
Bacterial Curli Protein Promotes the Conversion of PAP(248-286) 
into the Amyloid SEVI: Cross-Seeding of Dissimilar Amyloid 
Sequences

Fragments of prostatic acid phosphatase ( PAP248-286 ) in human semen dramatically increase HIV 

infection efficiency by increasing virus adhesion to target cells. PAP248-286 only enhances HIV 

infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), 

however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested 

that SEVI fiber formation in vivo may be promoted by exogenous factors. We show here that a 

bacterially-produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation 

from PAP248-286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV 

( Human Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an 

unusual pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while 

significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most 

previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation 

step but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet 

amyloid polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the 

lag-time of IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding 

exerted a complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, 

these results suggest that the interaction of amyloidogenic proteins with preformed fibers of a different 

type can take a variety of forms and is not limited to epitaxial nucleation between proteins of similar 

sequence. The ability of curli fibers to interact with proteins of dissimilar sequences suggests 

cross-seeding may be a more general phenomenon than previously supposed.
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ABSTRACT: Fragments of prostatic acid phosphatase (PAP248-286) in human semen dramatically 

increase HIV infection efficiency by increasing virus adhesion to target cells.  PAP248-286 only enhances 

HIV infection in the form of amyloid aggregates termed SEVI (Semen Enhancer of Viral Infection), 

however monomeric PAP248-286 aggregates very slowly in isolation. It has therefore been suggested that 

SEVI fiber formation in vivo may be promoted by exogenous factors.  We show here that a bacterially-

produced extracellular amyloid (curli or Csg) acts as a catalytic agent for SEVI formation from PAP248-

286 at low concentrations in vitro, producing fibers that retain the ability to enhance HIV (Human 

Immunodeficiency Virus) infection. Kinetic analysis of the cross-seeding effect shows an unusual 

pattern. Cross-seeding PAP248-286 with curli only moderately affects the nucleation rate while 

significantly enhancing the growth of fibers from existing nuclei. This pattern is in contrast to most 

previous observations of cross-seeding, which show cross-seeding partially bypasses the nucleation step 

but has little effect on fiber elongation. Seeding other amyloidogenic proteins (IAPP (islet amyloid 

polypeptide) and Aβ1-40) with curli showed varied results. Curli cross-seeding decreased the lag-time of 

IAPP amyloid formation but strongly inhibited IAPP elongation. Curli cross-seeding exerted a 

complicated concentration dependent effect on Aβ1-40 fibrillogenesis kinetics. Combined, these results 

suggest that the interaction of amyloidogenic proteins with preformed fibers of a different type can take 

a variety of forms and is not limited to epitaxial nucleation between proteins of similar sequence.  The 

ability of curli fibers to interact with proteins of dissimilar sequences suggests cross-seeding may be a 

more general phenomenon than previously supposed. 

 

INTRODUCTION 

Over 33 million people worldwide are currently infected with the HIV virus. While HIV is readily 

transmitted in vivo, HIV is a surprisingly ineffective pathogen in vitro.(1)  The key barrier to effective 

viral transmission is attachment to the target cell surface.  The short-half life of almost all viruses in 

solution (~6 hours for HIV) ensures that infection can only be achieved only if a significant number of 

viral particles adhere to the cell surface in a relatively narrow time window upon exposure.(2) A peptide 

fragment naturally occurring in human seminal fluid (PAP248-286) facilitates this first step, and in doing 

so, greatly enhances the infectivity of HIV.(3) When fibrillized into amyloid fibers termed SEVI 

(Semen-derived Enhancer of Virus Infection),(3-5)
 
PAP248-286 bridges the membranes of the HIV virion 

and target cells. (3, 6-9) The result is a dramatic increase in the infectivity of the HIV virus. While up to 

100,000 HIV virions are required to establish infection in the absence of SEVI amyloid fibers, only 3 

are needed in its presence.(3) 
This enhancement is specifically linked to the SEVI amyloid conformation of PAP248-286 as 

monomers of PAP248-286 have little effect.(3, 7, 10, 11) Since PAP248-286 only enhances HIV infection 

when in the aggregated SEVI amyloid form, molecules that initiate fibrillization of PAP248-286 can 

indirectly increase HIV infectivity. While amyloid formation is typically energetically favorable, the 

actual rate of formation can be very slow. Specifically, amyloid formation is a nucleation-dependent 

process in which a slow rate-limiting nucleation step is followed by the faster process of extension of 

the fiber from the nuclei. PAP248-286 is subject to significant proteolytic degradation in seminal plasma 

unless it is in the SEVI amyloid form.(12) The total production of SEVI is therefore ultimately 

controlled by the rate of amyloidosis due to the proteolytic degradation of unfibrillized PAP248-286. 

PAP248-286 is very slow to fibrillize in the absence of shaking in vitro,(13, 14) which suggests SEVI 

production will be very limited in vivo. Nevertheless, the SEVI amyloid form is found in semen at 

concentrations of up to 35 μg/mL.(3, 9) This finding suggests additional cofactors may be present that 

accelerate SEVI formation from PAP248-286 before the PAP248-286 monomer is degraded by the cell’s 

proteolytic machinery.(14)  
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One set of likely cofactors are other cellular proteins, since the factors that drive self-association 

of amyloidogenic proteins also tend to favor promiscuous binding to a variety of other proteins.(15, 16) 

In particular,  amyloidogenic  proteins frequently have the ability to cross-polymerize, that is amyloid 

fibers from one protein can catalyze the formation of amyloid fibers from another amyloidogenic 

protein. Cross-seeding amyloid fibrillogenesis in this manner can dramatically enhance the kinetics of 

amyloid formation by providing preformed nuclei for further aggregation. Furthermore, the final 

amyloid fiber can in some cases takes on some of the characteristics of fibers from the initial seeding 

amyloid protein.(17-19) 

 Amyloid nucleation is often considered a highly specific process dependent on a high degree of 

similarity in both peptide sequence and fiber morphology between the seed and the protein being 

nucleated. This conclusion has largely been motivated by research on prion amyloid fibers, where the 

inability of highly homologous prions to cross-seed amyloid formation presents an inter-species barrier 

to prion transmission.(20, 21) However, this view has recently been challenged by the observation of 

efficient cross-polymerization between several non-prion amyloid species. (22-27) Seeds formed from 

amyloid fibers of some non-homologous proteins can either reduce or eliminate the lag-time of amyloid 

formation of another protein,(22-26, 28) although the phenomenon is not universal and even single point 

mutations have been shown to disrupt cross-seeding in some cases.(26, 29-31) Cross-seeding may also 

be asymmetric, with one protein able to seed another but not be seeded by it.(32, 33) 

The amyloids produced by many bacteria and fungi are of particular interest in considering 

possible cross-seeding reactions with PAP248-286 because of the high incidence of microbial infection in 

the vagina and the frequent coexistence with bacterial and fungal infection with HIV infection.(34) A 

particularly well studied example is a highly amyloidogenic protein secreted by Escherichia coli (E. 

Coli) and related bacteria, CsgA, that polymerizes into curli fibers that are involved in cell-to-cell and 

cell-to-surface interactions.(35, 36) Although curli fibers have not to our knowledge been directly 

detected so far in semen or the vagina, curli and curli-like amyloid fibers are ubiquitous in mammalian 

hosts.(37) In fact, the innate immune response invoked by almost all amyloids has been proposed to 

have evolved as a response to curli amyloid formation by E. Coli.(38) Since functional amyloid fibers 

from bacteria or yeast similar to curli may be colocalized with PAP248-286 at the initial site of HIV 

infection, we tested the effect of preformed curli amyloid fibrils on the kinetics of SEVI fiber formation. 

We found curli does significantly enhance the rate of SEVI fibrillization, although through an unusual 

mechanism for a cross-seeding interaction.  

METHODS & MATERIALS  

Peptide preparation 

 PAP248-286 was obtained from Biomatik Corporation. To prepare monomeric PAP248-286, 

lyophilized PAP248-286 was first quickly dissolved in 20% acetic acid to a final concentration of 1 mg/ml 

to remove preformed aggregates. The aggregate free solution was then lyophilized overnight. A 3 mg/ml 

stock solution was made from the lyophilized peptide in the assay buffer (10 mM phosphate buffer, pH 

7.3 containing 150 mM NaCl). 

 Human IAPP was obtained from Genscript. Monomeric IAPP was prepared by first dissolving in 

hexafluoroisopropanol to a concentration of 1 mg/ml then lyophilizing overnight. Aβ1-40 was obtained 

from Anaspec. Monomeric Aβ1-40 was prepared in a similar way using 2% ammonium hydroxide instead 

of hexafluoroisopropanol. The lyophilized pellet of both peptides was dissolved directly in the assay 

buffer.  

CsgA and CsgB preparation 

Pre
Pri

nts
Pre

Pri
nts



4 
 

 CsgA and CsgB were expressed (39)  and purified(40) as previously described. Briefly, both 

were overexpressed as His-tag fusion proteins in LSR12 bacteria. Following centrifugation for 20 min at 

5,000 x g, the bacterial pellet was incubated in 8 M guanidine hydrochloride (from Sigma, adjusted to 

pH 7.2 by the addition of NaOH) for 24 hours with stirring. After incubation, the cells were centrifuged 

again for 20 min at 10,000 x g and the supernatant sonicated. The solution was then passed over a HIS-

Select
TM 

HF nickel-nitrilotriacetic acid column, washing first with 50 mM KPi (pH 7.3) followed by 

12.5 mM imidazole in 50 mM KPi (pH 7.3) to remove non-specifically bound proteins and then with 

125 mM imidazole in 50 mM KPi (pH 7.3) to elute CsgA or CsgB.  

 To prepare amyloid fibers of CsgA and B, the curli containing fractions from the HIS-Select
TM

 

column allowed to fibrillize overnight at room temperature. Protein concentration was measured by the 

BCA (Bicinchoninic Acid) assay prior to fibrillization. The resulting fibers were then centrifuged (15 

min at 10,000 x g) and washed with water to remove the imidazole salt. This procedure was repeated 

four times and the pellet then lyophilized. The lyophilized pellets were then reconstituted in the assay 

buffer and sonicated with a probe sonicator (Sonic Dismembrator Model 100, Fischer Scientific) for 

approximately 1 minute prior to the aggregation assay.  

Aggregation assays 

 Aggregation assays for PAP248-286 were performed in 10 mM phosphate buffer, pH 7.3 

containing 150 mM NaCl. A total volume of 40 μL was placed in each well of a 96 well half area plate 

with a clear bottom, with 2 mg/mL PAP248-286, 25 μM Thioflavin T, and either 0, 1, 2.5, or 5 mol % 

preformed fibers of curli A or B. Aggregation assays for IAPP and Aβ1-40 were performed similarly 

except different concentrations of peptide (2.5 μM of IAPP and 5 μM Aβ1-40) and CsgA and CsgB were 

used and the temperature for IAPP aggregation was set to 25 °C. Amyloid fibers of Aβ1-40 and IAPP 

were prepared by aggregation for 2 days at 37 °C as detailed below and were sonicated for 1 minute 

before loading onto the plate for the seeding experiments.  

 A single 1 mm glass bead was placed in each well to increase the aggregation rate and promote 

sample reproducibility.(41) The loaded plate was sealed, and placed on a BioTek Synergy 2 plate reader 

set at 37° C (PAP248-286 and Aβ1-40) or 25° C (IAPP) with a constant linear shaking speed of 17 Hz. 

Absorbance was monitored at 350 nm and THT fluorescence measurements were taken with an 

excitation filter at 440 nm with a bandwidth of 30 nm and an emission filter at 485 nm with a bandwidth 

of 20 nm. Data points were collected every 10 minutes, with continual shaking occurring between data 

points. All experiments were performed with samples in triplicate. The kinetic curves were fitted to a 

sigmoidal growth model that has empirically been found to reproduce most of the features of amyloid 

aggregation:    

            Eq.1 

where I0 and Imax are the initial and maximum fluorescence or absorbance values, t1/2 is the time required 

to reach half intensity, and the elongation time te is an apparent first order time constant for the addition 

of peptide to existing fibers. (42) The lag-time t0 before detectable aggregation occurs is described by 

t0=t1/2-2te.  

 

Transmission Electron Microscopy 

  Samples of 6 µL of PAP248-286 solutions after the aggregation experiment were applied to 200 

mesh carbon coated copper electron microscopy grids and allowed to stand for 2 minutes. The grids 

were then washed with water 20 times to remove salts, after which 6 µL of a 2% uranyl acetate solution 
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was added and allowed to set for 1 minute before being removed. Fiber images were taken on a Phillips 

X-100 Transmission Electron Microscope operating at 60kV and 10,500x magnification. 

 

Cells for infectivity assays 

 A CEM-GFP cell line that expresses a green fluorescent protein (GFP) driven by the HIV-1 LTR 

promoter was obtained through the AIDS Research and Reference Reagent Program, Division of AIDS, 

NIAID, NIH from Dr. Jacques Corbeil and maintained in RPMI1640 (Invitrogen) medium 

supplemented with 10% heat-inactivated fetal bovine serum (HyClone) (RPMI-10) and containing 500 

µg/ml geneticin (Invitrogen).(43) 

 

Infectivity assays  

 Infectivity assays were performed as previously described.(44)  A viral stock solution was 

prepared by transfection of HeLa cells with a HIV-1 molecular clone pNL4-3. Supernatants of 

transfected cells were collected 2 days post-transfection, and viruses in the supernatant solution were 

pelleted by ultracentrifugation and resuspended in RPMI-10 medium. These virus stocks (20,000 cpm 

RT activity) were combined with stock solutions of SEVI amyloid fibers (50 g/ml from a stock 

solution of 440 μM PAP248-286 incubated under aseptic conditions for 7 days at 37 °C under vigorous 

agitation (1,300 rpm)) and used to inoculate 2 x 10
5
 of CEM-GFP in 100 μl RPMI-10 for 2 hours at 37 

ºC. Cells were then washed and incubated in 1 ml RPMI-10 at 37 ºC. Inoculations were performed in 

triplicate. To block the second round of infection, the CD4 blocking antibody Leu3a (0.25 µg/ml) (BD 

Biosciences) and the reverse transcriptase inhibitor AZT (1 µM) (Sigma) were added to the medium 12 

hours post-infection. Two days post-infection, cells were fixed in 4% paraformaldehyde in PBS 

(phosphate buffer saline) and analyzed using a FACSCanto flow cytometer and the FlowJo software 

ver. 8.7.1. Efficiencies of infection were determined directly from the percentage of GFP positive cells 

after subtraction of the baseline activity obtained in the absence of HIV-1NL4-3. Comparisons between 

samples were made using a one-tailed unpaired Student t-test.  

RESULTS 

Seeding with curli fibers greatly increases the rate of SEVI formation from PAP248-286 

 To test the in vitro activity of curli on the kinetics of SEVI amyloid formation from PAP248-286, 

we measured the kinetics of amyloid formation and aggregation of 440 μM PAP248-286 solutions in the 

presence of curli nuclei.(41)  The curli amyloid fiber is actually a composite of several proteins,(36) 

with CsgA serving as the main structural scaffold and  CsgB nucleating amyloid formation from CsgA 

(sequences given in Fig. S1).(45)   

PAP248-286 aggregated slowly in the absence of preformed nuclei of any type under the conditions 

tested,(14) as shown by both turbidity measurements (a nonspecific indicator of general aggregation, 

Figs. 1C and 1D) and ThT fluorescence (a measurement specific for amyloid, Figs. 1A and 1B).  The 

lag time of formation (~60 hrs) is considerably longer than that previously described (~18 hrs),(3, 13) at 

an identical concentration, most likely due to a difference in shaking speed or ionic strength.(14)  

Turbidity increased before ThT fluorescence for samples without CsgA or CsgB (Fig. 1). In 

addition, while the changes in turbidity could be closely approximated by a sigmoidal curve for all 

samples, analysis of the residuals from the sigmoidal fit to the ThT fluorescence shows two additional 

features not present in the turbidity curves. First, a second early component with a short lag time (about 

18 hours, similar to previous observations (3, 13)) but low ThT fluorescence (about 1/8 of the final 

value) can be detected in the ThT measurements. Second, ThT fluorescence immediately decreases after 
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the addition of high concentrations of CsgA. These findings suggest amyloid formation by PAP248-286 

may be a multistep process in which either the formation of non-amyloid prefibrillar aggregates occurs 

before amyloid formation for these samples (46, 47) or bundling of amyloid-like protofibrillar filaments 

is necessary for ThT binding to SEVI, as has been observed for other amyloidogenic proteins.(48)  

The addition of preformed CsgA seed had a dramatic impact on the kinetics of SEVI amyloid 

formation. One mole % CsgA (relative to PAP248-286) was sufficient to cause a six-fold decrease in the 

elongation time constant, which is reflective of the time for the addition of PAP248-286 to existing fibers 

(Fig. 2B). CsgA seeds had only a minor effect on the lag time (Figs. 2A and C). This is an unexpected 

result, as the addition of seeds usually results in the reduction or elimination of the lag-time with little 

corresponding change in the rate of addition to pre-existing fibers.(22)  CsgB has qualitatively similar 

effects as CsgA on the kinetics of SEVI amyloid formation, however the magnitude of the effect is 

relatively less in comparison to CsgA (Figs. 1 and 2).  

The difference in elongation rates for Csg initiated PAP248-286 fiber formation is reflected in the 

morphology of individual fibers. Fibers samples initiated by curli and those grown in their absence are 

morphologically similar, except for a large difference in the aspect ratios (Fig. 3A-C and Fig.S2). 

Standard SEVI fibers have an aspect ratio of approximately 5.8, while those grown with CsgA and 

CsgB are more heterogeneous and much longer, with aspect ratios of approximately 14.7 and 10.8 

respectively (Fig. 3F and Fig. S2). This finding is in agreement with the greatly enhanced fiber 

elongation rate found in the presence of either of the curli fibers. The very short and broken fibers of all 

PAP248-286 samples are different than typical amyloid fibers, such as the CsgA and CsgB fibers formed 

under quiescent conditions (Fig. 3D and E.), most likely because the high degree of agitation required 

for SEVI fiber formation fragments nascent amyloid fibers. 

SEVI amyloid fibers obtained from curli nucleation retain the ability to enhance HIV infection 

 We next confirmed that curli nucleated SEVI fiber samples retain a similar ability to promote 

HIV infection as SEVI fibers generated de novo. The activity of the SEVI fibrils incubated with Csg 

was tested using an infectivity assay in which a reporter T cell line that expresses GFP upon HIV 

infection was used.(43) In the absence of SEVI, flow cytometry showed a low percentage of GFP-

positive cells, in agreement with the low infectivity of HIV under the conditions employed. The addition 

of SEVI fibrils generated de novo caused an approximately 8-fold increase in the infectivity (Fig. 4), 

roughly matching results of other studies of SEVI under conditions of high viral load. (6, 7, 49) The 

much larger degree of enhancement shown in some studies (>100,000 times) is only apparent at very 

high viral dilution.(3) Neither the PAP248-286 monomer nor equivalent amounts of CsgA or CsgB alone 

had an effect on HIV infection efficiency (Fig 4). On the other hand, CsgA and CsgB nucleated fibers 

enhanced HIV infection at least to the same extent as de novo generated SEVI fibers (13 and 16 times 

respectively, Fig. 4). From these results, it can be seen that the SEVI fiber samples, regardless of how 

they were nucleated, show a comparable ability to enhance the rate of HIV infection.  

Cross-seeding with curli at low concentrations affects the amyloidogenesis of other proteins besides 

PAP248-286  

 The ability of curli to accelerate SEVI formation in the absence of any obvious sequence 

similarity suggests curli may accelerate amyloid formation by other proteins as well. To test this 

possibility, we performed analogous seeding experiments on the amyloidogenic peptides IAPP and Aβ1-

40. Addition of preformed curli nuclei had a complex effect on the aggregation of both these peptides 

(Fig. 5 and Fig. S3). The fibrillization rate of IAPP was strongly decreased by low concentrations of 

both CsgA and Csg B (1% of the IAPP concentration or 25 nM) (Fig. 5). Addition of CsgA, but not 

CsgB, to IAPP also lowered the total ThT fluorescence, suggesting either fewer or shorter fibers are 

produced in the presence of CsgA. The effect of Csg A and CsgB on the fibrillization rate of Aβ1-40 was 
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more modest, and showed a more complex dependence on the concentration with the fibrillization rate 

slightly decreasing at lower concentrations and slightly increasing at higher concentrations of both Csg 

A and CsgB (Fig. 5). The lag time of both peptides decreased by approximately 50% after addition of 10 

mole % of the oppositely charged Csg protein (CsgA for IAPP and CsgB for Aβ1-40), smaller amounts 

had little effect. Addition of 1% of the similarly charged Csg protein increased the lag time of both 

peptides, surprisingly, larger amounts had little effect on the lag time. By comparison, addition of 

equivalent amounts of preformed Aβ1-40 fibril seeds led to a linear decrease in induction time but had 

little effect on the fibrillization rate (Fig. S4). Although a complete characterization of curli with IAPP 

and Aβ1-40 lies outside the scope of this study, it can be seen from these experiments that both the effect 

of curli nucleation on amyloid fibrillogenesis is not limited to PAP248-286 and that curli can serve as both 

an inhibitor and enhancer of fibrillization.  

 

DISCUSSION 

 In this study, we characterized the kinetics of PAP248-286 cross-seeded by the curli proteins CsgA 

and CsgB in comparison to the analogous cross-seeding interactions with the more amyloidogenic 

proteins hIAPP and Aβ1-40. The purpose of this experiment is two-fold. First, PAP248-286 is only 

biologically active in the SEVI amyloid fiber form. The production of these fibers is ultimately 

controlled by the rate of amyloidogenesis, as PAP248-286 is subject to inactivating proteolysis in its 

monomeric but not in its amyloid form. (12)  Since SEVI fibers have been detected in semen under 

conditions that would apparently not easily allow aggregation in vitro of SEVI alone,(3, 9) extrinsic 

factors are a likely source to look for influences on PAP248-286 aggregation. Second, amyloid cross-

seeding as a general phenomenon is not well understood, as apparently contradictory results regarding 

the efficiency and specificity of cross-seeding have been obtained. (22-26, 28-31)   In performing the 

cross-seeding of PAP248-286, we found that while the lag-time for amyloid formation is moderately 

affected by curli seeding, the elongation rate is greatly increased. This finding is novel for a cross-

seeding reaction and is discussed in more depth below.  

 An understanding of this result requires some knowledge of the basic mechanism of the cross-

seeding reaction. In epitaxial heteronucleation, growth occurs by specific structural matching of the 

seeding nucleus with the protein being seeded (Fig. 6).(21, 50) A greater understanding of this process 

can be made by considering the structural constraints for amyloid formation. The cross β-sheet structure 

common to all amyloids is built by the intermolecular association of β sheets that are stabilized by 

hydrogen bonds between amide backbone atoms of adjacent sheets.  Since the amide backbone, in 

contrast to the side-chain residues, is similar in all proteins, any unfolded or partially folded protein 

should theoretically be able to associate with preformed seeds of another to formed mixed fibers. 

However, amyloid fibers apparently derive much of their energy from the formation of a “steric zipper”, 

in which the sidechains from adjacent sheets from an interlocking dry surface.(21, 51-53) It can be seen 

from this requirement that epitaxial heteronucleation is unlikely to occur if the seeding nucleus is 

structurally different then the protein being seeded,(21, 50, 54) consistent with the observation that 

cross-seeding between amyloid proteins is most efficient when the two proteins have homologous 

sequences.(55) For most amyloidogenic proteins this requirement is quite strict and even single point 

mutations can eliminate the ability of one amyloidogenic protein to cross-seed another. For others, the 

best studied being α-synuclein which seeds a variety of non-homologous proteins, this requirement is 

relaxed, possibly because the disorder present in the α-synuclein’s fiber structure can accommodate 

multiple fiber polymorphs and different fiber interfaces.(22)  

 In the simplest model of epitaxially nucleated amyloidogenesis, the elongation time decreases 

linearly with the concentration of the seed as each new seed provides a new point of fibril growth.(56, 

57) However, the elongation time is less sensitive to the seed concentration in more complicated models 
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explicitly considering secondary nucleation by fragmentation of existing fibers, as the new fibers 

created by fragmentation provide additional points for fibril growth that compete with the nuclei from 

the original seeds.(57, 58) The maximal elongation rate is in fact relatively insensitive to the seeding 

concentration when the number of nuclei created by fibril fragmentation is much greater than the 

number of nuclei available from seeding.(57, 58) Such behavior is typically observed experimentally 

(22, 23, 56, 59) and is seen here with the Aβ1-40 protein (see fig. S4). Regardless of the exact 

quantitative expression, current models predict that the lag-time for epitaxial heteronucleation should be 

more strongly affected than the elongation time. 

 However, epitaxial heteronucleation is not the only possible mechanism by which cross-seeding 

can occur. In contrast to epitaxial heteronucleation, non-specific heteronucleation can affect both the 

lag-time and the elongation rate by affecting the stability of different species along the aggregation 

pathway or by lowering the surface tension associated with forming clusters of the protein. In these 

mechanisms, the seed is not necessarily incorporated into the new amyloid fiber. Non-specific 

heteronucleation has been proposed for surfaces and non-protein ligands,(60-62) but not to our 

knowledge for cross-seeding reactions with other amyloidogenic proteins. Experiments with Lys to Ala 

PAP248-286 mutants show that charge repulsion between monomer units destabilizes the amyloid fiber.(6) 

Lateral association of the curli fiber with the nascent PAP248-286 fiber can reduce this repulsion between 

monomer subunits, increasing the elongation rate but not affecting the lag-time. In this case, it is 

expected that the electrostatic differences between CsgA and CsgB (-6 overall charge for CsgA and +5 

for CsgB, PAP248-286 carries an overall charge of +6) are primarily responsible for the difference in 

cross-seeding efficiencies, although differences atomic-level differences in the packing between CsgA 

and CsgB and PAP248-286 may also play a role. It is important to note that a stable interaction between 

the PAP248-286 amyloid fiber and CsgA or CsgB may not be required, as theoretical studies show that the 

stability of amyloid fibers increases with the length of the fiber.(63) A transient interaction of CsgA or 

CsgB with PAP248-286 may stabilize a short, energetically unfavorable PAP248-286 fiber long enough to 

promote the formation of a longer and more stable amyloid fiber.  

 The interaction of curli with IAPP and Aβ1-40 is less clear. Electrostatics plays a role in cross-

seeding nucleation, as the oppositely charged curli protein reduces the lag-time of both IAPP and Aβ1-40 

but the similarly charged curli protein has less effect. Both CsgA and CsgB decrease the elongation rate 

of IAPP, most likely by binding to and blocking reactive fibril ends. The effect of CsgA and CsgB on the 

elongation rate of Aβ1-40 has a complex concentration dependence, likely the result of a mixture of 

stimulatory and inhibitory effects previously observed in the binding of some ligands to amyloid 

peptides.  

 Although the effects of curli on Aβ1-40 were moderate, cross-seeding between other bacterial 

functional amyloids and Aβ1-40 may have greater clinical significance. For example, the bacteria Borrelia 

burgdorferi produces a curli-like amyloid protein that colocalizes with Aβ amyloid deposits in 

Alzheimer’s patients.(64, 65) Similarly, inoculation with Chlamydia pneumoniae stimulates the 

production of Aβ1-42 amyloid plaques,(66, 67) although to our knowledge a curli-like amyloid protein 

has not been found yet for Chlamydia pneumonia. Although a definitive link between bacterial infection 

and amyloid-associated neurodegenerative diseases has been elusive due to the difficulties in firmly 

establishing bacterial infection considering the low levels of bacteria typical of chronic long-term 

infections,(68) the identification of new amyloidogenic proteins in bacteria and mammals is increasing 

rapidly,(35) opening up the possibility of an increasing role for bacterial and viral infections in poorly 

understood amyloidogenic diseases. 
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SUPPORTING INFORMATION AVAILABLE: Amino acid sequences of CsgA, CsgB and PAP248-286, 

kinetic traces of Aβ1-40 and IAPP amyloid formation in the presence of CsgA and CsgB, lag times and 

elongation rates of Aβ1-40 seeded by Aβ1-40.  
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FIGURE CAPTIONS 

 

Figure 1. Kinetics of SEVI amyloid fiber formation in the presence of preformed fibers of CsgA and 

CsgB. Top: Turbidity measurements at 350 nm (A) PAP248-286 + CsgA, (B) PAP248-286 + CsgB.  Bottom: 

ThT fluorescence measurements of (C) PAP248-286 + CsgA, (D) PAP248-286 + Csg B. Curves are averages 

for 3 measurements. 

 

Figure 2. Elongation of SEVI amyloid fibers is significantly enhanced by preformed fibers of CsgA and 

CsgB lag time is less affected. Impact of preformed curli A and B fibers on the lag time (A and C) and 

elongation time (B and D) of SEVI formation.  (A and B): Kinetic constants as determined by ThT 

fluorescence. (C and D): Kinetic constants as determined by turbidity measurements. Error bars 

represent S.E.M. 
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Figure 3.  Curli nucleation produces longer SEVI fibers. Top: TEM images of SEVI fibers formed in 

the absence of curli (A) and in the presence of 5 mol% CsgA (B) and CsgB (C) fibers. Bottom: TEM 

images of CsgA (D) and CsgB (E) fibers. (F) Aspect ratios of individual fibers grown with and without 

curli nucleation (n= 47, 23 and 37 for SEVI, SEVI+CsgA, and SEVI+CsgB respectively ). Fibers were 

grown at a concentration of 440µM PAP248-286 at 37ºC under 1400 rpm orbital shaking for 7 days. P 

values were determined using a two-tailed unpaired Student t-test against the control sample. 

 

 

Figure 4.  Curli nucleated SEVI fibers enhance HIV infectivity to a similar degree as SEVI generated 

de novo. CEM-GFP cells were infected with HIV-1NL4-3  (20,000 cpm RT activity) supplemented either 

with 50 μg/ml of the proteins indicated or PBS (phosphate buffered saline). SEVI samples were 

fibrillized for 7 days prior to infection. Measurements were performed in triplicate, error bars indicate 

S.E.M. P values were determined using a two-tailed unpaired Student t-test against the control sample.  
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Figure 5. Curli’s ability to influence amyloid formation is not limited to PAP248-286. Impact of 

preformed csgA and csgB fibers on the lag time (A and C) and elongation time (B and D) of amyloid 

formation from 2.5 μM IAPP (top) and 5 μM Aβ1-40 (bottom) as molar fractions of the IAPP and Aβ1-40 

concentrations. 

 

 

Figure 6. Cartoon models of possible cross-seeding reactions Top: Epitaxial Heteronucleation (A) 

Binding of the PAP248-286 monomer  (red) to the curli seed (blue) induces formation of the β-sheet 

conformation of PAP248-286  (B) Fiber growth proceeds epitaxially from the seeding nucleus  Bottom: 

Possible mechanism for non-epitaxial heteronucleation (C) A nucleus for the SEVI fiber forms 

independently of  the curli fiber (D) Growth of the SEVI fiber initially proceeds slowly due to 

unfavorable interactions between subunits of the fiber (E) Lateral attachment of the nascent SEVI fiber 

to curli reduces repulsion between fiber subunits thereby enhancing the rate of fibrillogenesis. The curli 

seed may be incorporated into the final SEVI fiber or may detach to catalyze further fiber extension 

events. 
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Our Response to Reviewers’ comments: 

Major changes in this version: 

1. Distribution of height and width of fibers is included as new figure S2 in the 

supplementary material. 

2. Kinetic measurements are analyzed in more depth including deviations from the 

sigmoidal model used to fit the data. 

3. Modified the experimental section to include additional details as requested. 

4. Fixed style inconsistancies to fit PeerJ format as noted. 

 

Reviewer Comments 

Reviewer 1  

Basic reporting 

Several aspects of the author-guidelines have not been respected in the manuscript, particularly 

the citation guidelines have not been respected in the text. Please check the reference style 

section in the author-guidelines  

 

Minor comments: 
1. The year of Capule et al is missing in the text and the reference list  

P3 last paragraph: E. coli -> Escherichia coli 

Response: E. coli has been expanded to Escherichia coli in its first appearance on page 3. 

2. The use of italics for e.g. “in vivo” or "de novo" is not consistent throughout the text. 

Response: ”de novo”, “in vivo”, and “in vitro” have been italicized everywhere except the 

abstract where italics may cause errors with some indexing services such as Pubmed. 

3. The abbreviations ‘HIV’ and ‘SEVI’ on line 2 and 3 in the abstract should be spelled out. 

Idem for IAPP, BCA... 

Response: The abbreviations for HIV, SEVI, IAPP, and BCA have been spelled out at their 

first appearance. 

4. P3 line 4: it is desirable to express the plural of ‘an additional cofactor’ (like the first line of 

the next paragraph) unless the authors have indications that only a single cofactor is 

appropriate. 

Response: “Additional cofactor” has been changed to “additional cofactors” 

 

Experimental design 

The materials and methods section lacks some essential data and even incorrect information: 

some methods are described with insufficient detailed information to be fully reproducible by 

other investigators. 

1. The source of Aβ1-40  is not mentioned 

Response: Aβ1-40 was obtained from Anaspec, as noted in the revised manuscript.  

2. 8M guanidinium HCl: which is the source of the chemical, and how was the pH controlled to 

pH 7.2?  
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Response: The pH was adjusted to 7.2 by titration with NaOH. Guanidinium HCl was 

purchased from Sigma.  

3. Was the protein concentration measured before or after the fibrillation? 

Response: Protein concentration was measured before fibrillation, as the concentration of 

amyloid fibers is usually underestimated by most methods.  

4. What do the authors mean with “prior to being loaded onto the plate”? It only becomes clear 

in the next paragraph if my interpretation is correct on how the experiment was actually 

performed. 

Response: The phrase “prior to being loaded onto the plate” has been changed to “prior to 

the aggregation assay”. 

5. Fiber preparation of Aβ1-40 should not be explained in the section “CsgA and CsgB 

preparation” but rather inserted in the next section ”aggregation assays” 

Response: The description of fiber preparation for IAPP and Aβ1-40 has been moved to the 

next section.  

6. Is the concentration of PAP248-286 3mg/mL in the aggregation assay as indicated in the 

‘peptide preparation’ section? Or is it 440 µM (2mg/mL) as mentioned in the legend of Fig 3 

Response:  The concentration in the aggregation assay is 440 µM (2mg/mL) as indicated. 

The stock solution prior to the addition of ThT and either buffer or fiber stock solution is 3 

mg/ml as indicated. 

7. The ThT fluorescence is recorded with emission at 440 nm and excitation at 485nm. This is 

incorrect and actually impossible. Was the fluorescence measured at the top or bottom of the 

wells? 

Response:  The excitation is at 440 nm and the emission is at 485 nm. This mistake has been 

fixed in the revised manuscript. Fluorescence was measured from the bottom of the wells due 

to the plastic seal on top used to prevent evaporation. 

8. What is the operational voltage of the TEM analysis, and at which magnification were the 

images made? 

Response:  Images were acquired at 60kV and 10,500x magnification, as noted in the revised 

manuscript.  

Validity of the findings 

1. Is the non-seeded curve collected with the addition of buffer to the plate exactly the same 

manipulation as the addition of seeds? 

Response: The control curve without seeds was treated and measured in the same way as the 

sample with seeds. 

2. P6 line 6: can the authors rule out that the pretreatment with acetic acid explains the 

prolonged lag phase? 

Response: Pretreatment with acetic acid is a standard treatment for disaggregating PAP248-

286, and similar pretreatment with acid does not lead to a prolonged lag phase for other 

amyloidogenic proteins such as IAPP (see fig. S2). The brief exposure to acid is unlikely to 
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make any post-translational modifications to the protein and acetic acid, being volatile, is 

easily removed by lyophilization. 

3. That the turbidity increases prior to the increase in ThT fluorescence is difficult to interpret 

from figure 1, and seems not to be a valid statement for Fig 1B & D. Also in Fig 2A & C this 

does not seem to be significant.  

4. Response: For SEVI samples without CsgA or CsgB, turbidity does change before ThT 

fluorescence. This can be seen clearly for these samples in Figs. 1 and 2. In Fig. 1 turbidity 

reaches a maximum at 80 hours while ThT fluorescence is still increasing after 120 hours. 

This is also a reflected in an increase in the elongation time in Fig. 2 (note that the scale is 

different in Fig. 2B and 2D to show clearly the difference between seeded and unseeded 

samples. Turbidity and ThT fluorescence increase roughly at the same time for SEVI samples 

with CsgA and Csg B.  

To more accurately reflect this finding the sentence: 

“Turbidity increased before ThT fluorescence, suggesting the formation of non-amyloid 

prefibrillar aggregates occurs before amyloid formation (Fig. 1).(1, 2) Non-fibrillar 

aggregates of PAP248-286 have been shown to have a similar effect on HIV infectivity as SEVI 

amyloid fibers.(3) 

Has been changed to: 

“Turbidity increased before ThT fluorescence for samples without CsgA or CsgB (Fig. 1). In 

addition, while the changes in turbidity could be closely approximated by a sigmoidal curve 

for all samples, analysis of the residuals from the sigmoidal fit to the ThT fluorescence shows 

two additional features not present in the turbidity curves. First, a second early component 

with a short lag time (about 18 hours, similar to previous observations (3, 4)) but low ThT 

fluorescence (about 1/8 of the final value) can be detected in the ThT measurements. Second, 

ThT fluorescence immediately decreases after the addition of high concentrations of CsgA. 

These findings suggest amyloid formation by PAP248-286 may be a multistep process in which 

either the formation of non-amyloid prefibrillar aggregates occurs before amyloid formation 

for these samples (1, 2) or bundling of amyloid-like protofibrillar filaments is necessary for 

ThT binding to SEVI, as has been observed for other amyloidogenic proteins.(5)  

5. The authors should specify more on how the non-seeded curve fits Equation 1. It seems that 

the transition in the cross-seeded ThT curve have an initial slow component followed by a 

cooperative aggregation behavior, while this is not mentioned or described by the authors.  

Response: See answer to point 4.  

6. Is there an explanation for the initial decrease in the ThT fluorescence (in the first 10-20h) 

with 2.5% and 5% CsgA in Fig 1C? 

Response: See answer to point 4. While removal of the first few points does improve the fit 

for these samples, it has little effect on the values calculated from the fit (56.3 vs 57.2 for the 

lag time and 2.3 vs. 2.6 for the elongation time for the 5% CsgA sample with and without 

removal of the first points respectively). 

7. The description of the fiber morphology is insufficient and should be extended with more 

details (dimensions, twists…). Aspects of fiber polymorphism and heterogeneity in the 

samples should also be described. The quality of the images is of insufficient quality / 
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magnification to allow a careful assessment of the statements/interpretation of the authors. I 

find the absence of a characterization of the seeds a missed opportunity to strengthen this 

work. Are the “seeds” after sonication merely preformed fibers (see p4)? A simple TEM 

observation would clarify a lot. 

Response: We recorded the height, width and aspect ratio distributions of the SEVI fibers 

(new Fig. S2). As seen below, all the samples are relatively heterogeneous, especially the 

cross-seeded samples with Csg A and Csg B. A further analysis of fiber morphology is 

difficult because the fibers are very short, which obscures interpretation of twists and 

branching, and heterogenous.  

8. P6 4th paragraph: is the statement “Csg-containing SEVI fibrils” correct? Did the authors 

verify that the SEVI Fibrils resulting from the cross-seeding have incorporated Csg proteins 

in the fibrillar assembly? 

Response: As noted in the Discussion section, it is difficult to verify if the low concentration 

of Csg seeds in the samples is actually incorporated into the SEVI fibers. As a result, the 

specific term “Csg-containing SEVI fibrils” has been replaced with the more general term 

“SEVI fibrils incubated with Csg”. 

9. p7 3rd sentence of the discussion: this statement is contradictory to the last sentence of 1st 

paragraph of page 6 

Response: The statement “The production of these fibers is ultimately controlled by the rate 

of amyloidogenesis, as PAP248-286  is subject to inactivating proteolysis in its monomeric but 

not in its amyloid form” on pg 6 may appear to be in contradiction with the statement on pg7 

“Non-fibrillar aggregates of PAP248-286 have been shown to have a similar effect on HIV 

infectivity as SEVI amyloid fibers”. However, it is likely, although currently unproven, that 

proteolysis of monomeric PAP248-286 will also lead to reduction of oligomeric but not fibrillar 

forms of SEVI, since it has been shown that similar interactions are frequently involved in 

oligomeric and fibrillar forms of amyloidogenic peptides.  

Comments for the author 

Although I acknowledge the potential in the presented study, I have concerns about the 

description of the materials and methods and the interpretation of the data. Particularly the 

materials and methods section should be optimized significantly to allow other investigators to 

reproduce this work. 

More care should have been used while preparing the manuscript for the present submission. 

Reviewer 2  

Basic reporting 

No comments 

Experimental design 

No comments 

Validity of the findings 

No comments 

Comments for the author 

This is a very interesting paper which clearly illustrates the complex cross-seeding/elongation 

effects. I completely agree with the authors: cross-seeding among amyloids with different 
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sequences is common; and like the authors, I expect it is much more common that previously 

recognized. This aspect has been recently reviewed (e.g. Selective molecular recognition in 

amyloid growth and transmission and cross-species barriers. J. Mol. Biol. 2012; 421(2-3):172-

84), and emphasized again with respect to tau proteins (Cross-seeding and conformational 

selection between three- and four-repeat human Tau proteins (J. Biol. Chem. 2012; 

287(18):14950-9; Conformational basis for asymmetric seeding barrier in filaments of three- and 

four-repeat tau. J. Am. Chem. Soc. 2012 Jun 20;134(24):10271-8). The authors may wish to 

relate to some of the references noted above which discuss this behavior for a different amyloid 

species. However, what is of particular interest in this work is that it experimentally goes much 

beyond these: it shows the complex behavior of sequence species: it may moderately affect the 

nucleation rate while significantly enhance the growth of fibers from existing nuclei; or it may 

decrease the lag-time of amyloid formation but strongly inhibit elongation; or have concentration 

effects, all likely depending on the details sequence matching, and broadly on the environment, 

including concentration.  

 

Altogether, this work points to an important, yet overlooked aspect of amyloidosis and 

'infectivity': cross-seeding is there, and is a reflection of the conformational heterogeneity of 

amyloids, monomers and oligomers. Further, it can also be expressed by heterogeneous 

consequences, which can be expected. On the downside, it also points to the difficulties in 

designing drugs to inhibit amyloid formation. 

 

This work is novel and highly significant, and should be published in PeerJ, and I hope without 

delay. I expect it would be well-cited, and followed by other such studies, along similar lines. 

The manuscript can be accepted as is. 

 

Response: We appreciate the reviewer’s positive response and have included the references 

suggested. 
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Figure 1

Kinetics of SEVI amyloid fiber formation in the presence of preformed fibers of CsgA and 

CsgB.
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Figure 2

Elongation of SEVI amyloid fibers is significantly enhanced by preformed fibers of CsgA and 

CsgB lag time is less affected
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Figure 3

Curli nucleation produces longer SEVI fibers.
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Figure 4

Curli nucleated SEVI fibers enhance HIV infectivity to a similar degree as SEVI generated de 

novo.
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Figure 5

Curli’s ability to influence amyloid formation is not limited to PAP 248-286 .
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Figure 6

Cartoon models of possible cross-seeding reactions
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