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ABSTRACT

Modern scientific studies from many diverse areas of research abound with multiple
hypothesis testing concerns. The false discovery rate (FDR) is one of the most
commonly used approaches for measuring and controlling error rates when
performing multiple tests. Adaptive FDRs rely on an estimate of the proportion of
null hypotheses among all the hypotheses being tested. This proportion is typically
estimated once for each collection of hypotheses. Here, we propose a regression
framework to estimate the proportion of null hypotheses conditional on

observed covariates. This may then be used as a multiplication factor with the
Benjamini-Hochberg adjusted p-values, leading to a plug-in FDR estimator.

We apply our method to a genome-wise association meta-analysis for body mass
index. In our framework, we are able to use the sample sizes for the individual
genomic loci and the minor allele frequencies as covariates. We further evaluate our
approach via a number of simulation scenarios. We provide an implementation

of this novel method for estimating the proportion of null hypotheses in a regression
framework as part of the Bioconductor package swidr.

Subjects Bioinformatics, Statistics, Data Science
Keywords False discovery rates, FDR regression, Adaptive FDR

INTRODUCTION

Multiple testing is a ubiquitous issue in modern scientific studies. Microarrays

(Schena et al., 1995), next-generation sequencing (Shendure ¢ Ji, 2008), and
high-throughput metabolomics (Lindon, Nicholson ¢ Holmes, 2011) make it possible to
simultaneously test the relationship between hundreds or thousands of biomarkers

and an exposure or outcome of interest. These problems have a common structure
consisting of a collection of variables, or features, for which measurements are obtained on
multiple samples, with a hypothesis test being performed for each feature.

When performing thousands of hypothesis tests, one of the most widely used
frameworks for controlling for multiple testing is the false discovery rate (FDR). For a fixed
unknown parameter 1, and testing a single null hypothesis Hy: |1 = [y vs some alternative
hypothesis, for example, H;: i = i, the null hypothesis may either truly hold or not
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Table 1 Outcomes of testing multiple hypotheses.

Fail to reject null Reject null Total
Null true U Vv my
Null false T S m—my

m—R R m

for each feature. Additionally, the test may lead to H, either being rejected or not being
rejected. Thus, when performing m hypothesis tests for m different unknown parameters,
Table 1 shows the total number of outcomes of each type, using the notation from the work
of Benjamini ¢» Hochberg (1995). We note that U, T, V, and S, and as a result, also R =V +
S, are random variables, while 1, the number of null hypotheses, is fixed and unknown.

The FDR, introduced by Benjamini & Hochberg (1995), is the expected fraction of false
discoveries among all discoveries. The FDR depends on the overall fraction of null
hypotheses, namely 1y = . This proportion can also be interpreted as the a priori
probability that a null hypothesis is true, .

When estimating the FDR, incorporating an estimate of m, can result in a more
powerful procedure compared to the original procedure of Benjamini ¢» Hochberg (1995)
(BH); moreover, as m increases, the estimate of 7, improves, which means that the power
of the multiple-testing approach does not necessarily decrease when more hypotheses
are considered (Storey, 2002). The popularity of this approach can be seen in the extensive
use of the qvalue package (Storey et al., 2015), which implements this method, which
is among the top 5% most downloaded Bioconductor packages, having been downloaded
more than 78,000 times in 2017.

Most modern adaptive FDR procedures rely on an estimate of 1, using the data from all
tests being performed. But additional information, in the form of meta-data, may be
available to aid the decision about whether to reject the null hypothesis for a particular
feature. The concept of using these feature-level covariates, which may also be considered
“prior information,” arose in the context of p-value weighting (Genovese, Roeder &
Wasserman, 2006). We focus on an example from a genome-wide association study
(GWAS) meta-analysis, in which millions of genetic loci are tested for associations with an
outcome of interest—in our case body mass index (BMI) (Locke et al., 2015). Different loci
may not all be genotyped in the same individuals, leading to loci-specific sample sizes.

Additionally, each locus will have a different population-level frequency. Thus, the
sample sizes and the frequencies may be considered as covariates of interest.

Other examples exist in set-level inference, including gene set analysis, where each set has a
different fraction of false discoveries. Adjusting for covariates independent of the data
conditional on the truth of the null hypothesis has also been shown to improve power
in RNA-seq, eQTL, and proteomics studies (Ignatiadis et al., 2016).

In this paper, we develop and implement an approach for estimating FDRs conditional
on covariates and apply it to a genome-wide analysis study. Specifically, we seek to better
understand the impact of sample sizes and allele frequencies in the BMI GWAS data
analysis by building on the approaches of Benjamini & Hochberg (1995), Efron et al. (2001),
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and Storey (2002) and the more recent work of Scott et al. (2015), which frames the
concept of FDR regression and extends the concepts of FDR and 1, to incorporate
covariates, represented by additional meta-data. Our focus will be on estimating the
covariate-specific g, which will then be used in a plug-in estimator for the FDR, similar
to the work of Storey (2002). We thus provide a more direct approach to estimating the
FDR conditional on covariates and compare our estimates to those of Scott et al. (2015),
as well as to the BH and Storey (2002) approaches. Our method for estimating the
covariate-specific m, is implemented in the Bioconductor package swfdr (https://
bioconductor.org/packages/release/bioc/html/swfdr.html). Similar very recent
approaches include work by Li ¢ Barber (2017) and Lei ¢ Fithian (2018), which also
estimate 1, based on existing covariates, using different approaches. The approach

of Ignatiadis et al. (2016) considers p-value weighting but conservatively estimates

To = 1. An overview of the differences between these various approaches for
incorporating meta-data and the relationships between them is provided by
Ignatiadis ¢ Huber (2018).

The remainder of the paper is organized as follows: We first introduce the motivating
case study, a BMI GWAS meta-analysis, which will be discussed throughout the paper.
We then review the definitions of FDR and 1, and their extensions to consider
conditioning on specific covariates; discuss estimation and inference procedures in our
FDR regression framework, provide a complete algorithm, and apply it to the GWAS case
study; and describe results from a variety of simulation scenarios. Finally, we provide
our statement of reproducibility, followed by the discussion. Special cases, theoretical
properties of the estimator, and proofs of the results can be found in the Supplementary
Materials.

MOTIVATING CASE STUDY: ADJUSTING FOR SAMPLE SIZE
AND ALLELE FREQUENCY IN GWAS META-ANALYSIS

As we have described, there are a variety of situations where meta-data could be valuable
for improving the decision of whether a hypothesis should be rejected in a multiple
testing framework, our focus being on an example from the meta-analysis of data from a
GWAS for BMI (Locke et al., 2015). Using standard approaches such as that of

Storey (2002), we can estimate the fraction of single nucleotide polymorphisms
(SNPs)—genomic positions (loci) which show between-individual variability—which are
not truly associated with BMI and use it in an adaptive FDR procedure. However,

our proposed method allows further modeling of this fraction as a function of additional
study-level meta-data.

In a GWAS, data are collected for a large number of SNPs in order to assess their
associations with an outcome or trait of interest (Hirschhorn ¢» Daly, 2005). Each person
usually has one copy of the DNA at each SNP inherited from their mother and one
from their father. At each locus there are usually one of two types of DNA, called alleles,
that can be inherited, which we denote A and a. In general, A refers to the variant
that is more common in the population being studied and a to the variant that is less
common, usually called the minor allele. Each person has a genotype for that SNP of the
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form AA, Aa, or aa. For example, for a particular SNP, of the four possible DNA
nucleotides, adenine, guanine, cytosine, and thymine, an individual may have either a
cytosine (C) or a thymine (T) at a particular locus, leading to the possible genotypes
CC, CT, and TT. If the C allele is less common in the population, then C is the minor allele.
The number of copies of a, which is between 0 and 2, is often assumed to follow a binomial
distribution, which generally differs between SNPs.

Typically, a GWAS involves performing an association test between each SNP and the
outcome of interest by using a regression model, including the calculation of a p-value.
While GWAS studies are often very large, having sample sizes of tens of thousands
of individuals genotyped at hundreds of thousands of SNPs, due to the small effect sizes
being detected, meta-analyses combining multiple studies are often considered
(Neale et al., 20105 Hirschhorn & Daly, 2005). In these studies, the sample size may not be
the same for each SNP, for example, if different individuals are measured with different
technologies which measure different SNPs. Sample size is thus a covariate of interest,
as is the minor allele frequency (MAF) of the population being studied, which will also vary
between SNPs. The power to detect associations increases with MAF. This is related
to the idea that logistic regression is more powerful for outcomes that occur with a
frequency close to 0.5. Our approach will allow us to better quantify this dependence in
order to guide the planning of future studies and improve understanding of
already-collected data.

We consider data from the Genetic Investigation of ANthropometric Traits (GIANT)
consortium, specifically the GWAS for BMI (Locke et al., 2015). The GIANT consortium
performed a meta-analysis of 339,224 individuals measuring 2,555,510 SNPs and
tested each for association with BMI. A total of 322,154 of the individuals considered by
Locke et al. (2015) are of European descent and the study uses the HapMap CEU
population—which consists of individuals from Utah of Northern and Western European
ancestry (International HapMap Consortium, 2007)—as a reference. We used the set
of results from the GIANT portal at http://portals.broadinstitute.org/collaboration/giant/
index.php/GIANT _consortium_data_files, which provides the SNP names and alleles,
effect allele frequencies (EAFs) in the HapMap CEU population and results from
the regression-based association analyses for BMI, presented as beta coefficients,
standard errors, p-values, and sample size for each SNP.

We removed the SNPs that had missing EAFs, leading to 2,500,573 SNPs. For these
SNPs, the minimum sample size considered was 50,002, the maximum sample size
339,224, and the median sample size 235,717—a relatively wide range. Figure 1 shows
the dependence of p-values on sample sizes within this dataset. As we considered the
MAF to be a more intuitive covariate than the EAF, we also converted EAF
values >0.5 to MAF = 1 — EAF and changed the sign of the beta coefficients for those SNPs.
The MAFs spanned the entire possible range from 0 to 0.5, with a median value of 0.208.

COVARIATE-SPECIFIC o AND FDR

We will now review the main concepts behind the FDR and the a priori probability that a
null hypothesis is true, and consider the extension to the covariate-specific FDR
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Figure 1 Histograms of p-values for the SNP-BMI tests of association from the GIANT consortium.
(A) shows the distribution for all sample sizes N (2,500,573 SNPs), while (B) shows the subset N < 200,000
(187,114 SNPs). Full-size B4 DOIL: 10.7717/peerj.6035/fig-1

and the covariate-specific a priori probability. A natural mathematical definition of the
FDR would be:

(&)
FDR =E| — ).
R

However, R is a random variable that can be equal to 0, so the version that is generally
used is:

FDR = E(% ‘R > o) Pr(R > 0), (1)

namely the expected fraction of false discoveries among all discoveries, conditional
on at least one rejection, multiplied by the probability of making at least one
rejection.

We index the m null hypotheses being considered by 1 < i < m: Hy,, Hyp, .. ., Hop. For
each i, the corresponding null hypothesis Hy; can be considered as being about a binary
parameter 0;, such that:

0; = 1 (Hy; false).

Thus, assuming that 6, are identically distributed, the a priori probability that a feature
is null is:

Ty — Pr (6, = 0) (2)

For the GWAS meta-analysis dataset, m, represents the proportion of SNPs which are
not truly associated with BMI or, equivalently, the prior probability that any of the SNPs is
not associated with BMI.

Boca and Leek (2018), PeerdJ, DOI 10.7717/peerj.6035 5/23


http://dx.doi.org/10.7717/peerj.6035/fig-1
http://dx.doi.org/10.7717/peerj.6035
https://peerj.com/

Peer/

Algorithm 1 Estimation and inference for 7o (x;) and FDR(x;)

(a) Obtain the p-values Py, P, ..., P,, for the m hypothesis tests.
(b) For a given threshold A, obtain Y; = 1(P; > A) for 1 <i < m.

(c) Estimate E(Y;|X; = x;) via logistic regression using a design matrix Z and my(x;) by:
X E(YiX; = x;)
by i[4Ni i
my (Xr) = ?, (3)
thresholded at 1 if necessary.

(d) Smooth 'Fré (x;) over a series of thresholds A € (0, 1) to obtain 1ty (x;), by taking the smoothed value at the
largest threshold considered. Take the minimum between each value and 1 and the maximum between
each value and 0.

(e) Take B bootstrap samples of Py, Py, .. ., P,, and calculate the bootstrap estimates #)(x;) for 1 < b < B
using the procedure described above.

(f) Form a 1 — a confidence interval for 4ro(x;) by taking the 1 — /2 quantile of the 7t} (x;) as the upper
confidence bound, the lower confidence bound being /2.

(g) Obtain an FDR(x;) by multiplying the BH adjusted p-values by 7ro(x;).

We now extend 1, and FDR to consider conditioning on a set of covariates
concatenated in a column vector X; of length ¢, possibly with ¢ = 1:

TC()(X,') = Pr(ei = O’Xl = Xi)7

”
FDR(x;) = E<§ ‘R > 0,X; = xi> Pr(R > 0X; = x;).

ALGORITHM FOR PERFORMING ESTIMATION AND
INFERENCE FOR COVARIATE-SPECIFIC 7o AND FDR

Assuming that a hypothesis test is performed for each feature i, summarized by a p-value
P;, Algorithm 1 can be used to obtain estimates of my(x;) and FDR(x;), denoted by ro(x;)
and F/D\R(xi), and perform inference. In Step (c) Z is a m X p design matrix with

p < m and rank(Z) = d < p, which can either be equal to X—the matrix of dimension
m X (c + 1), which has the ith row consisting of (1 X!)—or include additional columns
that are functions of the covariates in X, such as polynomial or spline terms. The estimator
is similar to:

in
=L m—R

oy = m = 4

T N T - ym )

which is used by Storey (2002) for the case without covariates. In Step (c) we focus on
maximum likelihood estimation of E(Y;|X; = x;), assuming a logistic model. A linear
regression approach would be a more direct generalization of Storey’s method, but a
logistic model is more natural for estimating means between 0 and 1. In particular, we note
that a linear regression approach would amplify relatively small differences between large
values of my(x;), which are likely to be common in many scientific situations, especially
when considering GWAS, where one may expect a relatively low number of SNPs to be
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truly associated with the outcome of interest. In the swfdr package, we provide users the
choice to estimate ((x;) via either the logistic or linear regression model. In Step (d),
we consider smoothing over a series of thresholds to obtain the final estimate, as done by
Storey & Tibshirani (2003). In particular, in the remainder of this manuscript,

we used cubic smoothing splines with three degrees of freedom over the series of
thresholds 0.05, 0.10, 0.15, ..., 0.95, following the example of the gvalue package
(Storey et al., 2015), with the final estimate being the smoothed value at A = 0.95. We note
that the final Step (g) results in a simple plug-in estimator for FDR(x;).

We provide further details in the Supplementary Materials: In Section S1, we present the
assumptions and main results used to derive Algorithm 1; in Section S2, we detail
how the case of no covariates and the case where the features are partitioned into sets, such
as in the work of Hu, Zhao ¢ Zhou (2010), can be seen as special cases of our more general
framework when the linear regression approach is applied; in Section S3 we provide
theoretical results for this estimator; in Section S4, we present proofs of the analytical
results. We note that a major assumption is that conditional on the null, the p-values do not
depend on the covariates. Our theoretical results are based on the more restrictive
assumption that the null p-values have a Uniform(0,1) distribution, whereas the
distribution of the alternative p-values may depend on the covariates. This means that
the probability of a feature being from one of the two distributions depends on the
covariates but the actual test statistic and p-value under the null do not depend on the
covariates further.

The model we considered for the GWAS meta-analysis dataset models the SNP-specific
sample size using natural cubic splines, in order to allow for sufficient flexibility. It also
considers three discrete categories for the CEU MAFs, corresponding to cuts at the
1/3 and 2/3 quantiles, leading to the intervals (0.000, 0.127) (838,070 SNPs), (0.127, 0.302)
(850,600 SNPs), and (0.302, 0.500) (811,903 SNPs).

Figure 2 shows the estimates of my(x;) plotted against the SNP-specific sample size N for
the data analysis, stratified by the CEU MAFs for a random subset of 50,000 SNPs. We note
that the results are similar for A = 0.8, A = 0.9, and for the final smoothed estimate.

A 95% bootstrap confidence interval based on 100 iterations is also shown for the final
smoothed estimate. Our approach is compared to that of Scott et al. (2015), which assumes
that the test statistics are normally distributed. We considered both the theoretical

and empirical null Empirical Bayes (EB) estimates from Scott et al. (2015), implemented
in the FDRreg package (Scott, Kass ¢ Windle, 2015). The former assumes a N(0,1)
distribution under the null, while the latter estimates the parameters of the null
distribution. Both approaches show similar qualitative trends to our estimates, although
the empirical null tends to result in much higher values over the entire range of N,
while the theoretical null leads to lower values for smaller N and larger or comparable
values for larger N. Our results are consistent with intuition—larger sample sizes and larger
MAFs lead to a smaller fraction of SNPs estimated to be null. They do, however, allow
for improved quantification of this relationship: For example, we see that the range

for 7r(x;) is relatively wide ((0.697, 1) for the final smoothed estimate), while the
smoothed estimate of , without covariates—obtained via the Storey (2002)
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Figure 2 Plot of the estimates of 7(x;) against the sample size N, stratified by the MAF categories for
a random subset of 50,000 SNPs. The 90% bootstrap intervals for the final smoothed estimates using
our approach—based on 100 iterations—are shown in gray. The vertical line represents the median
sample size. Full-size K&l DOT: 10.7717/peerj.6035/fig-2

approach—is 0.949. In the swfdr package, we include a subset of the data—for 50,000
randomly selected SNPs—and show how to generate plots similar to Fig. 2. Users may of
course consider the full dataset and reproduce our entire analysis (see Section 6 on
reproducibility below.)

The results for the number of SNPs with estimated FDR <0.05 are given in Table S1.
Our approach results in a slightly larger number of discoveries compared to the Storey (2002)
and Benjamini ¢» Hochberg (1995) approaches. Due to the plug-in approaches of both our
procedure and that of Storey (2002), all the discoveries obtained using the Benjamini &
Hochberg (1995) method are also present in our approach. The total number of shared
discoveries between our method and that of Storey (2002) is 12,740. The Scott et al. (2015)
approaches result in either a substantially larger number of discoveries (theoretical null) or a
substantially smaller number of discoveries (empirical null). In particular, the number of
discoveries for the empirical null is also much smaller than when using the Benjamini ¢
Hochberg (1995) approach. The overlap between the theoretical null and the Benjamini &
Hochberg (1995) method is 12,251; between the theoretical null and our approach it is 13,119.

SIMULATIONS

We consider simulations to evaluate how well 7ry(x;) estimates my(x;), as well as the
usefulness of our plug-in estimator, ﬁ)\R(xi), in terms of both controlling the true FDR
and having good power—measured by the true positive rate (TPR)—under a variety of
scenarios. We consider a nominal FDR value of 5%, meaning that any test with an FDR less
than or equal to 5% is considered a discovery. In each simulation, the FDR is calculated
as the fraction of truly null discoveries out of the total number of discoveries and the
TPR is the fraction of truly alternative discoveries out of the total number of truly
alternative features. In the case of no discoveries, the FDR is estimated to be 0.

We focus on five different possible functions my(x;), shown in Fig. 3. Scenario I
considers a flat function 1y = 0.9, to illustrate a case where there is no dependence
on covariates and scenarios II-IV are similar to the BMI GWAS meta-analysis.
Scenarios II-IV are chosen to be similar to the BMI GWAS meta-analysis. Thus, scenario II
is a smooth function of one variable similar to Fig. 2 (MAF in [0.302, 0.500]), scenario Il is a
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Figure 3 The five simulation scenarios considered for my(x;). (A) Scenario I. (B) Scenario II. (C)
Scenario III. (D) Scenario IV. (E) Scenario V. Scenarios I, II, and V consider smooth functions of a single
covariate, whereas scenarios III and IV consider smooth functions of a single covariate (x;) within
categories of a second covariate (x,).

Full-size K&l DOT: 10.7717/peerj.6035/fig-3

function which is smooth in one variable within categories of a second variable—similar to

the stratification of SNPs within MAFs—and scenario IV is the same function as in

scenario III multiplied by 0.6, to show the effect of having much lower fractions of null

hypotheses, respectively, higher fractions of alternative hypotheses. Finally, scenario

V is chosen to represent a case where the covariate is very informative; specifically, it
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represents the linear function mo(x;) = x;. The exact functions are given in Section S5 of the
Supplementary Materials for this paper. For scenarios I and V we focus on fitting a model
that is linear in x; on the logistic scale, whereas for scenarios II-IV we consider a model
that is linear in x; and a model that fits cubic splines with three degrees of freedom for x;,
both on the logistic scale. For scenarios III and IV, all models also consider different
coefficients for the categories of x,.

Our first set of simulations considers independent test statistics with either m = 1,000
or m = 10,000 features. For each simulation run, we first randomly generated whether
each feature was from the null or alternative distribution, so that the null hypothesis was
true for the features for which a success was drawn from the Bernoulli distribution with
probability my(x;). Within each scenario, we allowed for different distributions for the
alternative test statistics/p-values: beta distribution for the p-values or normal, t, or
Chi-squared distribution for the test statistics. For the beta distribution, we generated the
alternative p-values directly from a Beta(1,20) distribution and the null p-values from a
Unif(0,1) distributions. For the other simulations, we first generated the test statistics,
then calculated the p-values from them. For the normally distributed and ¢-distributed test
statistics, we drew the means i; of approximately half the alternative features from a
N(u = 3, 0% = 1), with the remaining alternative features from a N(u = -3, a?=1)
distribution, with the mean of the null features being 0. We then drew the actual test
statistic for feature i from either a N(u = W, 0° = 1) or T(u = y;, df = 10) distribution
(df = degrees of freedom). Note that 10 degrees of freedom for a ¢-distribution is obtained
from a two-sample ¢-test with six samples per group, assuming equal variances in the
groups. We also considered Chi-squared test statistics with either one degree of freedom
(corresponding to a test of independence for a 2 x 2 table) or four degrees of freedom
(corresponding to a test of independence for a 3 x 3 table). In this case, we first drew the
non-centrality parameter (ncp;) from the square of a N(u = 3, ¢* = 1) distribution
for the alternative and took it to be 0 for the null, then generated the test statistics from
$*(nep; = W, df =1 or 4).

Figure 4 considers the case of normally-distributed test statistics with m = 1,000
features. Each panel displays the true function y(x;) along with the empirical means of
o (x;), estimated from our approach (BL = Boca-Leek), the Storey (2002) approach
as implemented in the qvalue package (Storey et al., 2015), and the theoretical approach
in Scott et al. (2015) (Scott T), implemented in the FDRreg package. For both our approach
and the Scott T approach, we plotted both the results for both the linear the cubic spline
models. For scenario I (my = 0.9), the results for the three methods are nearly
indistinguishable. For scenarios II-V, the covariates are informative, with both of
our approach and the Scott T approach being able to flexibly model the dependence of the
function 1y on x;. For scenarios II-III, our approach does show some amount of
anti-conservative behavior for the higher values of m,, especially for the spline model fit.
For scenario V, both our approach and the Scott T approach show a clear increase of
with x;;; given that we are using a logistic model, we are not expecting an exact linear
estimate. Figure S1 presents the m = 1,000 case with ¢-distributed test statistics.

The Scott et al. (2015) methods use z-values, as opposed to the other methods, which
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Figure 4 Simulation results for m = 1,000 features and normally-distributed independent test
statistics. Plots show the true function my(x;) in black and the empirical means of 7ry(x;), assuming
different modeling approaches in orange (for our approach, Boca-Leek = BL), blue (for the Scott
approach with the theoretical null = Scott T), and brown (for the Storey approach). The scenarios
considered are those in Fig. 3. (A-H) each consider a different combination of scenario (marked I-V) and
estimation approach (linear or spline terms for BL and Scott in B-G, linear terms only in A and H).
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Figure 5 Simulation results for m = 10,000 features and normally-distributed independent test

statistics. Plots show the true function my(x;) in black and the empirical means of 7ry(x;), assuming
different modeling approaches in orange (for our approach, Boca-Leek = BL), blue (for the Scott
approach with the theoretical null = Scott T), and brown (for the Storey approach.) The scenarios
considered are those in Fig. 3. (A-H) each consider a different combination of scenario (marked I-V) and
estimation approach (linear or spline terms for BL and Scott in B-G, linear terms only in A and H).
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use p-values; as a result, in this case we input the ¢-statistics into the Scott T approach,
leading to a more pronounced anti-conservative behavior in some cases. This is not the
case for our approach or the Storey approach, which rely on p-values. Figure 5 and
Figure S2 are similar to Fig. 4 and Fig. S1, but consider the m = 10,000 case instead. We
note that we see less anti-conservativeness for m = 10,000, as the estimation is based on a
higher number of features. For all these simulation frameworks, we note that for scenario I,
the overall mean across all simulations for our method was between 0.88 and 0.91, very
close to the true value of 0.9.

Tables 2 and 3 show the results for the FDR and TPR of the plug-in estimators for the
scenarios from Fig. 3. In addition to our method, Scott T, Storey, and BH, we consider
the null EB approach of Scott et al. (2015) (Scott E). We only report the results for
the Scott T and Scott E approaches for the cases of the z-statistics and t-statistics, where
these are inputted directly in the methods implemented in the FDRreg package. We see in
Tables 2 and 3 that our approach had a true FDR close to the nominal value of 5% in
most scenarios. As expected, its performance is better for m = 10,000, with some slight
anticonservative behavior for m = 1,000, especially when considering the spline
models, also noted from the plots of 7ry(x;). We also include the results when fitting splines
for our method and the Scott approaches for scenarios I and V and m = 1,000 in Table S2.

The Scott et al. (2015) approaches perform the best in the case where the test statistics
are normally distributed, as expected. In particular, the FDR control of the theoretical
null approach is also close to the nominal level and the TPR can be 15% higher in absolute
terms than that of our approach for scenarios II and III. The empirical null performs
less well. However, the Scott et al. (2015) approaches lose control of the FDR when used
with f-statistics and are not applicable to the other scenarios. We always see a gain in
power for our method over the BH approach, however, it is often marginal (1-3%) for
scenarios I-III, which have relatively high values of my(x;), which is to be expected,
since BH in essence assumes my(x;) = 1. For scenario IV, however, the average TPR may
increase by as much as 6-11% in absolute terms for m = 10,000 while still maintaining the
FDR. The gains over the Storey (2002) approach are much more modest in scenarios II-IV,
as expected (0-2% in absolute terms while maintaining the FDR for m = 10,000).

In scenario V, where the covariate is highly informative, the gains in power of our
approach over both BH and Storey are much higher. For the Beta(1,20) case, the difference
in TPR is threefold for m = 1,000 and fivefold for m = 10,000 over Storey. Even for the
other cases, which may be more realistic, the differences are between 5% and 9% in
absolute TPR over Storey and as high as >20% in absolute TPR over BH.

To further explore the potential gain in power over the Storey approach, we expanded
scenario V to other functions y(x;1) = xl’.‘l, where the exponent k € {1, 1.25, 1.5, 2, 3}.
The k = 1 case corresponds to scenario V and used a linear function in the logistic
regression, whereas the remaining cases used cubic splines with three degrees of freedom.
The estimated FDR and TPR for our approach compared to Storey are shown in Figs. 6
and 7. We note that FDR control is maintained and that in all the simulations, the
TPR for our approach is better compared to that for the Storey approach. The gain in
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Table 2 Simulation results for m = 1,000 features, 200 runs for each scenario, independent test

statistics.
FDR % TPR %
mo(x) Distribution Reg. BL Scott T Scott E Storey BH BL Scott T Scott E Storey BH
under H, model
I Beta (1,20)  Linear 5.0 52 39 0.2 0.2 0.1
II Beta (1,20) Linear 4.8 4.8 41 0.2 0.1 0.1
11 Beta (1,20) Spline 6.5 4.8 41 0.2 0.1 0.1
III Beta (1,20)  Linear 5.2 54 54 02 0.2 0.2
111 Beta (1,20) Spline 6.2 54 54 03 0.2 0.2
v Beta (1,20) Linear 6.4 5.1 34 122 54 0.3
v Beta (1,20) Spline 7.9 5.1 34 154 54 0.3
A% Beta (1,20)  Linear 3.5 49 3.1 66.6 206 04
I Normal Linear 5.0 5.2 6.6 49 44 51.0 50.9 49.7 50.8  49.7
I Normal Linear 54 5.7 8.1 53 49 485 63.5 61.3 47.6 47.0
I Normal Spline 5.6 5.9 8.3 53 49 493 635 61.5 47.6 47.0
111 Normal Linear 5.8 5.9 9.9 5.4 51 45.1 60.3 57.9 44.0 43.4
I Normal Spline 5.9 6.0 10.1 54 5.1 456 609 58.2 440 434
v Normal Linear 5.0 4.9 2.4 4.7 28 716 71.8 60.6 71.2 65.4
v Normal Spline 5.2 5.0 2.4 4.7 28 720 719 60.7 71.2 65.4
\% Normal Linear 4.4 4.8 214 4.7 24 792 832 73.4 74.1 67.1
I T Linear 5.7 21.3 234 5.5 4.8 157 554 56.9 15.2 13.6
11 T Linear 4.8 20.7 23.8 5.0 44 13.0 64.5 65.5 11.6 10.6
1I T Spline 4.7 21.1 24.5 5.0 44 138 64.8 65.6 11.6 10.6
I T Linear 6.2 26.8 31.0 5.9 54 94 546 54.7 8.2 7.6
111 T Spline 6.8 27.3 31.3 5.9 54 10.0 552 55.3 8.2 7.6
v T Linear 5.0 9.3 2.8 4.7 29 525 729 44.4 52.0 40.3
v T Spline 54 9.3 2.8 4.7 29 53.0 73.0 44.6 52.0 40.3
A% T Linear 4.1 7.4 7.8 4.7 25 664 80.3 50.0 57.1 433
1 Chisq 1 df Linear 5.0 4.8 44 512 50.9 49.7
1I Chisq 1 df Linear 4.8 4.8 44 483 47.1 46.3
I Chisq 1 df Spline 5.0 4.8 44 489 47.1 46.3
I Chisq 1 df  Linear 5.0 4.9 48 443 43.1 425
Il  Chisq1df Spline 5.3 49 48 448 431 425
v Chisq 1 df Linear 5.1 4.7 28 71.6 71.1 65.1
v Chisq 1 df Spline 5.3 4.7 28 719 71.1 65.1
\'% Chisq 1 df Linear 4.4 4.8 2.5 789 73.9 66.8
I Chisq 4 df Linear 5.3 54 4.8 30.8 30.6 29.6
11 Chisq 4 df Linear 5.3 53 50 284 27.5 26.7
I Chisq 4 df  Spline 5.4 5.3 50 29.2 275 267
I Chisq 4 df  Linear 5.9 5.4 53 248 240 234
111 Chisq 4 df Spline 5.9 5.4 53 252 24.0 234
v Chisq 4 df Linear 5.1 4.7 2.8 523 51.7 44.5
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Table 2 (continued).

FDR % TPR %
mo(x) Distribution Reg. BL Scott T Scott E Storey BH BL Scott T Scott E Storey BH
under H, model
IV Chisq4df Spline 55 47 28 527 517 445
\% Chisq 4 df  Linear 4.0 4.6 24 628 55.3 46.2

Notes:
A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for scenarios which generate
z-statistics or t-statistics.
“Reg. model”, specific logistic regression model considered; BL, Boca-Leek; Scott T, Scott theoretical null; Scott E, Scott
empirical null; BH, Benjamini-Hochberg.

Table 3 Simulation results for m = 10,000 features, 200 runs for each scenario, independent test

statistics.
FDR % TPR %
mo(x) Distribution Reg. BL Scott T Scott E Storey BH BL Scott T Scott E Storey BH
under H; model

I Beta(1,20) Linear 3.7 3.7 36 0.0 0.0 0.0

II Beta(1,20) Linear 3.1 3.1 3.0 0.0 0.0 0.0

II Beta(1,20) Spline 3.1 3.1 3.0 0.0 0.0 0.0

111 Beta(1,20) Linear 4.0 35 3.5 0.0 0.0 0.0

111 Beta(1,20) Spline 4.5 35 35 0.0 0.0 0.0

v Beta(1,20) Linear 4.4 4.8 25 12 0.5 0.0

v Beta(1,20) Spline 5.0 4.8 25 20 0.5 0.0

A% Beta(1,20) Linear 3.1 5.1 2.3 66.7 13.1 0.0

I Normal Linear 5.0 5.0 59 5.0 4.5 50.6 50.6 52.1 50.7 49.6
II Normal Linear 4.9 5.2 53 4.9 4.6 484 639 62.9 47.3 46.6
11 Normal Spline 4.9 5.2 53 4.9 4.6 488 64.0 63.0 47.3 46.6
111 Normal Linear 4.9 5.2 55 4.9 4.7 442 60.2 59.3 43.5 43.0
111 Normal Spline 4.9 5.2 5.4 49 47 444 60.6 59.7 435 430
v Normal Linear 4.8 5.0 2.3 4.8 28 713 718 62.2 71.2 65.3
v Normal Spline 4.8 5.0 2.3 4.8 28 713 718 62.2 71.2 65.3
\% Normal Linear 4.2 5.0 23.8 4.7 25 79.0 833 74.8 74.1 66.9
I T Linear 5.2 21.7 20.8 5.1 4.7 14.1 553 53.2 14.1 12.6
II T Linear 4.6 20.0 19.9 4.9 45 11.5 657 65.4 10.2 9.2

II T Spline 4.5 20.2 20.1 4.9 45 12.0 65.7 65.4 10.2 9.2

111 T Linear 4.9 24.7 26.8 52 52 6.8 625 63.7 6.0 5.5

111 T Spline 4.8 24.8 26.9 52 52 7.0 626 63.9 6.0 55

v T Linear 4.8 9.3 1.2 4.8 29 518 72.8 28.5 51.6 40.2
v T Spline 4.8 9.3 1.2 4.8 29 519 729 28.6 51.6 40.2
v T Linear 3.9 74 7.3 4.6 2.5 66.0 80.7 41.1 57.1 434
I Chisq 1 df  Linear 5.0 5.0 4.5 50.7 50.6  49.6
II Chisq 1 df  Linear 4.9 5.0 4.6 482 47.2 46.4
I Chisq 1df  Spline 4.8 5.0 4.6 48.6 47.2 46.4
11 Chisq 1 df  Linear 5.0 5.0 4.8 44.0 432 427

(Continued)
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Table 3 (continued).

FDR % TPR %
mo(x) Distribution Reg. BL Scott T Scott E Storey BH BL Scott T Scott E Storey BH
under H, model
II  Chisqldf Spline 5.0 50 48 442 432 427
v Chisq 1 df  Linear 4.8 4.8 28 711 71.0 65.2
v Chisq 1 df  Spline 4.8 4.8 28 712 71.0 65.2
Vv Chisq 1 df  Linear 4.2 4.7 2.5 789 739 669
I Chisq 4 df  Linear 5.0 5.0 4.5 297 29.7 28.7
I Chisq 4 df = Linear 4.9 5.0 47 28.0 27.1 265
I Chisq 4 df  Spline 4.9 5.0 4.7 284 27.1 265
III Chisq 4 df  Linear 5.2 52 50 243 23.6 23.2
III Chisq 4 df  Spline 5.2 52 50 244 23.6 23.2
IV Chisq4df Linear 4.7 4.7 2.8 518 517 4438
v Chisq 4 df  Spline 4.7 4.7 2.8 519 51.7 44.8
\4 Chisq 4 df  Linear 3.9 4.6 25 623 55.5 46.7
Notes:

A nominal FDR = 5% was considered. Results for the Scott approaches are only presented for scenarios which generate
z-statistics or f-statistics.
“Reg. model”, specific logistic regression model considered; BL, Boca-Leek; Scott T, Scott theoretical null; Scott E, Scott

empirical null; BH, Benjamini-Hochberg.
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Figure 6 Simulation results for m = 1,000 features and normally-distributed independent test
statistics comparing our proposed approach (BL) to the Storey approach in terms of FDR and
TPR. (A) shows the estimated FDR and (B) the estimated TPR, for a nominal FDR = 5%. Results are

averaged over 200 simulation runs. We considered rg(x;) = x*

ke {1,1.2515,2,3}.

and varied the exponent

Full-size K& DOTI: 10.7717/peerj.6035/fig-6

power is around 5-7% for all the simulations with normally-distributed test statistics
(Fig. 6) and around 9-11% for all the simulations with ¢-distributed test statistics (Fig. 7).
Additionally, we explored the case of the “global null”, that is, o = 1. We considered
m = 1,000 features, with all the test statistics generated from N(0,1) and 1,000
simulation runs. The mean estimates of m(x;;) are shown in Fig. 8, considering linear

terms in both our approach and the Scott T approach. The overall mean for our approach

was 0.94, close to the true value of 1 and to the Storey mean estimate of 0.96. At a
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Figure 7 Simulation results for m = 1,000 features and t-distributed independent test statistics
comparing our proposed approach (BL) to the Storey approach in terms of FDR and TPR.
(A) shows the estimated FDR and (B) the estimated TPR, for a nominal FDR = 5%. Results are aver-
aged over 200 simulation runs. We considered my (x;) = x* and varied the exponent k € {1,1.25,1.5,2,3}.
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Figure 8 Simulation results for m = 1,000 features, considering the global null 7, = 1. Plot shows the
true function my(x;) in black and the empirical means of 7 (x;), assuming different modeling approaches
in orange (for our approach, Boca-Leek = BL), blue (for the Scott approach with the theoretical null =
Scott T), and brown (for the Storey approach). Full-size Kal DOI: 10.7717/peerj.6035/fig-8

nominal FDR of 5%, our approach had an estimated FDR of 5.2%, Scott T of 1.7%,
Scott empirical of 21.4%, Storey of 5%, and BH of 4.5%. Interestingly, although the Scott T
approach is conservative in terms of the FDR, the estimate of y(x;;) is lower than the
estimate obtained from our method, on average. Results were similar when considering
splines (5.3% for our approach, 2.1% for Scott T, 22.3% for Scott E).

Finally, we used simulations to explore what happens when there are deviations from
independence. Tables S3 and S4 consider simulation results for m = 1,000 features and
several dependence structures for the test statistics (200 simulation runs per scenario).
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We considered multivariate normal and ¢ distributions, with the means drawn as before
and block-diagonal variance-covariance matrices with the diagonal entries equal to 1
and a number of blocks equal to either 20 (50 features per block) or 10 (100 features per
block). The within-block correlations, p, were set to 0.2, 0.5, or 0.9. For the multivariate
normal distribution, as expected, the FDR was generally closer to the nominal value

of 5% for 20 blocks than for 10 blocks, as 20 blocks leads to less correlation. Increasing p
also leads to worse control of the FDR. Interestingly, for the multivariate ¢ distribution, our
method often results in conservative FDRs, with the exception of the spline models and
of the case with 10 blocks and p = 0.9. These same trends are also present for the

Scott et al. (2015) approaches, but generally with worse control. Furthermore, for p = 0.5,
the empirical null leads to errors in 1% or fewer of the simulation runs; however, for p = 0.9
it leads to errors in as many as 33% of the runs. In contrast, the Storey (2002) method
shows estimated FDR values closer to 5% and results in a single error for p = 0.9 and

10 blocks for the ¢ distribution. We also note that the TPR is generally very low for the
multivariate ¢ distributions, except in scenarios IV and V. Overall, while control of the FDR
is worse with increasing correlation, as would be anticipated, it is still <0.09 for a nominal
value of 0.05 for all scenarios with p € {0.2,0.5}, with the control being even better
when the estimation uses linear, as opposed to spline, terms.

REPRODUCIBILITY

All analyses and simulations in this paper are fully reproducible and the code is available
on GitHub (https://github.com/SiminaB/Fdr-regression).

DISCUSSION

We have introduced an approach to estimating FDRs conditional on covariates in a
multiple testing framework, by first estimating the proportion of true null hypotheses via a
regression model—a method implemented in the swfdr package—and then using this
in a plug-in estimator. This plug-in approach was also used in Li ¢» Barber (2017), although
the estimation procedure therein for my(x;) is different, involving a more complicated
constrained maximum likelihood solution; it also requires convexity of the set of possible
values of my(x;), which is only detailed in a small number of cases (order structure, group
structure, low total variation, or local similarity). One specific caveat is that multiplying
by the estimate of my(x;) is equivalent to weighing by 1/m,(x;), which has been shown
to not be Bayes optimal (Lei ¢ Fithian, 2018). However, we note that our approach has
good empirical properties—further work may consider using our estimate with different
weighting schemes.

Our motivating case study considers a GWAS meta-analysis of BMI-SNP associations,
where we are interested in adjusting for sample sizes and allele frequencies of the
individual SNPs. Using extensive simulations, we compared our approach to FDR
regression as proposed by Scott et al. (2015), as well as to the approaches of Benjamini ¢
Hochberg (1995) and Storey (2002), which estimate the FDR without covariates. While the
Scott et al. (2015) approaches outperform our approach for normally-distributed test
statistics, which is one of modeling assumptions therein, that approach tends to lose FDR
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control for test statistics from the t-distribution and cannot be applied in cases where
the test statistics come from other distributions, such as the Chi-squared distribution,
which may arise from commonly performed analyses; the loss of FDR control for
t-statistics has been pointed out before for this approach (Ignatiadis et al., 2016).

In general, our method provides the flexibility of performing the modeling at the level of the
p-values. Our approach always shows a gain in TPR over the method of Benjamini ¢
Hochberg (1995); the gains over the Storey (2002) approach were more modest, but did
rise to 5-11% in absolute TPR in cases where the covariates were especially informative.
Furthermore, considering a regression context allows for improved modeling flexibility
of the proportion of true null hypotheses; future work may build on this method to
consider different machine learning approaches in the case of more complicated or
high-dimensional covariates of interest. We further show that control of the FDR is
maintained in the presence of moderate correlation between the test statistics. We also
note that we generally considered models that we thought researchers could be believably
interested in fitting—not necessarily the exact models used to generate the

simulated data—and our simulations generally showed robustness to misspecifications,
including when fitting splines instead of linear terms and in the global null scenario.
While beyond the scope of this work, we believe that the issue of model selection

will become extremely important as the number of meta-data covariates

available increases.

Applying our estimator to GWAS data from the GIANT consortium demonstrated that,
as expected, the estimate of the fraction of null hypotheses decreases with both sample size
and MAF. It is a well-known and problematic phenomenon that p-values for all
features decrease as the sample size increases. This is because the null is rarely precisely
true for any given feature. One interesting consequence of our estimates is that we can
calibrate what fraction of p-values appear to be drawn from the non-null distribution
as a function of sample size, potentially allowing us to quantify the effect of the “large
sample size means small p-values” problem directly. Using an FDR cutoft of 5%,
our approach leads to 13,384 discoveries, compared to 12,771 from the Storey (2002)
method; given the fact that they are both multiplicative factors to the Benjamini ¢
Hochberg (1995) approach, which in effect assumes the proportion of true null hypotheses
to be 1, they both include the 12,500 discoveries using this approach. Thus, our approach
leads to additional insights due to incorporating modeling of the fraction of null
hypotheses on covariates, as well as to a number of new discoveries. By contrast, the
Scott et al. (2015) approach leads to very different results based on whether the theoretical
null or empirical null is assumed.

We note that our approach relies on a series of assumptions, such as independence of
p-values and independence of the p-values and the covariates conditional on the null.
Assuming that the p-values are independent of the covariates conditional on the null is also
an assumption used by Ignatiadis et al. (2016). Therein, diagnostic approaches for
checking this assumption are provided, namely examining the histograms of p-values
stratified on the covariates. In particular, it is necessary for the distribution to be
approximately uniform for larger p-values. We perform this diagnostic check in Fig. S3
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and note that it appears to hold approximately. The slight conservative behavior seen
for smaller values of N in Fig. 1 and Fig. S3 may be the result of publication bias,
with SNPs that have borderline significant p-values potentially being more likely to be
considered in additional studies and thus becoming part of larger meta-analyses. It is
interesting that the estimated proportion of nulls in Fig. 2 also starts decreasing
substantially right at the median sample size (of 235,717). This may also be due to the
same publication bias. Modeling the dependence of 7, on meta-data covariates

can thus be a good starting place for understanding possible biases and planning
future studies.

In conclusion, our approach shows good performance across a range of scenarios and
allows for improved interpretability compared to the Storey (2002) method. In contrast
to the Scott et al. (2015) approaches, it is applicable outside of the case of normally
distributed test statistics. It always leads to an improvement in estimating the TPR
compared to the now-classical Benjamini ¢ Hochberg (1995) method, which becomes
more substantial when the proportion of null hypotheses is lower. While in very high
correlation cases, our method does not appropriately control the FDR, we note that
in practice methods are often used to account for such issues at the initial modeling stage,
meaning that we generally expect good operating characteristics for our approach.

In particular, for GWAS, correlations between sets of SNPs (known as linkage
disequilibrium) are generally short-range, being due to genetic recombination during
meiosis (International HapMap Consortium, 2007); longer-range correlations can result
from population structure, which can be accounted for with approaches such as the
genomic control correction (Devlin ¢ Roeder, 1999) or principal components analysis
(Price et al., 2006). For gene expression studies, batch effects often account for
between-gene correlations; many methods exist for removing these (Johnson, Li ¢
Rabinovic, 2007; Leek & Storey, 2007; Leek, 2014). We also note the subtle issue that the
accuracy of the estimation is based on the number of features/tests considered,

not on the sample sizes within the tests. Thus, our “large-sample” theoretical results are
to be interpreted within this framework. In our simulations, for example, we see that
using 10,000 rather than 1,000 features improved the FDR control. In particular,

the models with splines estimated a larger number of parameters, leading to poorer FDR
control for the case with a smaller number of features; there is also worse control for
spline models when simulating dependent statistics, as the effective number of features
in that case is even smaller. Thus, in general we recommend considering simpler models
in scenarios that have a small number of features. We note that our motivating data
analysis had over 2.5 million features and that many high-dimensional problems have
features in the tens of thousands or higher. A range of other applications for our
methodology are also possible by adapting our regression framework, including
estimating FDRs for gene sets (Boca et al., 2013), estimating science-wise FDRs (Jager ¢
Leek, 2013), or improving power in high-throughput biological studies (Ignatiadis et al.,
2016). Thus, this is a general problem and as more applications accumulate, we
anticipate our approach being increasingly used to provide additional discoveries and
scientific insights.
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