). The former assumes a N(0,1) distribution under the null, while the latter
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estimates the parameters of the null distribution. Both approaches show similar qualitative
trends to our estimates, although the empirical null tends to result in much higher values over
the entire range of N, while the theoretical null leads to lower values for smaller N and larger or
comparable values for larger N. Our results are consistent with intuition - larger sample sizes
and larger MAFs lead to a smaller fraction of SNPs estimated to be null. They do however
allow for improved quantification of this relationship: For example, we see that the range for
7o(x;) is relatively wide ([0.697,1] for the final smoothed estimate), while the [Storey| (2002)
smoothed estimate of g without covariates is 0.949. In the swfdr package, we include a subset
of the data - for 50,000 randomly selected SNPs - and show how to generate plots similar to
Figure 2| Users may of course consider the full dataset and reproduce our entire analysis (see
Section [6] on reproducibility below.)

The results for the number of SNPs with estimated FDR < 0.05 are given in Table S1.
Our approach results in a slightly larger number of discoveries compared to the [Storey (2002])
and Benjamini and Hochberg (1995 approaches. Due to the plug-in approaches of both our
procedure and the one of Storey| (2002)), all the discoveries from Benjamini and Hochberg (1995)
are also present in our approach. The total number of shared discoveries between our method
and that of [Storey (2002) is 12,740. The |Scott et al.| (2015) approaches result in either a
substantially larger number of discoveries (theoretical null) or a substantially smaller number
of discoveries (empirical null). In particular, the number of discoveries for the empirical null is
also much smaller than that when using Benjamini and Hochberg (1995)). The overlap between
the theoretical null and Benjamini and Hochberg| (1995)) is 12,251; between the theoretical null
and our approach it is 13,119.

5 Simulations

We consider simulations to evaluate the usefulness of our plug-in estimator, F/]i{(xi), in terms
of both controlling the true FDR and having good power - measured by the true positive rate
(TPR) - under a variety of scenarios. We consider a nominal FDR value of 5%, meaning that
any test with an FDR less than or equal to 5% is considered a discovery. In each simulation, the
FDR is calculated as the fraction of truly null discoveries out of the total number of discoveries
and the TPR is the fraction of truly alternative discoveries out of the total number of truly
alternative features. In the case of no discoveries, the FDR is estimated to be 0.

We consider 4 different possible functions 7y(x;), shown in Figure |3| Scenario I considers
a flat function mg = 0.9, to illustrate a case where there is no dependence on covariates and
scenarios II-IV are similar to the BMI GWAS meta-analysis. Scenario II is a smooth function
of one variable similar to the rightmost panel in Figure [2] scenario III is a function which is
smooth in one variable within categories of a second variable - similar to the stratification of
SNPs within MAFs - and scenario IV is the same function as in scenario III multiplied by 0.6, to
show the effect of having much lower fractions of null hypotheses, respectively higher fractions
of alternative hypotheses. The exact functions are given in the Supplementary Materials for
this paper. For scenario I we consider fitting a model that is linear in x; on the logistic scale,
whereas for scenarios II-IV we consider a model that is linear in x; and a model that fits cubic
splines with 3 degrees of freedom for x;, both on the logistic scale. For scenarios III and IV,
all models also consider different coefficients for the categories of x5. We set up simulations
with independent test statistics for m = 1,000 and m = 10, 000 features and additionally, with
dependent test statistics for m = 1,000 features and within each setup, different distributions
for the alternative test statistics/p-values, the null always assuming a Unif(0,1) distribution.
For each combination of factors, we consider 200 simulation runs and obtain the average FDR
and TPR over these runs. For each simulation run, we first randomly generated whether each
feature was from the null or alternative distribution, so that the null hypothesis was true for the
features for which a success was drawn from the Bernoulli distribution with probability 7 (x;).
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Table 2] and Table [3] consider simulation results for m = 1,000 features and m = 10,000 fea-
tures respectively For the Beta(1,20) simulations, we generated the alternative p-values directly
from a Beta(1,20) distribution. For the other simulations, we first generated the test statis-
tics, then calculated the p-values from them. For the normally distributed and t-distributed
test statistics, we drew the means p; of approximately half the alternative features from a
N(u = 3,02 = 1), with the remaining alternative features from a N(u = —3,02 = 1) distri-
bution, with the mean of the null features being 0. We then drew the actual test statistic for
feature i from either a N(u = p;, 02 = 1) or T(u = py, df = 10) distribution (df = degrees of
freedom). Note that 10 degrees of freedom for a t-distribution is obtained from a two-sample
t-test with 6 samples per group, assuming equal variances in the groups. We also considered
chi-squared test statistics with either 1 degree of freedom (corresponding to a test of indepen-
dence for a 2 x 2 table) or 4 degrees of freedom (corresponding to a test of independence for a 3
x 3 table). In this case, we first drew the non-centrality parameter (ncp;) from the square of a
N(u = 3,0% = 1) distribution for the alternative and took it to be 0 for the null, then generated
the test statistics from x?(ncp; = pi, df =1 or 4).

We compared our approach (BL = Boca-Leek) to the |Benjamini and Hochberg| (1995) (BH)
approach, the Storey (2002)) approach as implemented in the gqvalue package [Storey et al.
(2015), and both the theoretical and null EB approaches of Scott et al. (2015) (Scott T =
theoretical null, Scott E = empirical null), implemented in the FDRreg package. The [Scott
et al.| (2015) approaches use z-values, as opposed to the other methods, which use p-values; for
the cases of z-statistics and t-statistics, we input these directly into the Scott approaches, while
for the remaining simulations we only report results from the remaining three methods.

We see in Tables [2] and [3] that our approach had a true FDR close to the nominal value
of 5% in most scenarios. As expected, its performance is better for the larger value of m,
with some slight anticonservative behavior for m = 1,000, especially when considering the
spline models. The [Scott et al.| (2015) approaches perform the best in the case where the
test statistics are normally distributed, as expected. In particular, the FDR control of the
theoretical null approach is also close to the nominal level and the TPR can be 15% higher in
absolute terms than that of our approach for scenarios II and III. The empirical null performs
less well. However, the Scott et al.| (2015]) approaches lose control of the FDR when used with
t-statistics and are not applicable to the other scenarios. We always see a gain in power for our
method over the BH approach, however it is often marginal (1-3%) for scenarios I-III, which
have relatively high values of my(x;), which is to be expected, since BH in essence assumes
mo(x;) = 1. For scenario IV, however, the average TPR may increase by as much as 6% to 11%
in absolute terms for m = 10,000 while still maintaining the FDR. The gains over the [Storey
(2002)) approach are much more modest, as expected (0-2% in absolute terms while maintaining
the FDR for m = 10,000). We also compare the empirical means of the estimates of my(x;) over
the 200 simulation runs compared to the true values of my(x;) for the normally-distributed and
t-distributed independent test statistics in Figures S1 - S4. We note that for the t-distributed
statistics, the Scott theoretical null estimate is less conservative than ours in scenario I (we
considered only the theoretical, not the empirical null for the Scott approach in the plots, given
that the theoretical null had much better properties in our simulations, as seen from Tables
and . For scenarios II and III, the Scott theoretical null was more anti-conservative for lower
values of m(x;), leading to much higher FDRs in Tables [2| and

Tables S2 and S3 consider simulation results for m = 1,000 features and several dependence
structures for the test statistics. We considered multivariate normal and t distributions, with
the means drawn as before and block-diagonal variance-covariance matrices with the diagonal
entries equal to 1 and a number of blocks equal to either 20 (50 features per block) or 10 (100
features per block). The within-block correlations, p, were set to 0.2, 0.5, or 0.9. As expected,
the FDR was generally closer to the nominal value of 5% for 20 blocks than for 10 blocks, as 20
blocks leads to less correlation. Increasing p also leads to worse control of the FDR. These same
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trends are also present for the Scott et al. (2015) approaches, but generally with worse control.
Furthermore, for p = 0.5, the empirical null leads to errors in 1% or fewer of the simulation runs;
however, for p = 0.9 it leads to errors in as many as 33% of the runs. In contrast, [Storey| (2002)
shows estimated FDR values closer to 5% and results in a single error for p = 0.9 and 10 blocks
for the t distribution. We also note that the TPR is generally very low for the multivariate t
distributions, except in scenario I'V.

6 Reproducibility

All analyses and simulations in this paper are fully reproducible and the code is available on
Github at: https://github.com/SiminaB/Fdr-regression

7 Discussion

Here we have introduced an approach to estimating false discovery rates conditional on covari-
ates in a multiple testing framework, by first estimating the proportion of true null hypotheses
via a regression model - a method implemented in the swfdr package - and then using this in
a plug-in estimator. Our motivating case study considers a GWAS meta-analysis of BMI-SNP
associations, where we are interested in adjusting for sample sizes and allele frequencies of the
individual SNPs. Using extensive simulations, we compared our approach to FDR regression
as proposed by |Scott et al. (2015]), as well as to the approaches of Benjamini and Hochberg
(1995)) and Storey| (2002), which estimate the FDR without covariates. While the Scott et al.
(2015)) approaches outperform our approach for normally-distributed test statistics, which is
one of modeling assumptions therein, that approach tends to lose FDR control for test statistics
from the t-distribution and cannot be applied in cases where the test statistics come from other
distributions, such as the chi-squared distribution, which may arise from commonly performed
analyses. In general, our method provides the flexibility of performing the modeling at the level
of the p-values. Our approach always shows a gain in true positive rate over |[Benjamini and
Hochberg (1995)), which is often limited, but was as high as 6%-11% in our simulations for low
values of the prior probabilities. While the gains over the [Storey| (2002) approach were more
modest, our method allows for improved flexibility in modeling, as evidenced in Figures S1 - S4.
It may also be the case that estimating the proportion of true null hypotheses as a function of
covariates is of interest. We further show that control of the FDR is maintained in the presence
of moderate correlation between the test statistics.

Applying our estimator to GWAS data from the GIANT consortium demonstrated that, as
expected, the estimate of the fraction of null hypotheses decreases with both sample size and
minor allele frequency. It is a well-known and problematic phenomenon that p-values for all
features decrease as the sample size increases. This is because the null is rarely precisely true for
any given feature. One interesting consequence of our estimates is that we can calibrate what
fraction of p-values appear to be drawn from the non-null distribution as a function of sample
size, potentially allowing us to quantify the effect of the “large sample size means small p-values”
problem directly. Using an FDR cutoff of 5%, our approach leads to 13,384 discoveries, compared
to 12,771 from the Storey| (2002) method; given the fact that they are both multiplicative factors
to the |[Benjamini and Hochberg| (1995) approach, which in effect assumes the proportion of true
null hypotheses to be 1, they both include the 12,500 discoveries using this approach. Thus,
our approach leads to additional insights due to incorporating modeling of the fraction of null
hypotheses on covariates, as well as to a number of new discoveries. By contrast, the [Scott
et al| (2015) approach leads to very different results based on whether the theoretical null or
empirical null is assumed.

We note that our approach relies on a series of assumptions, such as independence of p-values
and independence of the p-values and the covariates conditional on the null or alternative.
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Assuming that the p-values are independent of the covariates conditional on the null is also
an assumption used in [Ignatiadis et al. (2016). Therein, diagnostic approaches for checking
this assumption are provided, namely examining the histograms of p-values stratified on the
covariates. In particular, it is necessary for the distribution to be approximately uniform for
larger p-values. We perform this diagnostic check in Figure S5 and note that it appears to hold
approximately. The slight conservative behavior seen for smaller values of N in Figures|l|and S5
may be the result of publication bias, where studies with borderline significant p-values become
part of larger meta-analyses. It is interesting that the estimated proportion of nulls in Figure
also starts decreasing substantially right at the median sample size (of 235,717). This may also
be due to the same publication bias.

In conclusion, our approach shows good performance across a range of scenarios and allows
for improved interpretability compared to the [Storey| (2002) method. In contrast to the [Scott
et al.| (2015) approaches, it is applicable outside of the case of normally distributed test statis-
tics. It always leads to an improvement in estimating the true positive rate compared to the
now-classical Benjamini and Hochberg| (1995) method, which becomes more substantial when
the proportion of null hypotheses is lower. While in very high correlation cases, our method does
not appropriately control the FDR, we note that in practice methods are often used to account
for such issues at the initial modeling stage, meaning that we generally expect good operating
characteristics for our approach. In particular, for GWAS, correlations between sets of SNPs
(known as linkage disequilibrium) are generally short-range, being due to genetic recombina-
tion during meiosis (Frazer et al.l |2007)); longer-range correlations can result from population
structure, which can be accounted for with approaches such as the genomic control correction
(Devlin and Roeder} [1999) or principal components analysis (Price et all 2006). For gene ex-
pression studies, batch effects often account for between-gene correlations; many methods exist
for removing these, including |[Johnson et al. (2007); |[Leek and Storey (2007) and Leek (2014).
We also note the subtle issue that the accuracy of the estimation is based on the number of
features/tests considered, not on the sample sizes within the tests. Thus, our “large-sample”
theoretical results are to be interpreted within this framework. In our simulations, for example,
we see that using 10,000 rather than 1,000 features improved the FDR control. We note that
our motivating data analysis had over 2.5 million features and that many high-dimensional
problems have features in the tens of thousands or higher. A range of other applications for our
methodology are also possible by adapting our regression framework, including estimating false
discovery rates for gene sets (Boca et al. 2013), estimating science-wise false discovery rates
(Jager and Leek, 2013), or improving power in high-throughput biological studies (Ignatiadis
et al.,2016). Thus, this is a general problem and as more applications accumulate, we anticipate
our approach being increasingly used to provide additional discoveries and scientific insights.
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Table 1: Outcomes of testing multiple hypotheses.

Fail to reject null Reject null  Total

Null true U Vv mo
Null false T S m — my
m—R R m
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Table 2: Simulation results for m = 1,000 features, 200 runs for each scenario, independent
test statistics. “Reg. model” = specific logistic regression model considered, BL. = Boca-Leek,
Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.
A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for
scenarios which generate z-statistics or t-statistics.

FDR % TPR %

mo(z) Dist. under H; Reg. model | BL ,STCOtt %COtt Storey BH | BL iCOtt %C()tt Storey BH
1 Beta(1,20) Linear 5.0 5.2 3.9 | 0.2 0.2 0.1

II Beta(1,20) Linear 4.8 4.8 41 | 0.2 0.1 0.1

1I Beta(1,20) Spline 6.5 4.8 4.1 10.2 0.1 0.1

I11 Beta(1,20) Linear 5.2 5.4 5.4 0.2 0.2 0.2

11 Beta(1,20) Spline 6.2 5.4 54 | 0.3 0.2 0.2

v Beta(1,20) Linear 6.4 5.1 34 | 12.2 5.4 0.3

v Beta(1,20) Spline 7.9 5.1 34 | 154 5.4 0.3

1 Norm Linear 50 52 6.6 4.9 4.4 | 51.0 50.9 49.7 50.8 49.7
I Norm Linear 54 5.7 81 53 4.9 | 48,5 63.5 61.3 47.6 47.0
I Norm Spline 56 5.9 83 53 4.9 | 49.3 63.5 61.5 47.6 47.0
111 Norm Linear 5.8 59 99 54 5.1 | 45.1 60.3 57.9 44.0 43.4
11 Norm Spline 59 6.0 10.1 54 5.1 | 45.6 60.9 58.2 44.0 43.4
v Norm Linear 5.0 49 24 4.7 28 | 7T1.6 71.8 60.6 T71.2 65.4
v Norm Spline 5.2 5.0 24 47 2.8 | 720 719 60.7 71.2 65.4
I T Linear 5.7 21.3 234 5.5 4.8 | 15.7 554 56.9 15.2 13.6
I T Linear 4.8 20.7 23.8 5.0 44 | 13.0 64.5 65.5 11.6 10.6
11 T Spline 4.7 21.1 245 5.0 44 | 13.8 64.8 65.6 11.6 10.6
11 T Linear 6.2 26.8 31.0 5.9 54 194 54.6 54.7 8.2 7.6

11 T Spline 6.8 273 313 5.9 54 | 10.0 55.2 55.3 8.2 7.6

v T Linear 50 9.3 2.8 4.7 2.9 | 525 729 44.4 52.0 40.3
v T Spline 54 93 28 4.7 2.9 | 53.0 73.0 44.6 52.0 40.3
1 Chisq 1 df Linear 5.0 4.8 4.4 | 51.2 50.9 49.7
II Chisq 1 df Linear 4.8 4.8 4.4 | 48.3 47.1 46.3
I Chisq 1 df Spline 5.0 4.8 4.4 | 48.9 47.1 46.3
111 Chisq 1 df Linear 5.0 4.9 4.8 | 44.3 43.1 42.5
11 Chisq 1 df Spline 5.3 4.9 4.8 | 44.8 43.1 42.5
v Chisq 1 df Linear 5.1 4.7 2.8 | 71.6 71.1 65.1
v Chisq 1 df Spline 5.3 4.7 2.8 | 71.9 71.1 65.1
1 Chisq 4 df Linear 5.3 5.4 4.8 | 30.8 30.6 29.6
11 Chisq 4 df Linear 5.3 5.3 5.0 | 284 27.5 26.7
I Chisq 4 df Spline 5.4 5.3 5.0 | 29.2 27.5 26.7
111 Chisq 4 df Linear 5.9 5.4 5.3 | 24.8 24.0 23.4
Il Chisq 4 df Spline 5.9 5.4 5.3 | 25.2 240 234
v Chisq 4 df Linear 5.1 4.7 2.8 | 52.3 51.7 44.5
v Chisq 4 df Spline 5.5 4.7 2.8 | b2.7 51.7 44.5
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Table 3: Simulation results for m = 10,000 features, 200 runs for each scenario, independent
test statistics. “Reg. model” = specific logistic regression model considered, BL. = Boca-Leek,
Scott T = Scott theoretical null, Scott E = Scott empirical null, BH = Benjamini-Hochberg.
A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for
scenarios which generate z-statistics or t-statistics.

FDR % TPR %
mo(z) Dist. under H; Reg. model | BL ,STCOtt %COtt Storey BH | BL iCOtt %C()tt Storey BH
I Beta(1,20) Linear 3.7 3.7 3.6 | 0.0 0.0 0.0
II Beta(1,20) Linear 3.1 3.1 3.0 [ 0.0 0.0 0.0
I Beta(1,20) Spline 3.1 3.1 3.0 |00 0.0 0.0
IT1 Beta(1,20) Linear 4.0 3.5 3.5 0.0 0.0 0.0
I11 Beta(1,20) Spline 4.5 3.5 3.5 0.0 0.0 0.0
v Beta(1,20) Linear 4.4 4.8 25 | 1.2 0.5 0.0
v Beta(1,20) Spline 5.0 4.8 25 |20 0.5 0.0
I Norm Linear 50 50 59 5.0 4.5 | 50.6 50.6 52.1 50.7 49.6
11 Norm Linear 49 52 53 49 4.6 | 484 639 62.9 47.3 46.6
IT Norm Spline 49 52 53 49 4.6 | 48.8 64.0 63.0 47.3 46.6
111 Norm Linear 49 52 55 49 4.7 | 44.2 60.2 59.3 43.5 43.0
IT1 Norm Spline 49 52 54 49 4.7 | 444 60.6 59.7 43.5 43.0
v Norm Linear 48 50 23 438 28 | 71.3 T71.8 62.2 T71.2 65.3
v Norm Spline 4.8 5.0 23 438 28 | 7T1.3 71.8 62.2 7T1.2 65.3
I T Linear 5.2 21.7 20.8 5.1 4.7 | 14.1 55.3 53.2 14.1 12.6
IT T Linear 4.6 20.0 199 4.9 4.5 | 11.5 65.7 65.4 10.2 9.2
11 T Spline 4.5 20.2 20.1 4.9 4.5 | 12.0 65.7 654 10.2 9.2
I11 T Linear 4.9 24.7 26.8 5.2 52 | 6.8 625 63.7 6.0 5.5
IT1 T Spline 4.8 24.8 269 5.2 52 | 7.0 62.6 63.9 6.0 5.5
v T Linear 4.8 93 12 438 2.9 | 51.8 72.8 28.5 51.6 40.2
v T Spline 48 93 1.2 438 2.9 | 519 729 28.6 51.6 40.2
I Chisq 1 df Linear 5.0 5.0 4.5 | 50.7 50.6 49.6
11 Chisq 1 df Linear 4.9 5.0 4.6 | 48.2 47.2 46.4
IT Chisq 1 df Spline 4.8 5.0 4.6 | 48.6 47.2 46.4
111 Chisq 1 df Linear 5.0 5.0 4.8 | 44.0 43.2 42.7
I11 Chisq 1 df Spline 5.0 5.0 4.8 | 44.2 43.2 42.7
v Chisq 1 df Linear 4.8 4.8 2.8 | 71.1 71.0 65.2
v Chisq 1 df Spline 4.8 4.8 2.8 | 71.2 71.0 65.2
I Chisq 4 df Linear 5.0 5.0 4.5 | 29.7 29.7 28.7
11 Chisq 4 df Linear 4.9 5.0 4.7 | 28.0 27.1 26.5
IT Chisq 4 df Spline 4.9 5.0 4.7 | 28.4 27.1 26.5
111 Chisq 4 df Linear 5.2 5.2 5.0 | 24.3 23.6 23.2
11T Chisq 4 df Spline 5.2 5.2 5.0 | 244 23.6 23.2
v Chisq 4 df Linear 4.7 4.7 2.8 | 51.8 51.7 44.8
v Chisq 4 df Spline 4.7 4.7 2.8 | 51.9 51.7 44.8
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Figure 1: Histograms of p-values for the SNP-BMI tests of association from the GIANT con-
sortium. Panel a) shows the distribution for all sample sizes N (2,500,573 SNPs), while panel
b) shows the subset N <200,000 (187,114 SNPs).
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Figure 2: Plot of the estimates of my(x;) against the sample size N, stratified by the MAF
categories for a random subset of 50,000 SNPs. The 90% bootstrap intervals for the final
smoothed estimates using our approach - based on 100 iterations - are shown in grey. The
vertical line represents the median sample size.
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Figure 3: The four simulation scenarios considered for mo(x;).

Scenarios I and II consider

smooth functions of a single covariate, whereas scenarios III and IV consider smooht functions
of a single covariate (z1) within categories of a second covariate (z2).
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