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ABSTRACT
The Genome Analysis Toolkit (GATK) is commonly used for variant calling of single
nucleotide polymorphisms (SNPs) and small insertions and deletions (indels) from
short-read sequencing data aligned against a reference genome. There have been a
number of variant calling comparisons against GATK, but an equally comprehensive
comparison for VarScan not yet been performed. More specifically, we compare (1)
the effects of different pre-processing steps prior to variant calling with both GATK
and VarScan, (2) VarScan variants called with increasingly conservative parameters,
and (3) filtered and unfiltered GATK variant calls (for both the UnifiedGenotyper
and the HaplotypeCaller). Variant calling was performed on three datasets (1
targeted exon dataset and 2 exome datasets), each with approximately a dozen
subjects. In most cases, pre-processing steps (e.g., indel realignment and quality
score base recalibration using GATK) had only a modest impact on the variant calls,
but the importance of the pre-processing steps varied between datasets and variant
callers. Based upon concordance statistics presented in this study, we recommend
GATK users focus on “high-quality” GATK variants by filtering out variants
flagged as low-quality. We also found that running VarScan with a conservative
set of parameters (referred to as “VarScan-Cons”) resulted in a reproducible list of
variants, with high concordance (>97%) to high-quality variants called by the GATK
UnifiedGenotyper and HaplotypeCaller. These conservative parameters result in
decreased sensitivity, but the VarScan-Cons variant list could still recover 84–88% of
the high-quality GATK SNPs in the exome datasets. This study also provides limited
evidence that VarScan-Cons has a decreased false positive rate among novel variants
(relative to high-quality GATK SNPs) and that the GATK HaplotypeCaller has an
increased false positive rate for indels (relative to VarScan-Cons and high-quality
GATK UnifiedGenotyper indels). More broadly, we believe the metrics used for
comparison in this study can be useful in assessing the quality of variant calls in the
context of a specific experimental design. As an example, a limited number of variant
calling comparisons are also performed on two additional variant callers.
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INTRODUCTION
Multiple studies have previously compared variant callers for short-read sequencing data

(Bauer, 2011; Cheng, Teo & Ong, 2014; Liu et al., 2013; O’Rawe et al., 2013; Pabinger et al.,

2014; Pirooznia et al., 2014; Yi et al., 2014; Yu & Sun, 2013). Many studies have indicated

that the variant callers available in the Genome Analysis ToolKit (GATK, DePristo et al.,

2011; McKenna et al., 2010) show the best performance (Bauer, 2011; Liu et al., 2013;

Pirooznia et al., 2014; Yi et al., 2014). This is in accordance with the popular use of GATK

for variant calling, especially for Illumina sequencing data (Boland et al., 2013; Li et al.,

2014; Linderman et al., 2014; Worthey, 2013). However, there are reports showing other

variant callers that can outperform GATK, questioning the notion that GATK should

be considered a gold-standard for variant calling. For example, one study found that

CASAVA outperformed the GATK UnifiedGenotyper when calling single-nucleotide

variants (Cheng, Teo & Ong, 2014) and another study showed that a novel algorithm

called Scalpel outperformed GATK HaplotypeCaller for indels (Narzisi et al., 2014). The

use of multiple-variant callers has also been proposed (Lam et al., 2012; O’Rawe et al.,

2013; Pabinger et al., 2014; Yu & Sun, 2013), but this will increase the run-time (or at least

computational resources) necessary for analysis (which can be especially important for

large patient cohorts).

While the somatic variant calling function in VarScan (Koboldt et al., 2009; Koboldt et al.,

2012) has been compared against other somatic variant callers (Roberts et al., 2013; Wang

et al., 2013; Xu et al., 2014), most comparisons for single-sample variant calling (often used

for identifying germline mutations) did not directly compare GATK variant callers against

VarScan. One study indicated that VarScan was less accurate than the other variant callers

(Cheng, Teo & Ong, 2014). Another study showed VarScan as being more similar to the

other variant callers but still ranked GATK as the best option (Yi et al., 2014). However,

VarScan has been used for variant calling in a large number of studies (Worthey, 2013),

and we hypothesize that the simple, intuitive parameters can be helpful in establishing an

optimal set of variants for a given dataset. Also, as emphasized in this study, the run-time

for VarScan should typically be shorter than GATK. Therefore, we wished to determine if

(1) the previous VarScan benchmarks can be reproduced in our own analysis and (2) if use

of non-standard parameters can improve the quality of the VarScan variant calls.

This study also examines the relative impact of pre-processing steps in GATK

(specifically, the indel realignment and quality score base recalibration steps). Therefore,

we compared variant calls with GATK and VarScan for each step separately, with both

pre-processing steps, as well as without either pre-processing step. There has been at

least one previous study to showing that filtering can improve the quality of variant

calls (Carson et al., 2014), beyond the GATK quality score base recalibration. We

assessed whether running VarScan with different sets of parameters (using three different

parameters settings: see Methods) can also increase the accuracy of the resulting variant

calls. Additionally, we have used a simple filtering strategy for GATK variants (looking at all

variants called versus filtering out variants with a low quality flag), so there are two sets of

variant lists for both GATK UnifiedGenotyper and GATK HaplotypeCaller.
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In order to avoid bias that could come from studying only a limited number of samples,

variant calls were performed on 14 targeted exon (for 1000 genes) samples from The 1000

Genomes Project Consortium (2012), 12 exome samples from The 1000 Genomes Project

Consortium (2012), and 15 Illumina exome samples from SRP019719 (O’Rawe et al., 2013).

We believe this helps yield robust results both in terms of the number of samples studied

per cohort as well as variations in study design (i.e., the method of targeted sequencing).

The 1000 Genomes study was specifically chosen in order to test recovery of validated

variants as well as to compare concordance between samples subject to both targeted exon

and exome sequencing.

In short, this study presents a detailed characterization between GATK and VarScan

on 41 samples (with varying target designs), where each sample has 28 variant lists for

comparison. Variant lists are compared based upon the number of variants called, the

proportion of novel variants (defined in those absent from The 1000 Genomes Project

Consortium (2012), Exome Sequencing Project (Fu et al., 2013), and dbSNP (Sherry

et al., 2001)) in the variant list, and the reproducibility of variant calls using different

technologies. A limited number of additional comparisons are also performed in order to

help illustrate how these metrics can be used to select the optimal variant caller for a given

dataset. This analysis demonstrates that a conservative set of parameters (referred to as

“VarScan-Cons”) can be used to produce a reproducible list of variants from VarScan, and

there is limited evidence that VarScan-Cons has a lower false discovery rate among novel

variants. This study also presents evidence that the GATK HaplotypeCaller may have a

higher false discovery rate in calling indels compared to the GATK UnifiedGenotyper.

MATERIAL AND METHODS
Sample selection
All datasets were downloaded as .fastq files from the European Nucleotide Archive

(Leinonen et al., 2011). Illumina exome samples were downloaded from SRP019719

(O’Rawe et al., 2013). The 1000 Genomes Project Consortium (2012) data, abbreviated

as 1KG in this manuscript, was selected on the basis of having (1) exome data, (2)

targeted exome data, (3) Omni SNP chip data, and (4) validated SNPs. Among samples

meeting those criteria, 12 samples were selected based upon (1) their presence in disparate

populations (CEU: Northern and Western European Ancestry, CHB: Han Chinese, JPT:

Japanese, and YRI: Yoruba/African) and (2) maximum number of validated SNPs within

each of the four selected populations.

1000 Genomes validated SNPs and Omni SNP chip .idat files were downloaded

from the 1000 Genomes FTP site (ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/). Likewise,

target design files (for targeted exon and exome samples) were downloaded from this site.

More specifically, the phase 3 design files were used to calculate coverage statistics

for the exome samples, and validated variants come from ALL.chr20.exome consensus

validation 454.20120118.snp.exome.sites.vcf.gz (pooled 454 PCR sequencing data).

At the time this dataset was downloaded, the hg19 reference location for validated SNPs

was off-set by one (similar to indels in .vcf files), and this was taken into consideration
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during analysis. Targeted gene coordinates (for hg18) from P3 consensus exonic

targets.bed were converted to hg19 coordinates using the LiftOver function in Galaxy

(Blankenberg et al., 2001; Giardine et al., 2005; Goecks et al., 2010).

Data processing
Reads were aligned to a karotype-sorted hg19 reference (necessary for running GATK

(McKenna et al., 2010)) using BWA (v0.7.5a) (Li & Durbin, 2009). Prior to variant calling,

singletons were filtered out using samtools (v0.1.19) (Li et al., 2009), .bam files were

coordinate sorted via Picard (v1.105, http://picard.sourceforge.net/), and duplicates were

removed via Picard. Prior to running GATK, read groups were added via Picard, and

.bam file was re-ordered according to chromosome karyotype. Prior to running VarScan

(Koboldt et al., 2012), a pileup file was created via mpileup in samtools (Li et al., 2009)

and positions without any aligned reads were filtered out. These represent the minimum

pre-processing sets and are labelled as “No Preprocessing”. Alignment statistics for these

samples are shown in supplementary tables (Table S1 for 1KG Targeted Exon, Table S2 for

1KG Exome, and Table S3 for SRP019719).

There are three additional pre-processing pipelines that were considered for VarScan

and GATK comparisons. “Realign Only” runs an indel realignment using GATK (using

the RealignerTargetCreater and IndelRealigner functions). “Recalibrate Only” uses GATK

to recalibrate quality scores (using the BaseRecalibrator and PrintReads functions). “Full

Pipeline” runs the indel realignment functions and then performs base recalibration.

MiSeq amplicon data (for individual K8108-49685s in the SRP019719 dataset) was

processed in a similar pipeline as the array-based targeted sequencing data except that

reads were first trimmed to 150 bp and PCR duplicates were not removed (since all reads

were PCR duplicates). Also, unlike the SRP019719 exome data, GATK did not detect

miscoded quality scores in the SRP019719 amplicon data (so, the variant calling steps

match the 1000 Genomes sample commands in Text S1).

Human610 SNP chip data for individual K8101-49685s (paired with SRP019719

Illumina exome sample SRX265476) was reported in the Illumina “TOP” format, so the

reverse complement of the allele was used when the IlmnStrand and RefStrand did not

match (as defined in the human610-quadv1 h.csv manifest file). Allele sequences were

provided without respect to a reference sequence, so SeattleSeq Variant Annotation (http:

//snp.gs.washington.edu/SeattleSeqAnnotation138/) was used to determine the reference

sequence to focus on variants that differ from the reference sequence (to make results

comparable to the Illumina sequencing variant calls). This is the latest version of the

manifest file, but it was designed using dbSNP 131 and some discordant SNPs were due

to annotations where the forward strand may vary from the hg19 reference sequence.

However, this only affected a relatively small minority of SNPs (<5% of variants).

Raw .idat files for 1000 Genomes Omni SNP chip samples were processed in

Illumina® Genome StudioTM(V2011.1). A pre-defined clustering file (HumanOmni2.5-

4v1-Multi H.egt) was used to call genotypes. Variants were exported in the “Plus”

format (so, no genotype conversion was necessary). Samples were annotated using the
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HumanOmni2.5-4v1-Multi B.bpm manifest file, including the genomic position in hg18

coordinates. Coordinates were converted to hg19 via liftOver in Galaxy (Blankenberg et al.,

2001; Giardine et al., 2005; Goecks et al., 2010) and reference sequences were determined

for all on-target probes (n = 2,257) via SeattleSeq Variant Annotation (http://snp.gs.

washington.edu/SeattleSeqAnnotation138/). Each sample had 2,179–2,188 genotyped

SNPs recognized by SeattleSeq, with 477–616 non-reference alleles per sample.

Concordance definitions
Concordance was defined as recovery of a set of lower-throughput variants (validated,

SNP chip, targeted exon, amplicon), except for the targeted exon technical replicates where

concordance was defined as (2 ∗ Number of Overlapping Variants)/(Sum of Variants from

both samples). For clearity, we therefore refer to recovery of lower-throughput results as

the “recovery rate” in the results and reserve the term “concordance rate” for only the

technical replicate analysis. When defining variant concordance between the SNP chip data

and exome data, recovery of the known variant is counted as a concordant variant (even if

multiple variants are called at a given position).

Unlike most comparisons in this study, the SNP chip comparisons do not specifically

focus on the coding variants. As such, extraction of SNP chip variants within the target

regions currently includes some non-coding variants (such as intronic variants) that would

falsely be called discordant if focusing only on coding variants. SNP chip variants have been

filtered to only include variants that vary from the reference sequence.

Calling variants
Variants were called using GATK (v.2.8.1) based upon established best practices (DePristo

et al., 2011; Van der Auwera et al., 2002). Variants were called using both the UnifiedGeno-

typer (UG) and the HaplotypeCaller (HC). For variant characterization, the set of all

variants was considered (labelled as UG-all in figures for the UnifiedGenotyper and HC-all

for the HaplotypeCaller) as well as only the high-quality variants that didn’t contain the

“LowQual” flag in the .vcf file (labelled as UG-HQ in figures for the UnifiedGenotyper

and HC-HQ for figures for the HaplotypeCaller). In addition to the parameters described

in the GATK best practices, variant calling for SRP019719 also required some additional

parameters due to the quality scores for the ENA reads (these extra parameters were not

necessary for calling variants from 1000 Genomes Project data). Parameters for calling

1000 Genomes and SRP019719 variants are provided in Texts S1 and S2, respectively.

VarScan (v.2.2.8) variants were called using pileup2snp and pileup2indel. Three

different sets of parameters were used for calling variants. “VarScan: Default” specifies no

additional parameters beyond the minimal requirements. “VarScan: p-value” sets a p-value

threshold of 0.05, but specifies no additional parameters. “VarScan: Conservative” uses the

following parameters to stringently call variants: minimum 10 total reads at the position

of interest, minimum of 4 supporting reads to call variant, minimum average quality of

20, and minimum variant allele frequency of 0.3. Please see Table 1 for a summary of

parameters used for the VarScan comparisons. A template for running VarScan-Cons
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Table 1 Parameter settings for VarScan comparisons. Unless a p-value cutoff is specified, VarScan
doesn’t calculate p-values.

VarScan-Default VarScan-p-value VarScan-Cons

Minimum coverage 8 8 10

Minimum supporting reads 2 2 4

Minimum average quality 15 15 20

Minimum variant frequency 0.01 0.01 0.3

Maximum p-value (none) 0.05 (none)

(Exon Capture workflow v2.pl) is provided at https://sites.google.com/site/cwarden45/

scripts.

Additional variant callers were also applied to the “No Preprocessing” alignments and

the “Full Pipeline” alignments. Freebayes (Garrison & Marth, 2012) was applied to the

1000 Genomes Exon Targeted samples, using default parameters. The Bayesian variant

caller in the bcftools function (in the samtools package (Li et al., 2009)) was applied to all

three datasets, using default parameters (followed by applying vcfutils.pl with a maximum

read depth of 200). Unlike GATK and VarScan, samtools has a unique indel format to

represent ambiguous indels. Although the ANNOVAR file conversion program can remove

all nucleotides that are not part of the indel, the genomic position used to represent this

indel is not necessarily the same as GATK and VarScan. For this reason, we only present

the samtools SNP results in this manuscript. All analysis was performed on a shared Linux

server with concurrent usage (×64, CentOS 5.10, 256 GB RAM, 4 CPU, 8 cores each,

6 × 2.27 GHz processors).

Because a publication on the 1000 Genomes exome and targeted exon datasets has not

yet been published, we are only reporting variant frequencies for a single chromosome

(chr20) in order to comply with 1KG publication requirements. Thus, only 1,140,996 base

pairs of targeted sequence is considered for variant call benchmarks in the 1000 Genomes

exome datasets, and only 35,309 base pairs are considered for variant call benchmarks in

the 1000 Genomes exon targeted samples. In contrast, the SRP019719 comparisons are

genome-wide (with a targeted design covering 46,401,093 base pairs).

Annotating variants
After variants were called, ANNOVAR (Wang, Li & Hakonarson, 2010) was used to

determine the population frequency for each variant, using the summarize annovar.pl

function that was last updated 2/11/2013. Variants were defined as “low frequency” if

The 1000 Genomes Project Consortium (2012) frequency and NHLBI Exome Sequencing

Project (Fu et al., 2013) frequencies were both less than 0.01. Variants were defined as

“novel” if they were not present in any 1KG or ESP samples as well as undefined in dbSNP

(Sherry et al., 2001). Some rare variants may not truly be truly novel, but this distinction

between “novel” and “previously observed” variants should typically be valid. Variants

were predicted as damaging if the SIFT (Ng & Henikoff, 2003) score greater than or equal

to 0.95 or the PolyPhen (Adzhubei et al., 2010) score was greater than or equal to 0.85
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(which are the thresholds used by ANNOVAR to flag a variant as damaging, for those two

programs). Although population frequency and damaging frequencies can be provided for

both SNPs and indels, there were very few indels within on-target regions for the targeted

exon samples (so, ANNOVAR characterization is only present for SNPs). ANNOVAR

also provides a common format that can compare all variant callers (and it allows easy

determination of variants included within the targeted exon panel), so all between-sample

comparisons were performed using the ANNOVAR exome summary table (except for the

SNP chip comparison, which uses the genome summary table).

RESULTS
Replication of GATK and VarScan variant calls among technical
replicates
There were two 1000 Genomes (1KG) individuals that had two targeted exon samples

(NA18637: SRR013654 + SRR013709, and NA18510: SRR017908 + SRR018122). We

treated these samples as technical replicates in order to assess the reproducibility of variant

calls from GATK and VarScan. All samples contained Illumina GAII sequencing reads

from the Broad Institute (Table S1). The SNP concordance between samples was clearly

higher for NA18637 than NA18510 (Fig. S1A). These trends hold true when only coding

variants were considered, either for all genes (Fig. S1B) or only coding variants within

targeted genes (Fig. S1C). In fact, the concordance rate increases when focusing on coding

variants. Similar statistics were provided for indels (Fig. S2), but the sample size was too

small to compare indels with more focused variant sets. It is unlikely that one NA18510

sample was simply mislabelled: the concordance between exome and targeted exon samples

was more similar (Tables S4 and S5), and we would expect lower concordance between

two random individuals. One possible explanation is that sample SRR017908 had 36 base

pair reads (instead of 76 base pair reads), which could explain the lower concordance

among the NA18510 samples (which have varying read lengths, unlike the NA18637

samples). Also, it is worth noting that the concordance of indel calls was better for the

GATK UnifiedGenotyper (and usually VarScan) than the GATK HaplotypeCaller (Fig. S2),

and this was true for both samples. This may corroborate the conclusions of a previous

study indicating an increased false discovery rate causes the GATK HaplotypeCaller to

produce a larger number of novel variants (Lescai et al., 2014).

GATK and VarScan show similar reproducibility among validated
and SNP chip variants
The recovery rate for validated SNPs in 1KG samples was similar for each variant calling

pipeline (Fig. 1, Table S6). Statistics are only provided for the 1KG exome samples, because

no validated SNPs occur in the targeted regions for the targeted exon samples (for the

samples selected for this study). Out of the total 35 validated SNPs present among the 12

exome samples, recovery rates varied between 80–94%. VarScan-Default had the highest

overall sensitivity and VarScan-Cons had the lowest overall sensitivity. The pre-processing

steps had little impact on the results: in fact, the only effect was that base recalibration
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Figure 1 Recovery of 1KG 454 PCR validated SNPs (chr20). A pooled set of 35 validated variant from
the 1000 Genomes exome sample characterized in this study (n = 12) was used to assess the sensitivity of
various variant calling algorithms. The 1000 Genomes targeted exon samples were not compared because
no validated variants were covered in targeted regions for that design. Seven variant calling strategies
were tested (GATK UnifiedGenotyper and HaplotypeCaller, with and without filtering low quality
variants; VarScan with 3 sets of parameters, see Methods). “VarScan-Cons” is the most conservative set
of parameters for VarScan. Each variant caller was also tested with 4 preprocessing conditions: variants
called using both GATK indel realignment and quality score recalibration (“Full Pipeline”—purple), indel
realignment only (“Realign Only”—red), quality score recalibration only (“Recalibrate Only”—green),
or neither (“No Preprocess”—blue). Publically available validated variants are only available for chr20, so
this is the maximum number of validated SNPs that can be characterized for these samples. The validation
status for each individual SNP under each variant calling condition is provided in Table S7. Validated
variants were never called for chr20:3193991 for individual NA18505 (exome sample SRX237141, covered
81× with the reference allele in all reads) or for chr20:57769739 for individual NA18532 (exome sample
ERR031956, not covered by any reads but located in the coding sequence for ZNF831).

caused one fewer validated SNP to be recovered when using the GATK UnifiedGenotyper.

Unfortunately, this is a limited number of validated SNPs, so it is difficult to say how closely

these are tied to the true sensitivity rates.

SNP chips can also be used to assess sensitivity for variant lists. However, it should be

noted that these will mostly be common SNPs, which importantly means that recovery

of SNP array variants may not represent the accuracy of rare variant calls. Nevertheless, it

is useful to see how the SNP chip recovery compared to the validated SNPs and the total

SNP calls. In most cases, all variant calling algorithms could recover >85% of Omni SNP

chip variants from the 1000 Genomes exome samples (Fig. 2A). Similarly, we compared

variant calls for a subject from the SRP019719 dataset that had both Illumina exome and

SNP chip data: again, the majority (88–96%) of SNP chip variants were recovered in the

paired exome dataset (Fig. 2B, Table S7). In both cases, recovery was restricted to SNP chip

variants within targeted regions for the exome sample. It is also worth noting that SNP chip

alleles matching the reference sequence are not considered, and the recovery rate would

of course be higher if these sites were considered. Unlike the validated variants (Fig. 1),
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Figure 2 (A) Recovery of variants reported from the Omni SNP chip for 1000 Genomes exome samples
(n = 12). Only alleles that varied from the reference sequence and were located within the regions targeted
in the exome sequencing design were considered for this analysis (this varied somewhat between samples,
between a minimum of 477 variants and a maximum of 616 variants). Seven variant calling strategies
were tested (GATK UnifiedGenotyper and HaplotypeCaller, with and without filtering low quality
variants; VarScan with 3 sets of parameters, see Methods). “VarScan–Cons” is the most conservative set
of parameters for VarScan. Each variant caller was also tested with 4 preprocessing conditions: variants
called using both GATK indel realignment and quality score recalibration (“Full Pipeline”—purple), indel
realignment only (“Realign Only”—red), quality score recalibration only (“Recalibrate Only”—green),
or neither (“No Preprocess”—blue). (B) Same as A, but for 6437 variants on a different SNP chip design
(Human 610) compared to exome variant calls for sample SRX265476.

VarScan (using default parameters) no longer had the highest sensitivity; instead, the av-

erage recovery of SNP chip variants was slightly higher for GATK. In short, we believe that

all variant calling strategies show a similar recovery rate for validated SNPs and SNP chip

variants, with a false negative rate for these common variants likely being less than 15%.

False positives are enriched for novel variants
The recovery of targeted exon variants (within the set of targeted genes) among the exome

samples was also typically quite high (Fig. 3A). The main exception was for variants called

using VarScan with default parameters, and this was also true for the VarScan calls with

the p-value filter (to a lesser extent). In this case, it is important to note that the targeted

exon calls are not truly a gold standard. In other words, the lower recovery rate can be due

to a high false discovery rate among the targeted exon variant calls. For example, position

17933286 on chromosome 20 for individual NA18566 was covered by 189 reads in the

targeted exon sample and 109 reads in the exome sample: 90% of reads match the reference

sequence in the targeted exon sample and 99% of the reads match the reference sequence

in the exome sample. Using the default parameters, VarScan calls a variant “G” allele in the

targeted exon sample (which is present in 12/189 reads). However, this is likely a normal

diploid individual with the true genotype of T/T at this position, with deviations from

the reference sequence that are probably due to technical error (where the proportion

of errors found at a particular site can randomly fluctuate between samples). While this

specific variant may serve a useful conceptual example, it is important to identify subsets of

variants are likely to drive the lower recovery rate among the VarScan-Default variant calls.
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Figure 3 Recovery of coding SNPs from targeted exon samples (1KG Exome—chr20). (A) SNP calls
from paired targeted exon and exome datasets were compared to test the robustness of the calls made
in the targeted exon data. Indel calls are not presented because there are almost no coding indels on
chr20 for the targeted exon datasets. Two subjects have two targeted exon datasets (Tables S1 and S2),
and concordance with exome datasets was reported for both targeted exon datasets separately (resulting
in 14 concordance values per variant calling strategy). Seven variant calling strategies were tested (GATK
UnifiedGenotyper and HaplotypeCaller, with and without filtering low quality variants; VarScan with
3 sets of parameters, see Methods). “VarScan-Cons” is the most conservative set of parameters for
VarScan. Each variant caller was also tested with 4 preprocessing conditions: variants called using both
GATK indel realignment and quality score recalibration (“Full Pipeline”—purple), indel realignment
only (“Realign Only”—red), quality score recalibration only (“Recalibrate Only”—green), or neither
(“No Preprocess”—blue). Concordance is reported as recovery of SNPs called in the targeted exon data,
but these cannot be treated as “gold standard” variant calls. Most clearly, there was a high false positive
rate when running VarScan with default parameters, so a high proportion of those variants called in the
targeted exon samples could not be recovered in the exome dataset. In fact, on-target coverage is typically
lower for the targeted exon samples than the exome staples (Tables S1 and S2). (B) Same as (A), but only
previously observed variants are included in the percent recovery calculation.

If variant lists are confined to previously observed variants (present in the 1000

Genomes Project, Exome Sequencing Project, or dbSNP), then recovery of targeted exon

VarScan-Default SNPs are considerably improved. For example, VarScan calls with the

p-value filter were now comparable to the other variant callers (Fig. 3B). An increased

false discovery rate has been observed for loss of function variations due to the presence of

uniform sequencing errors and non-random distribution of natural variation (MacArthur

et al., 2012), and we believe a similar concept applies more broadly to novel variants.

Accordingly, the recovery rate was extremely low for novel variants called using VarScan

with default parameters (Table S8). There were no novel VarScan-Cons variants called

within the coding regions of chromosome 20, but it was likely difficult to call true novel

variants given that variants called by the 1000 Genomes Project are defined as previously

observed in our analysis. The recovery rate was also relatively low for other variant callers,

but there are only a small number of novel variants occurring within targeted regions of

chr20 for most of the lists of variant calls.

One sample in the SRP019719 dataset underwent exome sequencing as well as amplicon

sequencing for a selected number of variants. Although limited to a single sample,

this comparison was important because the amplicon dataset contained more novel
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variants than present within 1000 Genomes targeted exon genes on chromosome 20.

The amplicon comparison showed a universal decrease in the recovery of novel variants

(Fig. S3), although it should be noted that the overall recovery rate was also lower than

the array-based enrichment samples. This is most likely because duplicate reads were not

removed, and errors introduced during PCR amplification increased the total number of

false positives in the amplicon dataset. For example, the targeted variants were located

towards the middle of each amplicon, but sequencing errors may be more frequent towards

the end of the amplicons. This expectation of an increased false discovery rate is supported

by the fact that the number of SNPs called in the amplicon dataset (Table S9) is much

higher than the number of variants that were targeted for validation (O’Rawe et al., 2013).

Accordingly, the novel variant frequency is much higher for the amplicon datasets than

the exome and targeted exon datasets (Table S10). Of course, changing variant calling

criteria (such as imposing stricter coverage requirements) will affect the number of false

positives (and thus the novel variant rate), so this result should not be interpreted as

an indication that it is impossible to get high quality results from the amplicon dataset.

Instead, this result emphasizes that benchmarks will vary with different target designs,

while still demonstrating the general increase in false discovery rate for novel variants

(although the extent of enrichment can vary with target design and variant caller).

In the example of the specific variant at position 17933286 on chromosome 20,

there was a very small proportion of reads containing the variant allele. If the density

distributions of novel and previously-observed variations are compared, it is clear

that most of the novel variants called by VarScan-Default had less than 20% of reads

containing the variant allele (Fig. 4 and Fig. S4). We expect the most conservative aspect of

VarScan-Cons is the requirement that variants be present in at least 30% of reads. To test

this hypothesis, we calculated the recovery rate for targeted exon VarScan-Default variants

with varying thresholds for the percentage of reads containing the variant allele as well

as the minimum number of reads with the variant allele. There were no novel variants

called by VarScan-Cons and all novel variants supported by less than 30% of reads had

significantly lower recovery than previously-observed variants with comparable support

(Table S11, Fig. S5). Recovery rates among previously observed variants droped when a

threshold of 50% supporting reads was used because this threshold splits the heterozygous

peak in half (increasing the likelihood of encountering variants that marginally meet the

criteria in one dataset but marginally do not meet the criteria in the other dataset). In

short, novel variants often have an increased false discovery rate because the low likelihood

of sequencing error occurring for the same nucleotide at the same position of a naturally

occurring variation, where most novel variants (defined using sufficiently liberal criteria)

fit the model of a sequencing error that will be observed most frequently in variants with

small percentages of supporting reads.

The difference in density distributions was most clear for variant with less than 20%

supporting reads, but the entire peak of variants with less than 30% supporting reads

violates an assumption a diploid human genome. In other words, reads matching the

reference genome were not called as variants, so the homozygous wild-type allele should
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Figure 4 Frequency of reads supporting coding VarScan-Default SNP variants (1KG Exome—chr20). Density plots for novel variants (those
variants not reported in the 1000 Genomes Project, the Exome Sequencing Project, or dbSNP) are shown with red lines while density plots for
previously observed variants are shown with red lines. Notice that most novel variants have a very low frequency of supporting reads, with a trend so
strong that it cannot be observed on the scale of the current figure (although a rescaled figure is shown in Fig. S4, to emphasize the radically different
density distributions). We believe that this because the majority of variants with less than 30% supporting reads are due to sequencing errors, which
is why the height of the peak (in Fig. S4) approximately matches the error rate (∼1%). This distribution looks similar regardless of pre-processing
pipeline or target design (e.g., exome versus targeted exon).

not have a peak in the density distribution. This is the basis of selecting this threshold

for VarScan-Cons. As expected, there were only two peaks for the density distribution of

supporting reads for VarScan-Cons (Fig. 5). This was seen most clearly for the SRP019719

exome data, where there were a sufficiently large number of novel variants to define clean

density distributions. Importantly, this was also true after removing low-quality GATK

UnifiedGenotyper and HaplotypeCaller (Fig. 5), which indicates that most variants with

less than 30% supporting reads were also removed using this independent variant calling

strategy. This particular supporting read threshold was specifically designed with a diploid

organism in mind, but technical errors should always be enriched among all variants

with low percentages of supporting reads. Therefore, visualization of density distributions

for supporting read frequencies of novel variants can be a useful strategy for comparing

variants lists for any organism.

Estimation of accuracy for GATK and VarScan variant calls
Although 1KG samples were selected on the basis of having some validated positive

controls, it is useful to have quality control metrics that will be correlated with the true

sensitivity and specificity for a given variant caller. Each strategy has notable caveats for
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Figure 5 Frequency of reads supporting SNP variants in exome datasets. Density plots for novel variants (those variants not reported in the 1000
Genomes Project, the Exome Sequencing Project, or dbSNP) are shown with red lines while density plots for previously observed variants are shown
with red lines. Density plots are shown for two datasets (1000 Genomes and SRP019719) with 3 lists of variants (VarScan-Cons, high-quality GATK
UnifiedGenotyper, and high-quality GATK HaplotypeCaller). Density plots are only created for variant lists with greater than 2 variants, so some
samples do not have novel variant density plots. Notice that the high-quality GATK variants lists lack variants with low percentages of variant reads
(as was the case for VarScan-Default, Fig. 4), similar to VarScan-Cons. This shift in supporting read frequencies correlates with the concordance
rates (Fig. 3) and the novel variant frequencies (Fig. 7) for the corresponding variant lists.

interpretation, but we think it is useful to have quality control metrics that can be used to

select an optimal variant caller for a given dataset.

First, we assume that the total number of variants is correlated with sensitivity. Of

course, the accuracy of this assumption would depend upon the false discovery rate for

the variant caller. Nevertheless, we believe that the total number of called variants is a

useful benchmark to compare variant callers. SNP and indel counts are shown for 1KG

exome and targeted exon samples in Fig. 6. In most cases, the pre-processing pipeline

had a minimal effect on the size of the resulting list of SNPs, with the notable exception

of the GATK UnifiedGenotyper (although the impact was significantly decreased for

high-quality SNPs). Similarly, the overlap was strong for variants called without these

extra pre-processing steps (Figs. S6 and S7). However, it is difficult to tell how common

this trend is for all datasets: for example, the exome samples from SRP019719 did not

show this same difference (Fig. S8) and instead showed a relatively greater difference in the

number of SNPs called by VarScan with default parameters. The size of the SNP lists clearly

varied with different VarScan parameters: the p-value threshold considerably decreased

the number of SNPs called, the conservative parameter set was even more restrictive, and
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Figure 6 Number of variants called for GATK versus VarScan (1KG—chr20). (A) Number of SNPs
called for selected 1000 Genomes (1KG) targeted exon samples (n = 14) and exome samples (n = 12).
The number of SNPs called is displayed for variants called using both GATK indel realignment and quality
score recalibration (“Full Pipeline”—purple), indel realignment only (“Realign Only”—red), quality
score recalibration only (“Recalibrate Only”—green), or neither (“No Preprocess”—blue). Variant counts
are provided for the GATK UnifiedGenotyper (“UG”), GATK HaplotypeCaller (“HC”), and VarScan
using 3 sets of parameters (see Methods). UnifiedGenotyper and HaplotypeCaller variants are then
divided into the set of all variants (“UG-all” and “HC-all”) and higher-quality variant calls where variants
flagged as low quality have been removed (“UG-HQ” and “HC-HQ”). “VarScan-Cons” is the most
conservative set of parameters for VarScan. These values represent the total number of SNPs called. (B)
Same as (A), for indels instead of SNPs.

both results run with non-default settings produced significantly fewer SNPs than GATK.

Among the high-quality calls, the number of SNPs was similar for GATK HaplotypeCaller

versus GATK UnifiedGenotyper. The relative number of indels varied from the relative

number of SNP calls: however, there were only a limited number of indel calls on chr20

for the targeted exon panel, so we think the number of 1KG exome indel calls were more

reliable for assessing general trends. There was a modest but noticeable increase in the

Warden et al. (2014), PeerJ, DOI 10.7717/peerj.600 14/27

https://peerj.com
http://dx.doi.org/10.7717/peerj.600


number of indels called if the indel realignment was run, and the GATK HaplotypeCaller

produced a much larger number of indels than the GATK UnifiedGenotyper. Similar to the

SNP calls, VarScan produces fewer indel calls when using more stringent parameters.

Second, we assume that most variants should have been previously observed in large

scale sequencing project (like the 1000 Genomes Project and the Exome Sequencing

Project) and variant databases (like dbSNP), and that an over-representation of variants

of unknown frequencies (e.g., novel variants) should correspond to an increased false

discovery rate. Of course, some novel variants will in fact be accurate and the proportion

of true novel variants will vary with demographics (subjects from ethnicities that have

been characterized in greater detail will likely show fewer novel variants, and vice versa).

However, some proportion of novel variants are clearly unacceptable: for example, more

than 50% of the variants called by VarScan (using default parameters) were novel variants,

and the majority of these novel variants were predicted to be damaging (Fig. 7 and Fig. S9).

In contrast, only a minority of variant calls (0.4–9.7% for 1KG exome; 0.8–4.2% for 1KG

targeted exon; 0.1–2.1% for SRP019719 exome samples) were known to be present at low

frequency (<1%; see Methods) in the overall population, and this was true for all samples

using all variant calling strategies. Importantly, this abnormally high proportion of novel

variants matched the considerably decreased recovery rate between exome and targeted

exome datasets, which we have been shown to be caused by a very low recovery rate among

novel variants (Fig. 3, Tables S8 and S11).

Most GATK variant lists had a similar proportion of novel variants, except when

the GATK UnifiedGenotyper was run without quality score recalibration in the 1000

Genomes samples (Fig. 7). However, trend doesn’t apply to the SRP019719 samples

(Fig. S9), emphasizing that there were other factors that can influence these results. The

pre-processing steps had a modest impact on the VarScan frequencies, but the VarScan

parameters had a very strong impact on the results. Namely, the frequency of novel

variants was extremely high when running VarScan with default parameters, which

corresponded to a decrease in the overall recovery rate (Fig. 3). However, the distribution

for VarScan variants called with conservative parameters looked very similar to the GATK

distributions, and these variants had a high recovery rate between the 1KG exome and

targeted exon samples (Fig. 3).

ANNOVAR can also annotate variant frequencies for indels. However, small indels

have not been characterised as well as SNPs (for example, there are considerably fewer

indels in dbSNP (Sherry et al., 2001), compared to SNPs) and damaging predictions

focus primarily on SNPs. Additionally, there are almost no indels in the coding regions

of chromosome 20 for the 1000 Genomes targeted exon dataset. Nevertheless, Fig. S10

shows the variant frequencies for indel calls in the 1KG and SRP019719 exome datasets.

Similar to the SNP distributions, VarScan-Cons contained the least number of novel indels

(among the VarScan comparisons), which was likely associated with a lower false discovery

rate. Also, novel indels were more common in GATK HaplotypeCaller variants than

GATK UnifiedGenotyper variants. Arguably, this could indicate that the higher number

of indels called by the HaplotypeCaller was also associated with a higher false discovery
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Figure 7 Distribution of ANNOVAR annotations for coding SNP variants (1KG—chr20). (A) Dis-
tribution of variant types defined in the ANNOVAR exome report for selected 1000 Genomes (1KG)
targeted exon samples (n = 14). Variants are classified based upon population frequency and damaging
prediction (see Methods). Low frequency variants (MAF < 0.01) that are displayed in orange if they
are predicted to be damaging and are displayed in green if they are not predicted to be damaging.
Novel variants are displayed in red if they are predicted to be damaging and are displayed in blue if
they are not predicted to be damaging. Although all samples should contain some novel variants, a
high proportion of novel variants are expected to correlate with a high false positive rate. Seven variant
calling strategies were tested (GATK UnifiedGenotyper and HaplotypeCaller, with and without filtering
low quality variants; VarScan with 3 sets of parameters, see Methods). “VarScan-Cons” is the most
conservative set of parameters for VarScan. Each variant caller was also tested with 4 preprocessing
conditions, corresponding to the colored boxes under the bar plot: variants called using both GATK
indel realignment and quality score recalibration (purple), indel realignment only (red), quality score
recalibration only (green), or neither (blue). (B) Same as (A), but for selected 1000 Genomes exome
samples (n = 12, Table S2).

rate, but the variant frequencies alone are not sufficient to prove this to be the case because

there may have been technical limitations in discovering the indels without using the

GATK HaplotypeCaller. However, lower concordance for HaplotypeCaller indels between

technical replicates (Fig. S2) supports the hypothesis that the HaplotypeCaller indels had

a higher false discovery rate. Similarly, recovery of indels was higher for UnifiedGenotyper

variants than HaplotypeCaller variants in the SRP019719 sample with both exome and

amplicon sequencing data (Fig. S11). Interestingly, VarScan-Cons had the highest recovery

rate of amplicon sequencing indels for that sample. Although the number of samples

available for useful comparisons was limited, these results provide evidence from two

independent cohorts that the GATK HaplotypeCaller indels are less reproducible than

GATK UnifiedGenotyper indels.

Overlap of high-quality GATK and VarScan variant calls
Given the previous comparisons, we believe the highest quality variant calls can be

made by excluding GATK variants with LowQual flags (e.g., UG-HQ and HC-HQ) and

using the conservative parameters defined in this manuscript when running VarScan

(e.g., VarScan-Cons). Because the number of variants called increased when running

the indel realignment and quality score recalibrator steps, we compared coding variant

lists produced using variant callers with “Full Pipeline” pre-processing steps. In the

1000 Genomes samples, the variant caller overlap was quite high (Fig. 8 and Fig. S12).
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Figure 8 Exome variant caller overlap (coding variants). All coding variants were tabulated for all ex-
ome samples (1KG n = 12; SRP019719 n = 15). Only coding variants on chromosome 20 were considered
for the 1000 Genomes (1KG) samples, but all coding variants were considered for the SRP019719 samples.
In order to simplify presentation of these results, we focused on the highest quality variant calls for each
variant calling strategy: GATK UnifiedGenotyper with low-quality variants removed (UG-HQ, blue),
GATK HaplotypeCaller with low-quality variants removed (HC-HQ, green), and VarScan using a custom
set of conservative parameters (VarScan-Cons, red). Similarly, only variants subject to GATK indel
realignment and quality score recalibration (“Full Pipeline”) are considered for this comparison. To show
the different concordance rates, SNPs are presented at the figure and indels are presented at the bottom
of the figure. Almost all VarScan-Cons variants were also called by GATK (either HaplotypeCaller or
UnifiedGenotyper). All three variant callers called a similar number of SNPs, but GATK HaplotypeCaller
called more indels than either GATK UnifiedGenotyper or VarScan-Cons.

For example, all SNPs called using VarScan-Cons were also called using the GATK

HaplotypeCaller. Additionally, all indels called using VarScan-Cons were also called

by either the GATK HaplotypeCaller or the GATK UnifiedGenotyper. Because only

chromosome 20 variants can be reported for the 1000 Genomes dataset in this manuscript,

it may also be useful to see the overlap for the genome-wide variant lists from SRP019719

(Fig. 8). This time, the VarScan-Cons variants were not completely recovered by using

one or both GATK variant callers, but there was still only a minority of variants that were

not represented in either list of GATK variants (2.9% of VarScan-Cons SNPs and 1.5% of

VarScan-Cons indels). This emphasizes that VarScan-Cons calls robust variants that would

almost always be called when using GATK.
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The high recovery of VarScan-Cons variants may result from high specificity with

decreased sensitivity, which is potentially the biggest drawback to this strategy. The degree

to which VarScan-Cons recovers the set of high-quality GATK variants varied between

datasets. Among the 1000 Genome variants on chromosome 20, 87% of UnifiedGenotyper

SNPs and 88% of HaplotypeCaller SNPs were also called by VarScan-Cons in the exome

samples. For the targeted exon samples, 62% of UnifiedGenotyper SNPs and 68% of

HaplotypeCaller SNPs were called by VarScan-Cons in the targeted exon sample; similarly,

69% of UnifiedGenotyper indels but only 38% of HaplotypeCaller indels were also called

by VarScan-Cons in the 1KG exome samples. The low indel overlap was likely due to the

small number of coding indels on chromosome 20. Accordingly, the SRP019719 exome

samples show similar statistics for SNP overlap (84% recovery for UnifiedGenotyper SNPs,

86% recovery for HaplotyperCaller SNPs) but much better results for UnifiedGenotyper

indels (81% recovery). There was still only 51% recovery for HaplotypeCaller indels

among VarScan-Cons indels, but it is possible that the indels uniquely called by GATK have

a higher false discovery rate. An increased false discovery rate for GATK HaplotypeCaller

indels has been previously reported (Lescai et al., 2014) and this conclusion is supported by

evidence from this study (Figs. S2, S10 and S11).

Run-times scale differently for GATK versus VarScan
Figure S13 shows run-times for the entire variant calling pipeline for the 1KG samples.

The run-time for each step is reported in Tables S12–S14, with the average run-times

for the variant calling step itself shown in Table S15 (for the “Full Pipeline” samples).

Among the targeted exon samples (n = 14), the GATK UnifiedGenotyper had the longest

run-time (Fig. S13A). However, the run-time for all samples was less than 5 h, so run-time

was not a severe limiting factor for either VarScan or GATK (for targeted exon samples,

compared to the exome samples). Adding a p-value filter did not significantly affect the

run-time for VarScan; in fact, the run-time for VarScan was essentially the same regardless

of what parameters are used for analysis. In contrast, the 1KG exome samples showed a

wide range of run-times (Fig. S13B), with the HaplotypeCaller having a very noticeably

longer run-time compared to the other pipelines. Quality score recalibration also caused a

noticeable increase in run-time. As expected, the newest version of GATK (with or without

read reduction) decreased the run-time for GATK HaplotypeCaller (Tables S15–S17).

However, the run-time was always shorter for VarScan compared to GATK.

For the SRP019719 exome samples, the most obvious trend was the run-time for the

GATK HaplotypeCaller was considerably longer when running base recalibration without

prior indel realignment (Fig. S14). Likewise, population frequencies among variants (Fig.

S9) indicate that the variants called using base recalibration alone were probably not

reliable (for these particular samples), but the variants called using the full pipeline (indel

realignment + base recalibration) were more likely to have a lower false discovery rate

(similar to the “No Preprocessing” and “Realign Only” results). Two factors mostly likely

caused this increased-run time are (1) quality scores were on a different scale than the 1KG

samples and (2) the servers running the variant callers had considerable concurrent usage
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(where variability in usage may explain why the run-times for some samples were much

worse than other samples). More specifically, the quality scores were identified as miscoded

by GATK, and it appears that the quality scores could not be successfully fixed at the base

quality recalibration step (see Texts S1 and S2 for more details). In contrast, the miscoded

quality scores could be successfully shifted by GATK prior to quality score recalibration or

at the variant calling step (if neither indel realignment nor quality score recalibration was

run). Therefore, we do not expect this trend to apply to most samples that are processed in

accordance to GATK “best practices”.

Run-times can also be affected a running joint variant caller instead of running variant

callers separately for each sample. One potential advantage to this strategy is that it can

increase sensitivity in cohorts of related individuals (Nielsen et al., 2011). One disadvantage

is that joint variant calling can have substantial memory requirements for large cohorts.

However, joint variant calling could be successfully run on all the groups of samples in this

study, with a substantial decrease in run times for the GATK joint variant caller (Table S16).

In contrast, joint variant calling considerably increased the runtime for VarScan, but the

total run-time for single-sample VarScan calls was still less than the run-time for the joint

variant calls in GATK (Table S16).

Comparison to other variant calling benchmarks
In order to provide a way to quickly compare VarScan-Cons results to other variant

callers (with other pre-processing pipelines), the Genome Comparison & Analytic Testing

(GCAT) website was used to compare six sets of variants calls for a standard sample that

has been characterized by the Genome in a Bottle Consortium (Zook et al., 2014). This

sample contained 100 base pair Illumina reads for a 150× Exome sample (making most

comparable to the samples in this study). This is not the only available tool that can

benchmark variant caller algorithms (Nevado & Perez-Enciso, 2014; Talwalkar et al., 2014),

but it was selected based upon the ability to compare a targeted sequencing sample without

the use of simulated data (similar to the design of the current study). Links to reports

for each variant list are provided in Table S18. Although the presence of a single (albeit

well-characterized) sample is a limitation to the strategy, the GCAT report shows results

that complement and enhance this study. For example, VarScan-Cons showed a decrease

in sensitivity when recovering Omni SNP array genotypes but also showed the highest

specificity and precision rate, when compared to variant calls with no pre-processing

steps as well as with the full pre-processing pipeline (Fig. S15). The GCAT reports show

variant counts and overlap of variants between variant callers that match what is expected

from this study (Fig. S16), although it is important to note that these are genome-wide

counts (similar to Fig. 6 and Fig. S8) whereas most statistics are providing in this study

are for coding variants (such as Figs. 8 and 9). In other words, VarScan-Cons shows

similar on-target variant calls to the high-quality GATK variant lists, but GATK made

more off-target calls in lower coverage regions. Importantly, the GCAT report also showed

the transition to transversion (Ti/Tv) ratio for SNPs for novel as well as common SNPs.

The average value for Ti/Tv is between 2.1 and 2.8, so lower ratios can be an indication
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Figure 9 QC metrics to estimate specificity versus sensitivity for variant callers (coding SNPs). For each of the three datasets characterized in
this study (1KG targeted exon, n = 14; 1KG exome, n = 12; SRP019719 exome, n = 15), the number of coding SNPs called per sample is plotted
along the x-axis and the proportion of novel variants is plotted on the y-axis. In order to simplify presentation of these results, we focused on the
highest quality variant calls for each variant calling strategy: GATK UnifiedGenotyper with low-quality variants removed (UG-HQ, blue), GATK
HaplotypeCaller with low-quality variants removed (HC-HQ, green), and VarScan using a custom set of conservative parameters (VarScan-Cons,
red). Additionally, an unfiltered set of variants called via samtools are plotted in black. Only variants subject to GATK indel realignment and quality
score recalibration (“Full Pipeline”) are considered for this comparison. The shape of the data point corresponds to the depth of on-target coverage:
<50x coverage is represented as an X in an open-circle, 50–100x is represented as an open circle, and >100x is represented as a filled circle. If the
novel percentage was tightly correlated with the actual false positive rate and the number of variants was tightly correlated with the actual sensitivity
of the variant caller, than the ideal variant caller would show a cluster of data points in the bottom-right hand corner of the plot.

of an increased false discovery rate. As we would expect from the reproducibility results

from this experiment, novel VarScan-Cons variants showed a considerably higher Ti/Tv

ratio (and therefore considerably lower false discovery rate) that was more similar to the

expected value than the novel high-quality GATK variants (Fig. S17).

Application of QC metrics to other variant callers
Although we were primarily interested in comparing VarScan (with various sets of

parameters) to GATK, we also examined similar metrics for other variant callers. Given

that the distribution of rare and novel variant frequencies was similar for the 1000

Genomes targeted exon and exome datasets, we used the targeted exon samples to test

additional variant callers. More specifically, we tested freebayes (DePristo et al., 2011) and

samtools (Li et al., 2009), using the “No Preprocessing” and “Full Pipeline” alignments.

It is clear that freebayes yields too many novel variants (Fig. S18), so it was not tested on

any further datasets. Of course, changes in parameters and/or downstream filtering of

variants may result in a decrease in the frequency of novel variants; however, these two

lists of variants (called with default parameters) are meant to serve as examples of how

the quality control metrics in this dataset could be applied more broadly. Interestingly,

the pre-processing steps appeared to have minimal effect on the 1000 Genomes targeted

exon and exome datasets, but running the “Full Pipeline” for pre-processing considerably

decreased the proportion of novel variants for samtools variant calls in the SRP019719

exome dataset (Fig. S18). Most samtools variants overlaped VarScan-Cons variants as well

as high-quality GATK UnifiedGenotyper and HaplotypeCaller variants (Fig. S19).
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The ANNOVAR frequency plots (like those shown in Fig. 7, Figs. S9 and S18) are a

useful metric, but they only show average trends across the dataset and do not show how

the frequency of novel variants compares to the total number of variants called. If the

number of conditions is reduced to only those using the “Full Pipeline” for pre-processing,

then one can visualize the comparison between variant callers (Fig. 9). There was more

variability in the proportion of novel variants for the targeted exon dataset (compared

to either exome dataset), but this may relate to the lower number of total SNPs and/or

the lower on-target coverage (Tables S1–S3). While it is not necessarily safe to assume

that the false discovery rate substantially varies when the proportion of novel variants

is between 0 and 6% (which is the observed range for these variant callers in the exome

datasets), the proportion of novel variants is universally low for all VarScan-Cons calls

in all three datasets while there is more variability in the proportion of novel variants in

the GATK and samtools variant calls. VarScan-Cons and the high-quality GATK variant

calls showed similar distributions of supporting reads (Fig. 5), so the larger number of

novel variants was not being driven by variants that were extremely likely to be false

positives (Fig. 4). Nevertheless, there was a decrease in recovery rate (9–20% for 5–11

UnifiedGenotyper SNPs and 30–50% for 1–3 HaplotypeCaller SNPs) for a limited number

of novel, high-quality GATK variants compared to common, high-quality GATK variants

(Table S8, Fig. 3), but the VarScan-Cons criteria were so strict that no novel variants were

called within targeted exon regions on chromosome 20. Although we cannot make a

definitive conclusion using the data in this current study, the difference in the percentage of

novel SNPs could be explained if VarScan-Cons had a relatively lower false discovery rate

among novel, high-quality variants. This hypothesis can be supported by the observation

that novel VarScan-Cons variants showed a substantially higher Ti/Tv ratio that is much

more similar to common variants (Fig. S17), so it is plausible that novel VarScan-Cons

variants indeed have a decreased false discovery rate relative to novel GATK variants for

array-based targeted sequencing experiments.

DISCUSSION
Although running VarScan with default parameters (with the functions defined in

the Methods section) was shown to result in an unacceptably high false discovery

rate (Fig. 3), running VarScan with a conservative set of non-standard parameters

(referred to as VarScan-Cons in this study) can produce a reliable set of variants with

an overall concordance between sequencing technologies that was at least as strong as

high-quality GATK variants (Figs. 1–3, Figs. S1–S3, S11 and S17). Almost all variants

called with VarScan-Cons were also called using the GATK HaplotypeCaller or GATK

UnifiedGenotyper, with a modest decrease in sensitivity for SNPs (Figs. 1–2, Fig. S15).

However, given that the high-quality GATK variants have a similar overall specificity to

VarScan-Cons (Figs. 1–3, 7 and Fig. S15), increased specificity is one advantage to using

GATK HaplotypeCaller or GATK UnifiedGenotyper (Fig. 6 and Fig. S16). Although less

obvious than the VarScan variant lists, the high-quality GATK variant lists consistently

show improved recovery rate for targeted exon variants (Fig. 3) and lower percentages
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of novel variants (Fig. 7), even without additional pre-processing steps. So, we would

recommend VarScan users use the VarScan-Cons parameters and GATK users to filter

out variants flagged as low-quality. In all three cases (VarScan-Cons, high-quality GATK

HaplotypeCaller, high-quality GATK UnifiedGenotyper), indel realignment and quality

score recalibration affected only a minority of variants (Figs. S6–S7), so users could

arguably skip those pre-processing steps and still get similar results (if a modest decrease in

overall validation rate was acceptable). GATK HaplotypeCaller called a substantial number

of indels not called using VarScan-Cons (as well as GATK UnifiedGenotyper), even after

removing variants that were flagged as low quality. However, it is possible that the GATK

HaplotypeCaller indels also have an increased false discovery rate (Figs. S2, S10 and S11,

as reported in Lescai et al. (2014), so it will be important to see if this is independently

validated in other studies.

It is important to note that most of the statistics used for calling VarScan variants can be

extracted from the .vcf file containing the GATK variants. In other words, users may not

need to run both GATK and VarScan. For example, the distributions of supporting read

frequencies look very similar for the high-quality GATK variants and the VarScan-Cons

variants (Fig. 5), so excluding GATK variants flagged as low-quality can already produce

results that are more similar to VarScan-Cons. This study presents some limited evidence

that VarScan-Cons variants may have a lower false discovery rate among novel variants in

array-based enrichment designs, compared to the high-quality GATK variant calls (Table

S8 and Fig. S17). So, GATK users may be able to improve the accuracy of their novel

variant calls by imposing stricter requirements on frequency of supporting reads, number

of supporting reads, and/or read depth. This is important because high-throughput

sequencing studies often emphasize novel, rare variants as interesting candidates (Worthey,

2013). Based upon the results of this study, we expect that variant calling comparisons

that only focus on complete sets of variant calls (where most variants are likely to be

common variants) may give false confidence in the accuracy of variant calls for novel

variants. However, additional evidence is necessary to confirm that VarScan-Cons defines

more accurate novel SNPs than the high-quality GATK variants. Nevertheless, we believe

that this study provides good evidence that users should be suspicious of lists of variants

with substantially increased novel variant frequencies, such as those with novel variant

frequencies of 50% or higher (like VarScan-Default).

This study focused on variant calling in (most likely) normal human samples due to the

availability of a large amount of public validation data. However, the strategies described

in this study may not apply equally well in all circumstances. For example, sometimes

variants may be present in a minority of cells in a sample (such as a heterogeneous tumor),

and it may not be safe to make assumptions about the ploidy of the sample (which might

affect the usefulness of the GATK HaplotypeCaller, for example). In fact, the results of

this study emphasize the need to have specialized experimental protocols (such as circle

sequencing (Lou et al., 2013), Duplex-Seq (Schmitt et al., 2012), etc.) for calling such

variants because variants with low numbers of supporting reads show an extreme decrease

in recovery rate between different targeted sequencing designs (Fig. 4 and Fig. S4, and
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Tables S8 and S11). Likewise, somatic variant calling is also an area of interest (Roberts et

al., 2013; Wang et al., 2013; Xu et al., 2014) that would typically utilize different variant

calling tools. Additionally, the indel metrics in this study only apply to small indels: large

indels and structural variants require a different set of algorithms. Nevertheless, we think

the strategies described in this study (comparing the proportion of novel variants, using

filters for high-quality variants, etc.) can be useful to help other scientists prioritize variant

calling strategies for their own data.
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Goodgame N, Gibson R, Hoad G, Jang M, Pakseresht N, Plaister S, Radhakrishnan R,
Reddy K, Sobhany S, Ten Hoopen P, Vaughan R, Zalunin V, Cochrane G. 2011. The European
nucleotide archive. Nucleic Acids Research 39:D28–D31 DOI 10.1093/nar/gkq967.

Lescai F, Marasco E, Bacchelli C, Stanier P, Mantovani V, Beales P. 2014. Identification and
validation of loss of function variants in clinical contexts. Molecular Genetics & Genomic
Medicine 2:58–63 DOI 10.1002/mgg3.42.

Li H, Durbin R. 2009. Fast and accurate short read alignment with Burrows–Wheeler transform.
Bioinformatics 25:1754–1760 DOI 10.1093/bioinformatics/btp324.

Li J, Doyle MA, Saeed I, Wong SQ, Mar V, Goode DL, Caramia F, Doig K, Ryland GL,
Thompson ER, Hunter SM, Halgamuge SK, Ellul J, Dobrovic A, Campbell IG, Papenfuss AT,
McArthur GA, Tothill RW. 2014. Bioinformatics pipelines for targeted resequencing and
whole-exome sequencing of human and mouse genomes: a virtual appliance approach for
instant deployment. PLoS ONE 9:e95217 DOI 10.1371/journal.pone.0095217.

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R,
1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format
and SAMtools. Bioinformatics 25:2078–2079 DOI 10.1093/bioinformatics/btp352.

Linderman M, Brandt T, Edelmann L, Jabado O, Kasai Y, Kornreich R, Mahajan M, Shah H,
Kasarskis A, Schadt E. 2014. Analytical validation of whole exome and whole genome
sequencing for clinical applications. BMC Medical Genomics 7:20 DOI 10.1186/1755-8794-7-20.

Liu X, Han S, Wang Z, Gelernter J, Yang B-Z. 2013. Variant callers for next-generation sequencing
data: a comparison study. PLoS ONE 8:e75619 DOI 10.1371/journal.pone.0075619.

Lou DI, Hussmann JA, McBee RM, Acevedo A, Andino R, Press WH, Sawyer SL. 2013.
High-throughput DNA sequencing errors are reduced by orders of magnitude using circle
sequencing. Proceedings of the National Academy of Sciences of the United States of America
110(49):19872–19877 DOI 10.1073/pnas.1319590110.

MacArthur DG, Balasubramanian S, Frankish A, Huang N, Morris J, Walter K, Jostins L,
Habegger L, Pickrell JK, Montgomery SB, Albers CA, Zhang ZD, Conrad DF, Lunter G,
Zheng H, Ayub Q, DePristo MA, Banks E, Hu M, Handsaker RE, Rosenfeld JA, Fromer M,
Jin M, Mu XJ, Khurana E, Ye K, Kay M, Saunders GI, Suner M-M, Hunt T, Barnes IHA,
Amid C, Carvalho-Silva DR, Bignell AH, Snow C, Yngvadottir B, Bumpstead S, Cooper DN,
Xue Y, Romero IG, 1000 Genomes Project Consortium, Wang J, Li Y, Gibbs RA,
McCarroll SA, Dermitzakis ET, Pritchard JK, Barrett JC, Harrow J, Hurles ME, Gerstein MB,
Tyler-Smith C. 2012. A systematic survey of loss-of-function variants in human protein-coding
genes. Science 335:823–828 DOI 10.1126/science.1215040.

McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K,
Altshuler D, Gabriel S, Daly M, DePristo MA. 2010. The genome analysis toolkit: a
mapreduce framework for analyzing next-generation DNA sequencing data. Genome Research
20:1297–1303 DOI 10.1101/gr.107524.110.

Narzisi G, O’Rawe JA, Iossifov I, Fang H, Lee Y-H, Wang Z, Wu Y, Lyon GJ, Wigler M,
Schatz MC. 2014. Accurate detection of de novo and transmitted INDELs within exome-capture
data using micro-assembly. ArXiv preprint. arXiv:001370.

Nevado B, Perez-Enciso M. 2014. Pipeliner: software to evaluate the performance of
bioinformatics pipelines for next-generation resequencing. Molecular Ecology Resources Epub
ahead of print DOI 10.1111/1755-0998.12286.

Warden et al. (2014), PeerJ, DOI 10.7717/peerj.600 25/27

https://peerj.com
http://dx.doi.org/10.1093/nar/gkq967
http://dx.doi.org/10.1002/mgg3.42
http://dx.doi.org/10.1093/bioinformatics/btp324
http://dx.doi.org/10.1371/journal.pone.0095217
http://dx.doi.org/10.1093/bioinformatics/btp352
http://dx.doi.org/10.1186/1755-8794-7-20
http://dx.doi.org/10.1371/journal.pone.0075619
http://dx.doi.org/10.1073/pnas.1319590110
http://dx.doi.org/10.1126/science.1215040
http://dx.doi.org/10.1101/gr.107524.110
http://arxiv.org/abs/001370
http://dx.doi.org/10.1111/1755-0998.12286
http://dx.doi.org/10.7717/peerj.600


Ng PC, Henikoff S. 2003. SIFT: predicting amino acid changes that affect protein function. Nucleic
Acids Research 31:3812–3814 DOI 10.1093/nar/gkg509.

Nielsen R, Paul JS, Albrechtsen A, Song YS. 2011. Genotype and SNP calling from
next-generation sequencing data. Nature Reviews Genetics 12:443–451 DOI 10.1038/nrg2986.

O’Rawe J, Jiang T, Sun G, Wu Y, Wang W, Hu J, Bodily P, Tian L, Hakonarson H, Johnson WE,
Wei Z, Wang K, Lyon G. 2013. Low concordance of multiple variant-calling pipelines: practical
implications for exome and genome sequencing. Genome Medicine 5:28 DOI 10.1186/gm432.

Pabinger S, Dander A, Fischer M, Snajder R, Sperk M, Efremova M, Krabichler B, Speicher MR,
Zschocke J, Trajanoski Z. 2014. A survey of tools for variant analysis of next-generation
genome sequencing data. Briefings in Bioinformatics 15:256–278 DOI 10.1093/bib/bbs086.

Pirooznia M, Kramer M, Parla J, Goes F, Potash J, McCombie W, Zandi P. 2014. Validation and
assessment of variant calling pipelines for next-generation sequencing. Human Genomics
8:14 DOI 10.1186/1479-7364-8-14.

Roberts ND, Kortschak RD, Parker WT, Schreiber AW, Branford S, Scott HS, Glonek G,
Adelson DL. 2013. A comparative analysis of algorithms for somatic SNV detection in cancer.
Bioinformatics 29:2223–2230 DOI 10.1093/bioinformatics/btt375.

Schmitt MW, Kennedy SR, Salk JJ, Fox EJ, Hiatt JB, Loeb LA. 2012. Detection of ultra-rare
mutations by next-generation sequencing. Proceedings of the National Academy of Sciences of
the United States of America 109:14508–14513 DOI 10.1073/pnas.1208715109.

Sherry ST, Ward M-H, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K. 2001.
dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29:308–311
DOI 10.1093/nar/29.1.308.

Talwalkar A, Liptrap J, Newcomb J, Hartl C, Terhorst J, Curtis K, Bresler MA, Song YS,
Jordan MI, Patterson D. 2014. SMaSH: a benchmarking toolkit for human genome variant
calling. Bioinformatics 30(19):2787–2795 DOI 10.1093/bioinformatics/btu345.

The 1000 Genomes Project Consortium. 2012. An integrated map of genetic variation from 1,092
human genomes. Nature 491:56–65 DOI 10.1038/nature11632.

Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, del Angel G, Levy-Moonshine A,
Jordan T, Shakir K, Roazen D, Thibault J, Banks E, Garimella KV, Altshuler D, Gabriel S,
DePristo MA. 2002. From FastQ data to high-confidence variant calls: the genome analysis
toolkit best practices pipeline. In: Current protocols in bioinformatics. John Wiley & Sons, Inc.

Wang Q, Jia P, Li F, Chen H, Ji H, Hucks D, Dahlman K, Pao W, Zhao Z. 2013. Detecting somatic
point mutations in cancer genome sequencing data: a comparison of mutation callers. Genome
Medicine 5:91 DOI 10.1186/gm495.

Wang K, Li M, Hakonarson H. 2010. ANNOVAR: functional annotation of genetic variants from
high-throughput sequencing data. Nucleic Acids Research 38:e164 DOI 10.1093/nar/gkq603.

Worthey EA. 2013. Analysis and annotation of whole-genome or whole-exome
sequencing–derived variants for clinical diagnosis. In: Current protocols in human genetics.
John Wiley & Sons, Inc.

Xu H, DiCarlo J, Satya R, Peng Q, Wang Y. 2014. Comparison of somatic mutation
calling methods in amplicon and whole exome sequence data. BMC Genomics
15:244 DOI 10.1186/1471-2164-15-244.

Yi M, Zhao Y, Jia L, He M, Kebebew E, Stephens RM. 2014. Performance comparison of
SNP detection tools with illumina exome sequencing data—an assessment using both
family pedigree information and sample-matched SNP array data. Nucleic Acids Research
42:e101 DOI 10.1093/nar/gku392.

Warden et al. (2014), PeerJ, DOI 10.7717/peerj.600 26/27

https://peerj.com
http://dx.doi.org/10.1093/nar/gkg509
http://dx.doi.org/10.1038/nrg2986
http://dx.doi.org/10.1186/gm432
http://dx.doi.org/10.1093/bib/bbs086
http://dx.doi.org/10.1186/1479-7364-8-14
http://dx.doi.org/10.1093/bioinformatics/btt375
http://dx.doi.org/10.1073/pnas.1208715109
http://dx.doi.org/10.1093/nar/29.1.308
http://dx.doi.org/10.1093/bioinformatics/btu345
http://dx.doi.org/10.1038/nature11632
http://dx.doi.org/10.1186/gm495
http://dx.doi.org/10.1093/nar/gkq603
http://dx.doi.org/10.1186/1471-2164-15-244
http://dx.doi.org/10.1093/nar/gku392
http://dx.doi.org/10.7717/peerj.600


Yu X, Sun S. 2013. Comparing a few SNP calling algorithms using low-coverage sequencing data.
BMC Bioinformatics 14:274 DOI 10.1186/1471-2105-14-274.

Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit M. 2014. Integrating
human sequence data sets provides a resource of benchmark SNP and indel genotype calls.
Nature Biotechnology 32:246–251 DOI 10.1038/nbt.2835.

Warden et al. (2014), PeerJ, DOI 10.7717/peerj.600 27/27

https://peerj.com
http://dx.doi.org/10.1186/1471-2105-14-274
http://dx.doi.org/10.1038/nbt.2835
http://dx.doi.org/10.7717/peerj.600

	Detailed comparison of two popular variant calling packages for exome and targeted exon studies
	Introduction
	Material and Methods
	Sample selection
	Data processing
	Concordance definitions
	Calling variants
	Annotating variants

	Results
	Replication of GATK and VarScan variant calls among technical replicates
	GATK and VarScan show similar reproducibility among validated and SNP chip variants
	False positives are enriched for novel variants
	Estimation of accuracy for GATK and VarScan variant calls
	Overlap of high-quality GATK and VarScan variant calls
	Run-times scale differently for GATK versus VarScan
	Comparison to other variant calling benchmarks
	Application of QC metrics to other variant callers

	Discussion
	Acknowledgements
	References


