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ABSTRACT
Atoposaurid crocodyliforms represent an important faunal component of Late
Jurassic to Early Cretaceous Laurasian semi-aquatic to terrestrial ecosystems,
with numerous spatiotemporally contemporaneous atoposaurids known from
western Europe. In particular, the Late Jurassic of France and Germany records
evidence for high diversity and possible sympatric atoposaurid species belonging
to Alligatorellus, Alligatorium and Atoposaurus. However, atoposaurid taxonomy
has received little attention, and many species are in need of revision. As such, this
potentially high European diversity within a narrow spatiotemporal range might be
a taxonomic artefact. Here we provide a taxonomic and anatomical revision of the
Late Jurassic atoposaurid Alligatorellus. Initially described as A. beaumonti from the
Kimmeridgian of Cerin, eastern France, additional material from the Tithonian of
Solnhofen, south-eastern Germany, was subsequently referred to this species, with
the two occurrences differentiated as A. beaumonti beaumonti and A. beaumonti
bavaricus, respectively. We provide a revised diagnosis for the genus Alligatorellus,
and note a number of anatomical differences between the French and German
specimens, including osteoderm morphology and the configuration and pattern
of sculpting of cranial elements. Consequently, we restrict the name Alligatorellus
beaumonti to include only the French remains, and raise the rank of the German
material to a distinct species: Alligatorellus bavaricus. A new diagnosis is provided for
both species, and we suggest that a recently referred specimen from a coeval German
locality cannot be conclusively referred to Alligatorellus. Although it has previously
been suggested that Alligatorellus, Alligatorium and Atoposaurus might represent a
single growth series of one species, we find no conclusive evidence to support this
proposal, and provide a number of morphological differences to distinguish these
three taxa that appear to be independent of ontogeny. Consequently, we interpret
high atoposaurid diversity in the Late Jurassic island archipelago of western Europe as
a genuine biological signal, with closely related species of Alligatorellus, Alligatorium
and Atoposaurus in both French and German basins providing evidence for allopatric
speciation, potentially driven by fluctuating highstand sea levels.
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INTRODUCTION
Atoposaurids comprise a clade of small-bodied terrestrial and semi-aquatic crocodyliforms

(Owen, 1879; Joffe, 1967; Buscalioni & Sanz, 1990a; Thies, Windolf & Mudroch, 1997;

Lauprasert et al., 2011). Historically, they were considered to be the sister group to Eusuchia

(Joffe, 1967; Buffetaut, 1982), but are now recovered in all phylogenetic analyses as the

basal-most members of Neosuchia, which includes crown group crocodylians (Benton

& Clark, 1988; Buscalioni & Sanz, 1990b; Salisbury et al., 2006; Brochu et al., 2009; Pol

& Gasparini, 2009; Adams, 2013; Sertich & O’Connor, 2014). Atoposaurids were an

important component of a range of Late Jurassic to Early Cretaceous western European

ecosystems (Fig. 1), with less common occurrences extending their known stratigraphic

range from the Middle Jurassic to the end-Cretaceous (168.3–66 million years ago [Ma];

Fig. 2) (Owen, 1879; Buscalioni & Sanz, 1984; Buscalioni & Sanz, 1987a; Salisbury, 2002;

Martin, Rabi & Csiki, 2010; Salisbury & Naish, 2011). There is tentative evidence to suggest

that atoposaurids might have persisted beyond the Cretaceous/Paleogene boundary,

based on fragmentary material from the Middle Eocene of the Republic of Yemen

(Stevens et al., 2013). The earliest known atoposaurid specimens are Theriosuchus-like

teeth from the early (Kriwet, Rauhut & Gloy, 1997) and middle (Knoll et al., 2013)

Bathonian (late Middle Jurassic) of southern France and the Bathonian of the UK (Evans

& Milner, 1994), with Theriosuchus sympiestodon from the Maastrichtian of Romania the

last known occurrence (Martin, Rabi & Csiki, 2010; Martin et al., 2014). Other putative

and fragmentary occurrences potentially extend the distribution of Atoposauridae into

the Late Jurassic–Early Cretaceous of Asia (Young, 1961; Efimov, 1976; Wu, Brinkman &

Lu, 1994; Wu, Sues & Brinkman, 1996; Wu, Brinkman & Lu, 1994; Storrs & Efimov, 2000;

Cuny et al., 2010; Wings et al., 2010) and North America (Gilmore, 1926; Cifelli et al., 1999;

Eaton et al., 1999; Fiorillo, 1999; Rogers, 2003), and a late Early Cretaceous occurrence,

Brillanceausuchus babouriensis, from Cameroon, might represent evidence for the presence

of the clade in Gondwana (Michard et al., 1990).

Despite this research history and range of recent discoveries, there is currently

little species-level taxonomic clarity or consensus on atoposaurid inter-relationships

(Owen, 1878; Owen, 1879; Wellnhofer, 1971; Buffetaut, 1982; Benton & Clark, 1988;

Buscalioni & Sanz, 1988; Brinkmann, 1989; Brinkmann, 1992; Wu, Sues & Brinkman,

1996; Schwarz & Salisbury, 2005). Steel (1973) considered Atoposauridae to comprise

Alligatorellus, Alligatorium, Atoposaurus, Hoplosuchus, Shantungosuchus, and Theriosuchus.

More recently, Lauprasert et al. (2011) recognised only four valid genera, Alligatorellus,

Alligatorium, Montsecosuchus, and Theriosuchus, with the latter genus comprising four

species: T. grandinaris, T. guimarotae, T. ibericus and T. pusillus. Martin, Rabi & Csiki

(2010) augmented this species list with their description of T. sympiestodon from the

Maastrichtian of Romania. Schwarz-Wings et al. (2011) followed this taxonomic scheme,
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Figure 1 (A) Geographic distribution of Late Jurassic atoposaurid specimen localities. 1, Cerin; 2, Kel-
heim; 3, Painten; 4, Solnhofen; 5, Guimarota; 6, Andrès; 7, Langenberg; 8, Uppen. Note that those
localities not mentioned in the text all include occurrences of indeterminate remains of Theriosuchus;
(B) Approximate palaeogeographic distribution of Late Jurassic atoposaurids. Map reconstruction from
Ron Blakey, Colorado Plateau Geosystems, Arizona, USA (http://cpgeosystems.com/paleomaps.html).

but also regarded Atoposaurus as a valid genus, comprising the two species A. jourdani

and A. oberndorferi. There are three currently recognised species of Alligatorium: A. meyeri

from France (Vidal, 1915) and A. franconicum (Ammon, 1906) and A. paintenense (Kuhn,

1961; originally described by Broili (1931) as a possible occurrence of A. franconicum) from

Germany. However, specimens of the latter two were lost or destroyed during World War

II. An Early Cretaceous Spanish species originally placed in Alligatorium has since been

assigned to a new genus, Montsecosuchus (Vidal, 1915; Peybernes & Oertli, 1972; Buscalioni

& Sanz, 1988; Buscalioni & Sanz, 1990a).

Gervais (1871) originally erected the species name Alligatorellus beaumonti for two

specimens from the Late Jurassic of Cerin, in eastern France. Wellnhofer (1971) later

assigned these specimens to the subspecies A. beaumonti beaumonti, in recognition of

differences between coeval specimens from Eichstätt, southeast Germany, for which he

erected the subspecies A. beaumonti bavaricus. Both the French and German specimens

have been regarded as Alligatorellus beaumonti by subsequent workers (e.g., Buscalioni

& Sanz, 1988; Schwarz-Wings et al., 2011). As a result of these factors, the species-level

composition and relationships of Alligatorellus, Alligatorium and Atoposaurus, as well as

the Spanish Montsecosuchus depereti, remains poorly understood. This in part reflects

a paucity of specimens, but also the flattened mode of preservation of the specimens

concerned, which often obscures much of their morphology (Meyer, 1850; Meyer,

1851; Gervais, 1871; Wellnhofer, 1971; Buscalioni & Sanz, 1990a). This taphonomic

signature results from their exclusive occurrence in lithographic limestones. Furthermore,

Theriosuchus appears to have become a ‘waste-basket taxon’ for recently discovered small,

basal neosuchian specimens from Asia and Europe. Unlike Alligatorellus, Alligatorium,

Atoposaurus and Montsecosuchus which occur in lagoonal settings, Theriosuchus occurs in
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Figure 2 Stratigraphic (including uncertainty) and geographic ranges of known and putative (denoted
with a “?”) atoposaurid species.

a range of transitional brackish onshore or near-shore environments (Schwarz & Salisbury,

2005; Lauprasert et al., 2011).

Given such potentially high European atoposaurid diversity within a narrow geographic

and temporal range, and a lack of taxonomic consensus, a full revision of atoposaurid

systematics is overdue. Presented here is a re-assessment of specimens of Alligatorellus from

the Late Jurassic of France and Germany in the first of a series of papers in which we will

revise the taxonomy, systematics and phylogenetic relationships of Atoposauridae. We

refer the German occurrence to a new species of Alligatorellus, providing a comprehensive

re-description, and make detailed comparisons with the French type species. We also

consider the taxonomic affinities of an additional German specimen described as

Alligatorellus sp. (Schwarz-Wings et al., 2011), and examine the osteoderm morphology

of Alligatorellus, investigating its utility in atoposaurid systematics. Finally, we examine

the taxonomy and validity of the contemporaneous, multispecific taxa Alligatorium and

Atoposaurus, and discuss the diverse atoposaurid faunal composition of the Late Jurassic of

western Europe.
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SYSTEMATIC PALAEONTOLOGY

Crocodylomorpha Walker, 1970

Crocodyliformes Hay, 1930

Mesoeucrocodylia Whetstone & Whybrow, 1983

Neosuchia Benton & Clark, 1988

Atoposauridae Gervais, 1871

Alligatorellus Gervais, 1871

Note on taxonomy: Gervais (1871) did not designate a holotype specimen in his original

description of Alligatorellus beaumonti. Wellnhofer (1971) elected MNHN 15639 as the

holotype of A. beaumonti beaumonti. As this is one of the two specimens described

by Gervais (1871), we follow Wellnhofer (1971) in considering MNHN 15639 to be the

holotype for the genus and type species of Alligatorellus beaumonti.

Wellnhofer (1971, p. 144) provided the following diagnosis of Alligatorellus (translation

adapted from Schwarz-Wings et al., 2011): (1) a large-sized atoposaurid (420–550 mm)

with an acute-triangular skull and large orbits; (2) the supratemporal fossae are not

internally fenestrated, and are connected to the orbit by a superficial furrow; (3) the

nasal aperture is divided; (4) the tail is longer than half of the precaudal body length;

(5) presence of a biserial osteoderm shield from the nuchal to the caudal region; (6) single

osteoderms are sculpted; (7) presence of a lateral keel on the nuchal and dorsal osteoderms,

whereas the caudal osteoderms bear a more medial keel; (8) ventral armour possesses two

rows of scutes in the tail region; (9) the ventral scutes are oval and medially keeled.

Comments: In light of more recent atoposaurid discoveries and an improved under-

standing of their anatomy, much of Wellnhofer’s (1971) diagnosis requires revision.

The first putative defining characteristic (1) is a feature that also describes the sizes of

Alligatorium meyeri, A. franconicum, Montsecosuchus depereti, and Theriosuchus pusillus,

and may in fact be an over-estimation of their size. The lack of internal fenestration (2)

of the supratemporal fenestra is not seen in other atoposaurids, including Alligatorium,

Montsecosuchus, and Theriosuchus, and is thus retained as a locally diagnostic feature. The

division of the nasal aperture (3) is not visible in LMU 1937 I 26 as a result of crushing

of the anterior-most portion of the snout, but is present in MNHN 15639. Regardless,

this appears to be a feature shared by other atoposaurids including Theriosuchus pusillus

(NHMUK PV OR48330) and Theriosuchus grandinaris (Lauprasert et al., 2011). The rela-

tive length of the tail (4) is a feature seen in other atoposaurids including Atoposaurus and

Theriosuchus pusillus and appears to be widespread among Atoposauridae, as are charac-

ters (5) and (6). Indeed, osteoderm sculpting and a biserial osteodermal shield are present

in Alligatorium, Montsecosuchus, and Theriosuchus. The presence, prominence, and posi-

tion of a dorsal keel on the biserial osteoderms might be diagnostic at the generic level (7),

although there are differences between the German and French specimens, as discussed

below. The presence of a dual row of ventral osteoderms in the caudal region is also ques-

tionable (8), especially with respect to their morphology (9)—they are rarely and poorly

preserved in the ventral region in both French and German specimens. It is probable that

Tennant and Mannion (2014), PeerJ, DOI 10.7717/peerj.599 5/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.599


post-mortem flattening has re-arranged the paravertebral dorsal osteoderms, which, when

viewed laterally, might easily be misinterpreted as belonging to a ventral series. Finally,

it should be noted that in the referred specimen of A. beaumonti (MNHN 15638), the

osteoderms are much less visible, with just a single noticeable row overlying the anterior

caudal vertebrae, and possibly a single row concealed underneath the dorsal vertebrae.

Revised diagnosis: Among currently recognised atoposaurids, Alligatorellus can be

diagnosed based on the following unique combination of features and autapomorphies

(highlighted with an asterisk): (1) rostrum unsculpted or substantially less so than cranial

table; (2) cranial sculpting comprised of homogeneous shallow pitting; (3) absence of

hypertrophied maxillary tooth 5, with homodont pseudocaniniform dentition; (4) frontal

width between the orbits narrower than maximal width of nasals; (5*) broad frontal

anterior process, not constricted; (6) absence of raised orbital or supratemporal rims; (7)

unperforated supratemporal fenestra; (8*) anterior process of squamosal extends to the

orbital margin; (9*) posterodorsal margin of parietals and squamosals completely covers

dorsal occipital region; (10) smooth mandibular outer surface; (11) proportionally short

first metatarsal; (12) dorsal surface of dorsal osteoderms completely sculpted, with parallel

and straight anterior and posterior margins; (13*) dorsal osteoderms with longitudinal

ridge along entire lateral margin; (14) caudal osteoderms with smooth, non-serrated edges.

A. beaumonti Gervais, 1871

A. beaumonti beaumonti Wellnhofer, 1971

Holotype: MNHN 15639, part and counterpart slabs preserving a near-complete,

articulated skull and skeleton, missing the distal forelimb elements and part of the left

hindlimb (Fig. 3).

Referred specimen: MNHN 15638, part slab comprising a near-complete articulated

skeleton, missing the distal-most caudal vertebrae and part of the left forelimb (Fig. 4).

Locality and stratigraphic age: Cerin, Ain, eastern France; Kimmeridgian (Late Jurassic)

(Wellnhofer, 1971).

Preservation of holotype: The specimen is dorsolaterally flattened and, on the part, the

dorsal surface of the skull is embedded into matrix comprising grey lithographic limestone.

This obscures both the lateral and ventral surfaces, and much of the mandible. Thirteen

maxillary teeth are preserved. The complete, articulated axial skeleton is preserved, with

the exception of the three posterior-most caudal vertebrae, and is overlain by a continuous

sheath of parasagittal biserial osteoderms. At least eleven ribs are preserved in situ on

the left hand side. A partial right scapula is the only preserved element of the pectoral

girdle. The right forelimb is missing the proximal humerus and manus, and the left

forelimb is disarticulated, lacking the manus. Some fragmentary pelvic elements remain,

including both ilia. The left hindlimb is articulated but damaged, missing part of the

femoral midshaft, the proximal tibia and fibula, and distal tarsals. The right hindlimb is

articulated but missing both the proximal femur and the distal phalanx on digit I. The

counterpart preserves two osteoderms and fragments of skull material embedded within

the impressions. There is some dendritic mineral growth propagating from the skeleton.
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Figure 3 (A) Line drawing of holotype specimen of Alligatorellus beaumonti (MNHN 15639) in dorso-
lateral view; (B) photograph of holotype specimen.

Preservation of referred specimen: The entire skeleton is laterally flattened on a brick-red

and grey slab of lithographic limestone. No counterpart is preserved. The skull is

ventrolaterally flattened, exposing only the ventral and sinistral sides of the mandible, the

ventrolateral portion of the skull, and nine maxillary teeth. The right forelimb is preserved

only as an impression, as are the posterior-most caudal vertebrae. Otherwise, the entire

axial skeleton is preserved, together with three ribs (and several rib impressions), and the

left pectoral and pelvic girdles. Both hindlimbs are complete. A single row of osteoderms

is preserved along the nuchal-dorsal series. The cervical vertebrae are recurved slightly

posteriorly, and the posteroventrally deflected limbs give the impression of hanging loosely

from the trunk.

Additional comments: Wellnhofer (1971) provided a detailed description of both

specimens of Alligatorellus beaumonti. Here, we provide only a revised diagnosis as the

basis for its taxonomic discrimination from the Bavarian specimens of Alligatorellus. Using

linear morphometrics, Wellnhofer (1971) regarded the Cerin and Bavarian specimens to be

of similar, adult ages, and largely based his justification for recognising two distinct taxa on

the relatively smaller size of the Cerin specimens (which are approximately 50 mm shorter

in total length). However, size and geographical distribution are not the only attributes

demarcating the two as distinct taxa, as outlined below.
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Figure 4 (A) Line drawing of referred specimen of Alligatorellus beaumonti (MNHN 15638) in dorsoven-
tral view; (B) photograph of referred specimen.

Revised diagnosis: Alligatorellus beaumonti can be diagnosed based on the following

unique combination of characters and autapomorphies (highlighted with an asterisk):

(1) smooth contact between maxilla and jugal (Fig. 6); (2*) frontal with unsculpted

posterior and anterior portions; (3) surface of rostrum notably less sculpted than cranial

table; (4) relatively large lateral temporal fenestra, approximately 30% the size of the orbit;

(5*) medial longitudinal depression on posterior portion of nasal and anterior portion of

frontal; (6*) frontal width between orbits narrower than nasals; (7) smooth and unsculpted

region on anterior portion of squamosal nearing orbit and posterolateral process of

squamosal; (8*) vertebral centra shape grades continuously posteriorly from cylindrical

to elongate-spool; (9) secondary osteoderms in caudal series present; (12*) lateral ridge on

sacral osteoderms forms an incipient posterior projection; (10) ratio of femur to tibia high

(1.11).

Alligatorellus bavaricus Wellnhofer, 1971

Alligatorellus beaumonti bavaricus Wellnhofer, 1971

Note on taxonomy: Wellnhofer (1971) regarded LMU 1937 I 26 as the holotype of

A. beaumonti bavaricus, and we elect this specimen as the holotype of A. bavaricus, which

we re-rank from subspecies to species level.

Holotype specimen: LMU 1937 I 26 (Fig. 5).

Referred specimen: Wellnhofer (1971) also described a second specimen of A. bavaricus,

held in the private collection of E. Schöpfel. Based on the images and description provided

by Wellnhofer (1971), we follow this referral. However, in view of the fact that this specimen
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Figure 5 (A) Line drawing of holotype specimen of Alligatorellus bavaricus (LMU 1937 I 26) in
dorsolateral view; (B) photograph of holotype specimen.

remains in a private collection and is not publicly accessible, this referral is informal and is

used only to draw attention to the existence of a second specimen.

Type locality and horizon: Solnhofen beds near Eichstätt, southeast Germany; early

Tithonian (Late Jurassic, Hybonoticeras hybonotum zone; Wellnhofer, 1971).

Preservation: The specimen is a semi-three-dimensional body fossil preserved obliquely

on a slab of Solnhofen ‘Plattenkalk’, and is fully articulated with its head dorsally recurved.

As preserved, the spinal column is rod-like with a slight ventral flex, and the limbs are

splayed out beneath the trunk. Trunk elements (posterior cervical and dorsal vertebrae,

ribs, and osteoderms) are mostly damaged and crushed beyond recognition in an

agglomeration, where there is a noticeable trace of soft tissue residue. Poor skeletal

preservation means that the anterior-most vertebrae (atlas, axis, and anterior cervical

vertebrae) are indistinguishable from one another. Only the eleven anterior-most dorsal

paravertebral osteoderms are substantially preserved with a minor and variable degree of

caudal imbrication. The next four osteoderms in the series are missing (anteriorly adjacent

to the sacrum), but twenty five paired osteoderms are preserved along the tail. Poorly

preserved ventral osteoderms are part of the agglomeration around the torso, and are

present along the sacrum and tail. The ventral osteoderms terminate posteriorly at the

same position as the dorsal series.

Etymology of species name: bavaricus, based on the area of the type locality, and also the

sub-species name provided by Wellnhofer (1971) for this specimen.
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Figure 6 Photograph and line drawing of the skull of the holotype specimen of Alligatorellus beaumonti
(MNHN 15639) in dorsal aspect.

Additional comments: The majority of the features Wellnhofer (1971) proposed in

the original diagnosis of A. bavaricus characterise atoposaurids in general, or are more

widespread within Atoposauridae. For example, an ‘acute-triangular skull with large orbit’

is a general feature seen in many crocodyliforms, including all known atoposaurids and

bernissartiids, and the ‘biserial osteoderm shield from the nuchal to caudal region’ is found

in the atoposaurids Theriosuchus (Owen, 1879) and Alligatorium (Wellnhofer, 1971), and

may be synapomorphic for Atoposauridae.

Diagnosis: Alligatorellus bavaricus can be diagnosed based on the following unique

combination of characters and autapomorphies (highlighted with an asterisk): (1*)

extremely narrow and short skull (ratio of skull width to orbit length is 1.29; Fig. 7);

(2*) posterior surface of nares longitudinally crenulated; (3) small, slit-shaped antorbital

fenestra, enclosed by nasals; (4*) prominent transverse ridge defining frontal–parietal

suture, medial to supratemporal fenestrae; (5) smooth posterior region of parietal dorsal

surface; (6*) dorsal osteoderms with longitudinal medial ridge, becoming more laterally

placed anteriorly; (7) isometric caudal osteoderm morphology; (8*) distinct ridge on

proximodorsal edge of scapula; (9*) an extremely high humerus to ulna ratio of 1.45;

(10*) an extremely low femur to tibia ratio of 1.04; (11*) an extremely low tibia to ulna

ratio of 0.64; (12) metatarsals I–IV equidimensional.

Differential diagnosis to A. beaumonti: Alligatorellus bavaricus can be distinguished

from A. beaumonti based on possessing the following features: (1) proportionally larger
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Figure 7 Photograph and line drawing of the skull of the holotype specimen of Alligatorellus bavaricus
(LMU 1937 I 26) in dorsolateral aspect.

orbits; (2) longitudinal crenulations on the posterior external surface of the nares; (3)

a diminutive antorbital fenestra; (4) frontals proportionally wider between orbits than

nasals; (5) prominent transverse ridge defining the frontal–parietal suture on the cranial

table; (6) lack of posterolateral squamosal process; (7) medially-placed dorsal keels on

dorsal osteoderms; (8) osteoderm shapes are isometric down length of body; (9) humerus

proportionally longer than ulna (1.45 to 1.12); (10) higher ratio of humerus to femur

length (0.89 to 0.75).

The electronic version of this article in Portable Document Format (PDF) will represent

a published work according to the International Commission on Zoological Nomenclature

(ICZN), and hence the new names contained in the electronic version are effectively

published under that Code from the electronic edition alone. This published work

and the nomenclatural acts it contains have been registered in ZooBank, the online

registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be

resolved and the associated information viewed through any standard web browser by

appending the LSID to the prefix “http://zoobank.org/”. The LSID for this publication

is: urn:lsid:zoobank.org:pub:B7CC4367-4203-4AED-8C30-2D7E4E71665D. The online

version of this work is archived and available from the following digital repositories: PeerJ,

PubMed Central and CLOCKSS.

Description and comparisons of Alligatorellus bavaricus
The following description is solely of the type specimen LMU 1937 I 26 but, based on the

images presented in Wellnhofer (1971), the referred specimen does not appear to differ in

any notable way. Elements of the skull of the type are fully fused, and vertebrae display

complete neurocentral fusion, implying that this specimen of Alligatorellus had reached a

mature stage of growth (Joffe, 1967). Measurements are provided in Table S1.
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Skull: Observations of the skull are restricted to the dorsal and right-lateral surfaces.

These external surfaces display a moderate degree of sculpting, although to a lesser

extent than that of Theriosuchus (Owen, 1879; Brinkmann, 1992; Wu, Sues & Brinkman,

1996; Schwarz & Salisbury, 2005) and Alligatorium (Wellnhofer, 1971). The skull has

an acute-triangular morphology (platyrostral) in dorsal view, typical of atoposaurids,

with concave lateral margins along the relatively short snout. The intramandibular angle

(defined as the angle between the lateral extremities of the cranial table and the distal snout

tip, in dorsal aspect) is slightly greater (37◦) than that of Theriosuchus (30–32◦). Several

teeth are preserved in situ, and are peg-like (pseudocaniniform), pointed and possess

apicobasally and mesiodistally oriented, parallel striations. None of the teeth appear to

be serrated, and in general aspect they are indistinguishable from the teeth observed in

the Cerin specimens of Alligatorellus beaumonti. Alligatorellus bavaricus may possess one

more maxillary tooth than the French species, although this is difficult to confidently

assess due to the mode of preservation. The dentition of Theriosuchus (Owen, 1879; Joffe,

1967; Brinkmann, 1992; Martin, Rabi & Csiki, 2010) is substantially different in that it is

heterodont. No palatal elements are visible, and aspects of the anatomy of the premaxilla,

maxilla, nasals and external nares are difficult to discern due to dorsal flattening into the

matrix and mandible, and because of the absence of the distal snout tip. The occipital

region of the skull is also obscured by matrix and crushed, granular bone fragments, which

probably represent the anterior-most elements of the axial skeleton.

There is a ventrolateral notch between the premaxilla and maxilla but, unlike in

Theriosuchus ibericus (Brinkmann, 1992) and Theriosuchus sympiestodon (Martin, Rabi &

Csiki, 2010), this is not occupied by an enlarged tooth. The paired nasals contribute to the

external nares via a sagittal anterior projection, as in Alligatorellus beaumonti, Alligatorium

meyeri, and Theriosuchus pusillus. Wellnhofer (1971) regarded this feature as diagnostic

of Alligatorellus. However, it may be a synapomorphy of all atoposaurids: in other

crocodyliforms with divided external nares, this division is formed by a sagittal projection

of the premaxillae, e.g., the metriorhynchid Maledictosuchus (Parilla-Bel et al., 2013),

whereas the external nares are fully open or only partially divided posteriorly in eusuchians

(e.g., Delfino et al., 2008). A pair of small, slit-like antorbital fenestrae are present and

are entirely enclosed by the nasals, a feature absent in A. beaumonti, but present within

all specimens of Theriosuchus for which the snout is preserved; as such we consider this

feature to be locally diagnostic of A. bavaricus within non-Theriosuchus atoposaurids.

The dorsal surface of the nasals is sculpted by faint longitudinal crenulations, a feature

unique within Atoposauridae, but also present in the goniopholidid Eutretauranosuchus

delfsi (Smith et al., 2010; Pritchard et al., 2013). As such, this feature is considered a local

autapomorphy of A. bavaricus. Posterior to the external nares, the lateral margins of the

nasals are straight, contrasting with the concave margins observed in A. beaumonti. The

dorsolaterally facing orbits are large with respect to the cranium, occupying about one

third of the total cranial length and the majority of the skull width. This is comparable to

Atoposaurus oberndorferi but distinct from A. beaumonti, in which the orbits occupy one

quarter of the skull length. The relatively large size of the orbits might represent retention
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of a paedomorphic characteristic (Joffe, 1967). A large amount of secondary calcite growth

is present within the orbit, obscuring much of the internal cranial morphology. The

right lateral temporal fenestra is deep and arcuate in cross-sectional morphology, but

largely obscured as a result of the crushing of the skull. It is separated from the orbit by

a mediolaterally-oriented postorbital bar, which descends steeply into the posterolateral

internal margin of the orbit. The lateral temporal fenestra is similar in size to the dorsally

located supratemporal fenestra, and is approximately a quarter of the size of the external

opening of the orbit.

The frontals are mediolaterally concave, to a slightly greater degree than the parietals,

and become extremely thin at the orbital margin, lacking the elevated orbital rims seen

in Theriosuchus (Owen, 1879). Compared to the nasals, they are relatively wide with

respect to the frontals in A. beaumonti. The anterior frontal ramus extends slightly

beyond the anterior tip of the prefrontal, a feature which we consider to be a local

autapomorphy because of its absence in other atoposaurids, but that is present in some

other non-eusuchian neosuchians, including Eutretauranosuchus delfsi (Pritchard et al.,

2013) and Pholidosaurus purbeckensis (Salisbury, 2002; Montefeltro et al., 2013). The

anterior contacts between the frontals, prefrontals and lacrimals are largely obscured,

as is the overall morphology of these pre-orbital elements. However, the majority of the

anterior margin of the orbits comprises a deep and thick wedge of bone that descends

as a vertical sheet into the orbit, forming a distinctive anterodorsal brow. The maxilla

contributes extensively to the ventral margin of the orbit, with the contact between the

maxilla and the lacrimal becoming indiscernible more anteriorly as a result of the mode

of preservation. The jugal occupies half of the ventral margin of the orbit, posterior to the

maxilla. Palpebrals were either absent or are not preserved, but appear to be present in the

anterior orbit of Alligatorellus beaumonti.

Posterior to the orbits, the dorsal surface of the skull is mildly sculpted by anisotropic

and heterogeneously spaced pits that are similar to Alligatorellus beaumonti, but are less

prominent than those seen in Theriosuchus and Alligatorium. In contrast, this surface is

smooth and unsculpted in Atoposaurus (Wellnhofer, 1971; J Tennant, pers. obs., 2013). It is

plausible that the heterogeneous degree of cranial sculpting seen in atoposaurids including

Alligatorellus and Montsecosuchus is useful in distinguishing specimens at the species level.

Between the supratemporal fenestrae is a prominent mediolateral ridge defining the suture

between the frontal and parietal, a feature we consider diagnostic of A. bavaricus. The an-

terior parietal is not sculpted where it contacts the frontals, unlike A. beaumonti where the

whole cranial table (excluding the frontals) is homogeneously sculpted with small circular

pits. The squamosal is homogeneously sculpted, as with the parietal, with a dorsally convex

dorsal surface and orthogonal lateral and posterior margins, differing from Theriosuchus

pusillus which has a smooth posterolateral process (Owen, 1879; J Tennant, pers. obs.,

2013). The cranial table is mostly flat, as is the case in most other atoposaurids, with the

exception of the slightly domed structure that characterises Montsecosuchus (Buscalioni

& Sanz, 1990a), and possibly Atoposaurus. The anterolateral portion of the squamosal is

sharply pointed and curves posteromedially around the supratemporal fenestra. Here, it is
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initially gently arcuate, then becomes straight as it contacts the parasagittally-directed and

straight medial edge. This gives the squamosal an overall distorted rhombohedral shape

in dorsal aspect. The majority of the dorsomedial margin of the squamosal contributes to

the supratemporal fenestra, with the lateral portion obscuring most of the ventrally-placed

quadrate and quadratojugal. The posterolateral process of the squamosal is greatly reduced

compared to other atoposaurids, in which it generally tapers to a point, and is therefore

considered to be a local autapomorphy of A. bavaricus, being similarly present in other

basal neosuchians such as Amphicotylus lucasii (Mook, 1942). In Alligatorellus beaumonti,

there is no development of the posterolateral process, the posterior edge instead being

slightly anterolaterally directed. Between the supratemporal fenestrae, the paired, rectan-

gular parietals are as mediolaterally wide as the frontals between the orbits. The parietals

contribute to the posteromedial margin of the supratemporal fenestra, but the relationship

with the postorbitals is difficult to see due to post-mortem damage. However, the postor-

bital bar is present and weakly developed, possessing a superficial furrow connecting the

orbit and the supratemporal fenestra. The frontal only contributes to the supratemporal

fenestra at its anteromedial edge. Here, the frontal and parietal form a lateral wedge, which

thins laterally into the postorbital bar. The posterior portion of the dorsal surface of the

parietal is smooth, a feature otherwise only found in Atoposaurus, although in that taxon

the skull is entirely unsculpted (Wellnhofer, 1971; J Tennant, pers. obs., 2013); as such,

we consider this heterogeneous pattern of cranial sculpting to be autapomorphic for A.

bavaricus. The lateral and ventral surfaces of the skull are largely obscured by the displaced

and crushed mandible, and the preserved orientation of the skeleton.

The mandible is not visible ventral or anterior to the orbit, and is largely obscured

posteriorly. It has been slightly dorsally displaced into the ventrolateral portion of the

right-lateral face of the skull. The mandible broadens posteriorly both mediolaterally

and dorsoventrally, developing a lateral shelf as it flares out beneath the lateral temporal

fenestra, possibly at the position at which the mandibular fenestra would have been

situated. The ventral margin of the mandible curves medially and substantially thins

mediolaterally at its posterior extremity, where it forms an acute and recurved process, the

posterior margin of which is gently concave and slightly set back from the posterior edge of

the cranial table.

Axial skeleton: One of the most striking features of atoposaurids is that the tail length

is greater than the length of the torso, and comprises approximately one-half of the total

length of the skeleton. In Alligatorellus bavaricus there are seven cervical (including the

axis and atlas) and fifteen dorsal vertebrae (note that Wellnhofer (1971) observed only

seventeen presacral vertebrae, using osteoderm count as a proxy). These vertebrae are

mostly indistinguishable from one another, but their presence is estimated based on their

associated dorsal paravertebral osteoderms which, along with the poor preservation of

the trunk region, largely obscure the morphology of the vertebral column. As noted

by Wellnhofer (1971), three sacral vertebrae seem to be present, but their preservation

means that this cannot be determined with any certainty, with all elements crushed

beyond distinction. If correctly determined, sacral count might be a distinguishing feature

Tennant and Mannion (2014), PeerJ, DOI 10.7717/peerj.599 14/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.599


between A. bavaricus and A. beaumonti, with the latter only having two sacral vertebrae,

but variation in sacral count is difficult to discern in atoposaurids due to poor preservation

of the axial skeleton in specimens of Alligatorellus. There are around forty caudal vertebrae,

although the precise number is difficult to determine, with the distal-most two or three

absent, as indicated by impressions. Much of the caudal vertebral series is variably covered

in matrix and fixing glue, obscuring most of the morphological detail and intervertebral

articulations. In the central caudal series, a melange composed of dorsal and ventral

paravertebral osteoderms obscures much of the anatomical detail. Only the first four

caudal vertebrae can be used to observe any of the anatomy from a right-lateral perspective.

It is unknown whether the vertebrae were procoelous, as in Theriosuchus and eusuchians

(e.g., Pol & Gasparini, 2009), or amphicoelous.

The dorsal osteoderms occur in a biserial row from the anterior-most cervical vertebrae

to about the mid-point of the caudal series, a feature that characterises all unambiguous

atoposaurids, with the exception of Atoposaurus, and that is also absent in the putative

atoposaurid Karatausuchus (Efimov, 1976; Storrs & Efimov, 2000). The osteoderms of

A. bavaricus are imbricated along their entire length, and there is no ‘peg and socket’

articulation as described in two scutes assigned to Theriosuchus pusillus (Owen, 1879;

Schwarz-Wings et al., 2011) and in Theriosuchus guimarotae (Schwarz & Salisbury, 2005).

The osteoderms of A. bavaricus are rounded, and the lateral edges are predominantly

convex, with one or two being marginally concave. There is a central longitudinal ridge on

the dorsal surface of osteoderms of A. bavaricus, similar to some of the caudal osteoderms

in Theriosuchus, but contrasting with Alligatorium meyeri and other atoposaurids. The

degree of sculpting on the osteoderm dorsal surfaces increases posteriorly, as does the

prominence of the longitudinal keel which shifts to a slightly medial position from an

initially more central position, unlike Alligatorellus beaumonti in which it is consistently

laterally placed as a distinct shelf. The lateral and medial edges of the osteoderms are

smooth and either straight or convex, and the straight anterior and posterior margins are

parallel. The morphology of the ventral osteoderm series is very similar, where visible,

but with more prominent longitudinal ridges in the more posterior elements. There is no

visible morphological heterogeneity in the nuchal and sacral osteoderms, contrasting with

Alligatorellus beaumonti in which this feature is highly distinctive. It is unknown whether

the ventral series are paired or not in A. bavaricus, as the ventral portion of the skeleton is

mostly unobservable.

Other minor axial elements are partially visible beside the osteoderms. Two thoracic ribs

are preserved embedded within the trunk melange. They are gently arcuate in their overall

morphology, and not preserved in situ. There are several other rib elements more anterior

to these and just ventral to the anterior-most osteoderms, but they are largely obscured

by the overlying matrix and axial elements. Three posteroventrally directed chevrons are

in situ with their proximal caudal vertebrae, positioned just posterior to the only visible

three-dimensionally preserved vertebrae.

Pectoral girdle: Only the right scapula is preserved, and is fragmented at both ends,

including both the glenoid fossa and coracoidal contact. It is bow shaped, with a distinct
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dorsoventral contraction and mediolateral thickening into a compressed cylindroid at

mid-length. The dorsal surface becomes thin and sharp anteriorly, culminating in a broad

and deep, basin-like medial depression, contrasting with Montsecosuchus depereti in which

the entire element is flat (Buscalioni & Sanz, 1990a). The proximodorsal edge overhangs

this depression, a feature not observed in other atoposaurids, and is considered to be a

diagnostic feature of A. bavaricus. Posteriorly, the scapula flares out in a similar fashion to

the anterior blade, but the distal portion is mostly absent, so the complete morphology is

unknown. A posteroventral process projects out from the posterior blade, twisting from

the ventral surface into a short, thickened rod.

Forelimbs: The right forelimb is nearly complete, with an articulated humerus, radius

and ulna, but the manus is crushed. The proximal third of the humerus is also crushed,

with the external cortices of the exposed shaft removed, revealing the internal bone. The

humerus expands slightly proximally, and the shaft is straight and broader mediolaterally

than anteroposteriorly. The morphology of the deltopectoral crest cannot be determined.

The radial condyle is broad and directed anteriorly. The distal articular surface of the

humerus is strongly rugose, and oriented at 40◦ to the long axis of the shaft. The shaft is

relatively straight, similar to more advanced neosuchians such as Shamosuchus (Pol, Turner

& Norell, 2009). The anterior intercondylar groove is not visible, but the supracondylar

fossa forms a deep posterior furrow, terminating a short distance up the shaft, and is

bound medially by the relatively weaker ulnar condyle, the morphology of which is mostly

obscured. The external surfaces of the condylar heads are smooth. The humerus is slightly

shorter than that of A. beaumonti, but the radius is proportionally longer. The stylopod

to zeugopod ratio in both limbs is proportionally lower than in all other atoposaurids, a

feature that we consider diagnostic of A. bavaricus.

The radius is slightly longer than the more robust ulna, the two resting against each

other without twisting sharply; as such the respective proximal and distal articular surfaces

have long axes in the same orientation. The radius is gently longitudinally arcuate in its

proximal third, conforming to the gentle curvature of the distal ulnar shaft. The radial

head is mediolaterally expanded, and is about two-thirds the size of the ulnar head it

rests against. The ulnar head is damaged, and the radial head and the associated humeral

condyle actually appear quite mismatched in size, suggesting a large volume of cartilage

or muscle attachment at this joint, also emphasised by the heavily rugose articular surface.

The lateral part of the radial shaft thins to about 70% of its width and becomes ridge-like

at around two-thirds of its length. The ulnar shaft is equidimensional through its entire

length, and finishes with a triangular-shaped distal articular surface. The carpus cannot be

fully observed.

Little of the left forelimb is preserved: the distal humerus is crushed, with the proximal

ulna and entire radius missing, preserved only as impressions. However, aspects of the

morphology of the carpus can be observed. The radiale is long and slender, with expanded

proximal and distal ends, much like A. beaumonti in which the elements are well-preserved

in the holotype. The ulnare is slightly shorter, with a stronger mediolateral compression of

the shaft, and overall more gracile morphology. In A. beaumonti, the ulnare has a proximal

Tennant and Mannion (2014), PeerJ, DOI 10.7717/peerj.599 16/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.599


groove on the lateral surface, terminating at 80% of the length of the element, but whether

this is present in A. bavaricus cannot be determined. However, the ulnare in A. bavaricus

is not ‘hatchet shaped’ as in A. beaumonti or the specimen assigned to Alligatorellus sp.

by Schwarz-Wings et al. (2011). Furthermore, the radiale in A. beaumonti is larger than

the ulnare, distinguishing the two species of Alligatorellus. All additional carpal elements

in A. bavaricus are crushed to the point where their morphology cannot be meaningfully

observed. The entire manus is bent backwards, indicated by its impression and in a similar

manner to the pedal orientations. All of the elements are highly distorted and crushed,

with only moderate lateral compression indicated by the slight crushing of the more gracile

elements.

Pelvic girdle: Only fragments of the pelvic girdle are preserved. The ilium forms an

elongated S-shape in dorsal view, and is thickened anteriorly. Much of the morphology

is obscured by the orientation of the specimen on the rock slab, but the postacetabular

process appears to be fenestrated at its tip (although this might be a post-mortem artefact),

greatly thickened, and leads into a deep and broad acetabulum. An element just below

this on the slab is one of the pubes. Much of the morphology is again obscured by the

orientation in which it is embedded in the matrix. The proximal head is expanded into a

broad wedge-shape and twists slightly to become oblique to the stouter distal end, which

is more circular in cross section. The proximal portion of the shaft is transversely flattened

and sub-elliptical in cross-section, and has a strongly rugose surface, partially obscured by

an overlying displaced rib. There is a fan-shaped structure situated anterior to the ilium,

which we interpret as a fragment of the anteriorly displaced ischium. The distal end is

thin and gently convex, with a slightly crenulated distal extremity. Gentle striations from

the distal end are directed towards the transversely thickened shaft, which increases in

breadth more proximally on the dorsal margin and has a more slender ventral margin. The

proximal end is hidden underneath the skeleton so that the remaining morphology cannot

be observed.

Hindlimbs: Overall, the hindlimbs are about 1.4 times the length of the forelimbs. The

right hindlimb is mostly complete with a laterally flattened tarsus and pes. The femur is

missing from the left hindlimb (although it is possibly hidden underneath the skeleton),

and the tibia and fibula are both crushed. The left pes is well-preserved, with partially

crushed tarsal and pedal elements. The femur is the most robust limb bone of the skeleton,

and is morphologically similar to the ulna, being gently sigmoidal down the length of the

shaft. The femoral head is moderately expanded and equidimensional to the distal end of

the femur. The femoral head grades smoothly into the posteriorly placed fourth trochanter,

which is weakly developed, ridge-like, and distally thickened, terminating at one-sixth

of the length from the proximal end. Adjacent to this, on the lateral surface, there is an

accompanying groove for attachment of the femoral-pelvic musculature. The distal end

of the right femur is damaged and fractured, and the distal condylar morphology cannot

therefore be determined.

The left tibia and fibula are mostly concealed within the slab and underneath other

bones, and only the straight shafts are exposed. The lateral surfaces of both elements from
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the right hindlimb are fully exposed, and demonstrate that they are equal in length to

the femur. Both ends of the tibial shaft are anteroposteriorly compressed, with the distal

end slightly more so. The proximal portion of the tibia is slightly posteriorly deflected,

but to a lesser degree than in Alligatorellus beaumonti. The tibial shaft becomes slightly

anteroposteriorly expanded at mid-length. Distally, the lateral margin of the tibia thins

anteroposteriorly, culminating in a sharp ridge at the distal end, and resulting in a

triangular cross-section. The proximal half of the fibula is gently twisted to accommodate

the mid-tibial expansion, and articulates with the posterior face of the proximal head of the

tibia. As a result of the fully articulated nature of the tibia and fibula, the morphology of the

proximal and distal articular surfaces is obscured. Furthermore, the distal end of the fibula

is damaged. In lateral view, the fibula is much more slender than the tibia, and has a more

circular cross section than the elliptical to triangular tibia. The astragalus is not visible in

either hindlimb. The calcaneum is present, but is obscured by matrix and glue.

On the right hindlimb, metatarsals I–III and part of metatarsal IV are preserved,

as well as a poorly preserved, vestigial fifth metatarsal that is less than one-third the

length of the other four metatarsals. Their long axes are parallel to one another, with the

proximal and distal ends resting against each other. The nature of the distal articulations

is obscured. The left pes is preserved in an oblique view, and provides a better perspective

of the metatarsal morphology, although metatarsal V is not visible. The tarsal phalangeal

formula, as stated by Wellnhofer (1971), is 2-3-4-4-(1). The metatarsals are long, gracile,

and transversely expanded at their proximal ends with an overall similar morphology

to one another. Their distal ends have been slightly anteroposteriorly compressed, and

the straight shafts all have an elliptical cross-section. On the left pes, the proximal tip of

metatarsal I is obscured beneath metatarsals II–IV but, where visible, the metatarsal is

anteroposteriorly compressed, and twists anteromedially towards its distal end, at which

point it thickens and broadens into a sub-oval cross section. The distal articular surface

of metatarsal I is only partially visible; this rugose surface curves medially to occupy the

distal-most edge of the medial surface. Metatarsal II is slightly longer than metatarsal I,

with a mediolaterally compressed proximal end, and a ventral surface that forms a thin

ridge. Metatarsal II gradually thickens distally, and the shaft twists in a similar manner

to metatarsal I, but instead the ventromedial edge becomes more prominent as a ridge,

bounding the medial edge of a small distal depression on the ventral surface. The distal

end of metatarsal II is convex, and the articular surface is obscured. Most of metatarsal III,

except for the shaft, is obscured, with the shaft appearing to be as long as metatarsal II but

thickened to a lesser degree distally. Metatarsal III is slightly more gracile than the others.

The sharpness of the proximoventral ridge is also less apparent in metatarsal III. Metatarsal

IV is mostly obscured, but has a straighter, less twisted shaft that is more continuously oval

in cross-sectional morphology than the metatarsals.
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Additional material previously referred to Alligatorellus

Atoposauridae indet.

Alligatorellus sp. Schwarz-Wings et al., 2011

Specimen: MfN MB. R. 4317.1-12, a partial disarticulated skeleton.

Locality and horizon: Kelheim, Bavaria, Germany; early Tithonian, Hybonotum Zone,

Rueppelianus Subzone (Schwarz-Wings et al., 2011).

Preservation: Disarticulated axial and appendicular elements adjacent to a single row of

paravertebral osteoderms. Some limb elements have been prepared out of the matrix.

Comments: An additional specimen from Bavaria was recently assigned to Alligatorellus

sp. by Schwarz-Wings et al. (2011). This is a substantially larger individual than the four

known specimens comprising A. beaumonti and A. bavaricus, and is represented by a

disarticulated, partial postcranial skeleton. With the revised diagnosis presented above for

Alligatorellus, the only comparable diagnostic material is the osteoderms, which differ in

morphology to those of A. beaumonti and A. bavaricus. Distinguishing features present

in MfN MB. R. 4317.1-12 include: (1) dorsal osteoderms are square-shaped, rather than

rectangular, with a possible anterior articular process (similar to the ‘peg and socket’

morphology seen in some specimens of Theriosuchus and goniopholidids); (2) dorsal

osteoderms are distinctly asymmetrical about their long-axis; (3) ventral osteoderms bear

a series of nutrient foramina, as well as an anteroposteriorly oriented ridge along their

anterior portions (although note that this aspect of the osteoderms is not visible in any

specimen of Alligatorellus beaumonti or A. bavaricus); and (4) caudal osteoderms are often

laterally serrated, grading from a narrow to elongated elliptical shape. Several of these

features regarding osteoderm morphology may be diagnostic within Atoposauridae. An

additional difference is the more laterally than medially expanded proximal end of the

radiale, with a proximodistally oriented crest extending along the anterior surface of the

shaft. This, together with the outlined differences in osteoderm morphology indicates, that

MfN MB. R. 4317.1-12 may represent a distinct atoposaurid taxon, or another species of

neosuchian outside of Atoposauridae.

Based on the revised diagnosis for Alligatorellus presented in this study, and the

notable differences in preserved osteoderm morphology, it is questionable whether the

specimen described by Schwarz-Wings et al. (2011) can be assigned to Alligatorellus.

Its initial referral to this genus was based on several lines of evidence, including the

longitudinally elliptical shape of the caudal osteoderms, a feature otherwise only seen

in the distal-most caudal osteoderms of Alligatorellus beaumonti, although they are more

rectangular in the French taxon. However, the morphology of the osteoderms of MfN MB.

R. 4317.1-12 is similar to the dorsal osteoderms of Montsecosuchus depereti, including the

presence of a continuous, medially-positioned keel along the external surface (Buscalioni

& Sanz, 1990a; J Tennant, pers. obs., 2013), but Montsecosuchus does not preserve any

osteoderms of similar size or morphology to the imbricated series preserved in MfN MB.

R. 4317.1-12. The imbrication of these dorsal osteoderms cannot be used to assign MfN

Tennant and Mannion (2014), PeerJ, DOI 10.7717/peerj.599 19/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.599


MB. R. 4317.1-12 to Alligatorellus, as this is a feature also present in Theriosuchus pusillus

and Alligatorium, the putative atoposaurid Brillanceausuchus, and other neosuchians

including Pachycheilosuchus (Rogers, 2003; J Tennant, pers. obs., 2014). The higher degree

of sculpting of the osteoderms was regarded as ontogenetic variation by Schwarz-Wings

et al. (2011), but all other specimens of Alligatorellus also appear to represent mature

individuals. Therefore, the greater degree of sculpting observed in the osteoderms of MfN

MB. R. 4317.1-12 may represent a taxonomic difference. The position of the dorsal keel on

these osteoderms, and the lack of symmetry in their outlines in dorsal aspect also represent

differences between the osteoderms of MfN MB. R. 4317.1-12 and those observed in

other specimens assigned to Alligatorellus. Additionally, the limb ratios presented in

Schwarz-Wings et al. (2011), p. 203, Table 2) imply that this specimen is allometrically

quite distinct from Alligatorellus, and perhaps more closely related to Alligatorium. For

now, we consider MfN MB. R. 4317.1-12 to be an indeterminate atoposaurid pending

its inclusion in a comprehensive species-level phylogenetic analysis of Atoposauridae

(J Tennant & PD Mannion, 2014, unpublished data).

DISCUSSION
Osteoderm morphology in atoposaurid systematics
The morphology of the parasagittally-arranged postcranial osteoderms of atoposaurids

has not previously been regarded as an important characteristic in atoposaurid taxonomy,

generally due to their relatively rare preservation in situ (e.g., Buscalioni & Sanz, 1990a;

Michard et al., 1990; Wu, Sues & Brinkman, 1996). The exception to this is a study of

western European specimens by Schwarz-Wings et al. (2011). However, as noted here

for specimens referred to Alligatorellus, subtle differences in osteoderm morphologies,

particularly the extent, position, and continuity of the longitudinal keels on the dorsal

surfaces, can prove to be diagnostic at species level.

The pattern of ornamentation on the osteoderms of atoposaurid taxa, as with other

osteoderm-bearing crocodylomorphs (Vickaryous & Hall, 2008), is similar to that seen in

dermatocranial ornamentation, particularly with respect to the dorsal surface of the skull

table. Exceptions to this are Atoposaurus and the putative atoposaurid Karatausuchus, in

which there is no evidence of cranial sculpting, and no evidence of preserved osteoderms

(Wellnhofer, 1971). Furthermore, the general distribution of osteoderms in Alligatorellus

is similar to that in basal crocodylomorphs such as protosuchians, sphenosuchians and

the enigmatic taxon Hoplosuchus kayi (Gilmore, 1926; J Tennant, pers. obs., 2014), which

have biserial rows of imbricated, rectangular dorsal osteoderms that might have served

in a more functional support role than that proposed for atoposaurids (Clark & Sues,

2002; Pol et al., 2004). There remains the possibility that osteoderm morphology varies

intraspecifically, with multiple morphotypes represented within a population, as is the

case in some other archosaurs (e.g., ankylosaurs Burns, 2008). However, sample sizes are

currently too small to ascertain if this might be the case for atoposaurids. Nevertheless,

unequivocal intrageneric differences in osteoderm morphology are observed between
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Alligatorium and Theriosuchus (e.g., Owen, 1879; Wellnhofer, 1971; Wu, Sues & Brinkman,

1996), prompting consideration of its utility for systematic placement of Alligatorellus.

Establishing the positional homology of osteoderms is important for evaluating

taxonomic status in many tetrapod groups, including crocodylians (Ross & Mayer, 1983),

aetosaurians (Parker, 2007; Parker & Martz, 2010), and chronosuchians (Buchwitz et al.,

2012). This is difficult in the case of less complete or disarticulated specimens, such as

that described by Schwarz-Wings et al. (2011) as Alligatorellus sp., comprising articulated

and disarticulated elements which they considered to represent a single individual with

heterogeneous osteoderm morphology. In Alligatorellus, both the positional homology and

differences in morphology in the discrete axial regions are diagnostic at species level. There

are four regions: cervical (or nuchal), dorsal, sacral, and caudal. These regions typically

comprise continuous rows of anteroposteriorly arranged (paramedian or paravertebral)

osteoderms. On the basis of osteoderm morphology and configuration, Alligatorellus

differs from Theriosuchus pusillus and advanced eusuchians (e.g., Leidyosuchus) which have

the ventral body encased within an articulating (but not overlapping or imbricating) shield

of parasagittal rows of singular osteoderms (Owen, 1879; Brochu, 1997). It also differs from

Alligatorium, in which osteoderms bear no dorsal keel, and from Montsecosuchus which

has two to three rows of non-imbricating, and longitudinally oval dorsal osteoderms.

Below, we discuss the three different morphotype series found in specimens ascribed to

Alligatorellus.

A. bavaricus morphotype
The dorsal keel in osteoderms of A. bavaricus is in a more medial position nuchally,

gradually migrating laterally along the dorsal series before becoming medially placed in the

sacral and caudal series (Fig. 8A). Throughout this gradation, individual osteoderms are

similarly robust, but adopt an increasingly more sub-rectangular to elliptical morphology

posteriorly. Whereas they imbricate in the dorsal series, this change in shape leads to

them abutting one another longitudinally, with no overlap. The longitudinal keel always

occupies the entire length of the dorsal surface, and becomes more prominent posteriorly.

There is a caudal ventral series of secondary osteoderms, but these are few in number

and do not extend beyond the anterior half of the tail. This is similar to the condition in

Montsecosuchus depereti (Buscalioni & Sanz, 1990a), but contrasts with Theriosuchus, in

which they extend to the end of the caudal series. In contrast to A. beaumonti, the dorsal

keel observed in sacral and anterior caudal osteoderms of A. bavaricus never develops an

incipient posterior projection. It is likely that the ‘accessory osteoderms’ of Alligatorellus

bavaricus described by Wellnhofer (1971) are the result of incomplete osteoderm

development: they appear to be mostly comprised of the longitudinal keel, which forms

as part of the earliest phase of osteoderm development (Vickaryous & Hall, 2008).

A. beaumonti morphotype
The biserially arranged osteoderms of A. beaumonti form a continuous dorsal shield,

similar to Theriosuchus pusillus and other atoposaurids (Fig. 3). Their longitudinally

imbricating arrangement is comparable to that of extant alligatoroid species such as
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Figure 8 (A) Line drawings of the dorsal osteoderms of A. bavaricus; (B) line drawings of the cervical
and dorsal osteoderm series of A. beaumonti; (C) Line drawing of a dorsal osteoderm of the specimen
described as Alligatorellus sp. (MfN MB. R. 4317.1-12) by Schwarz-Wings et al. (2011), but considered
here as Atoposauridae indet.

Caiman crocodilus and Alligator mississippiensis (Burns, Vickaryous & Currie , 2013), but

with fewer paramedian dorsal series. The extent of the caudal ventral series is much greater

than in A. bavaricus, forming a complete dermal coating. The distal-most osteoderms are

small, seemingly under-developed, sculpted elements. In the caudal series, the longitudinal

ridges are pronounced, longitudinally extensive, and medially placed, similar to A.

bavaricus. The more sacrally placed caudal elements have less pronounced keels than A.

bavaricus. They also become smaller and more ovate, with the ridges gradually almost

disappearing, and only occupying the posterior portion of each element, whereas sculpting

remains the same. This skewing of the keels is most pronounced in the dorsal and sacral

osteoderms, where they form rounded protrusions on the dorsal side and become laterally

displaced on the ventral series. This unusual shift is particularly evident in the dorsal series,

where the lateral keel becomes more prominent and more anteroposteriorly extensive,

forming a distinct step from the main body of each osteoderm (Fig. 8B). The ventral

and dorsal morphology is quite similar, with the ventral keels almost seeming to diverge

ventrally with each accompanying rib. The sacral and anteriormost caudal osteoderms

develop an incipient lateral projection, almost appearing to diverge into two individual

elements medial to this. The ventral series either terminates around the position of the

third dorsal rib, or is not preserved anteriorly from this point. The dorsal series adopts a

heterogeneous range of morphologies, with some elements reducing to around one-sixth

the size of the other osteoderms more nuchally, and with all losing the presence of the

keel. This contrasts with Alligatorium meyeri and Theriosuchus pusillus, where they are

morphologically continuous.

MfN MB. R. 4317.1-12 (‘Alligatorellus sp.’) morphotype
The deeper sculpting present in this specimen was ascribed to ontogenetic variation by

Schwarz-Wings et al. (2011), based on its larger size compared to other specimens of
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Alligatorellus (Fig. 8C). Maturity of the type specimens of both species of Alligatorellus

is discussed above, as are differences in osteoderm morphology, suggesting that this

specimen represents a distinct taxon from Alligatorellus. These differences include the

more medial position of the keel in MfN MB. R. 4317.1-12, and the lateral deflection of the

body of the osteoderms adjacent to this. The keel is also not as longitudinally continuous

in MfN MB. R. 4317.1-12 as it is in A. beaumonti and A. bavaricus. Additionally, the lateral

edge is serrated, and there are unsculpted areas on the dorsal surface. Moreover, they are

less robust overall than the other specimens of Alligatorellus, in spite of their greater size,

and overall appear similar to the osteoderm ascribed to Theriosuchus sp. by Wu, Sues &

Brinkman (1996).

The taxonomic validity of Atoposaurus and Alligatorium
Alligatorellus beaumonti coexisted with Atoposaurus jourdani and Alligatorium meyeri in

eastern France, while Alligatorellus bavaricus lived alongside Atoposaurus oberndorferi and

possibly Alligatorium franconicum and Alligatorium paintenense in southeastern Germany

(Wellnhofer, 1971; Figs. 1, 2). This high diversity of atoposaurids in the Late Jurassic of

Germany and France, combined with potential juvenile features in Atoposaurus, has led

some to suggest that Atoposaurus might in fact represent a juvenile specimen of one of the

other sympatric atoposaurid species (Buscalioni & Sanz, 1988). Furthermore, Benton &

Clark (1988) suggested that Atoposaurus, Alligatorellus and Alligatorium might represent a

single growth series.

Ontogenetic allometric variation has received considerable attention in extant

crocodylians, particularly in population-level studies (e.g., Dodson, 1975). Through

crocodylian ontogeny, several allometric relationships have been recognised in different

taxa: (1) the skull lengthens, and becomes more dorsoventrally flattened and laterally

compressed in Caiman (Monteiro & Soares, 1997; Monteiro, Cavalcanti & Sommer III,

1997); (2) the skull lengthens and widens in Alligator sinensis (Wu et al., 2006), Crocodylus

moreletii (Platt et al., 2009) and Crocodylus siamensis (Chentanez, Huggins & Chentanez,

1983), as does the snout in Alligator sinensis; (3) reduction in relative orbit size to the skull

occurs in Crocodylus acutus, Gavialis gangeticus, Mecistops cataphractus and Tomistoma

schlegelii (Piras et al., 2010); and (4) the orbit, snout and skull shape changes through

ontogeny in Caiman latirostris (Verdade, 2000). However, as Verdade (2000) noted, many

of these allometric factors covary with both size and ontogenetic stage, and therefore it is

often difficult to interpolate from these allometric relationships to determine an ontogenic

stage in fossil taxa.

To test the hypothesis that Alligatorellus, Alligatorium and Atoposaurus represent a

single ontogentic series, or that Atoposaurus is a juvenile of at least one of the other taxa,

we plotted a number of anatomical measurements (skull width, snout length, and orbit

length) for each of the species against skull length, and also carried out a covariance-based

Principal Components Analysis (PCA) in R (R Development Core Team, 2014) (Fig. 9).

An increase in skull width and snout length relative to skull length is seen in both the

French and German atoposaurid groups, although this is much more pronounced in
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Figure 9 Morphometric plots of the holotype specimens of the Late Jurassic atoposaurids Alligatorel-
lus, Alligatorium, and Atoposaurus. (A) Skull length versus skull width; (B) skull length versus snout
length; (C) skull length versus orbit length; and (D) PCA plot for all specimens based on six primary
measurements (see text and Data S1 for details). Squares represent French taxa, and circles represent
German taxa.

the German specimens as a result of the longirostrine form of Alligatorium franconicum

(Figs. 9A and 9B). However, this trend is not entirely linear, with Alligatorellus beaumonti

having a distinctly longer, but almost equally wide, skull relative to Atoposaurus jourdani.

A similar pattern is recorded for orbit length relative to skull length, although this trend

is considerably less pronounced in the German taxa, and there is little difference between

Atoposaurus jourdani and Alligatorellus beaumonti, despite an almost doubling of skull

length (Fig. 9C). If Atoposaurus, Alligatorellus, and Alligatorium were part of the same

growth series, we would expect a consistent relationship between the two geographic

groups in each of these aspects, a pattern not produced here.

Our PCA of six primary measurements (skull length, skull width, orbit length, ulna

length, femur length and tibia length) shows a distinct pattern, with the three genera

separated in morphospace, especially along PC-1 (Fig. 9D). Furthermore, neither the

French or German specimens show equivalent distributions to each other, which might

be expected if each basin records the same taxon along one growth series. The two

Atoposaurus species are distinguished by the PC-1 (94.1% variance). Alligatorellus species

are weakly distinguished from each other by PC-2 (2.8% variance), but show almost

no variation in PC-1. Whereas the two Alligatorium species are strongly distinguished

from each other on PC-2, they are closely united by PC-1 (Fig. 9D). As such, we find no

convincing uni-directional evidence that Atoposaurus, Alligatorellus, and Alligatorium form

a single growth series of one species. Although we cannot fully preclude the possibility
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that Atoposaurus represents an immature specimen of either Alligatorellus or Alligatorium,

below we discuss other anatomical features that support its taxonomic validity.

Atoposaurus is unique among all unequivocal atoposaurids in lacking osteodermal

armour. Schwarz-Wings et al. (2011) suggested that this might merely be a taphonomic

artefact; however, preservational selectivity of this nature seems unlikely given that there

is no clear reason why similarly ossified parts of the skeleton would undergo differential

preservation. Combined with its diminutive size, the absence of any cranial sculpting,

and lack of calcified palpebrals, the absence of osteoderms might suggest a juvenile

status. Furthermore, Atoposaurus looks superficially similar to a juvenile specimen of the

alligatoroid Diplocynodon from Messel (Eocene; Delfino & Sánchez-Villagra, 2010, Fig. 3A),

in terms of the relatively long caudal vertebral series, large orbits, lack of ossification of

the dermal armour, and proportionally short skull. As such, Atoposaurus superficially

takes on the appearance of more advanced eusuchians, while retaining paedomorphic

characteristics (e.g., the proportionally large orbits). In crocodylians, the initiation of

osteoderm ossification is usually substantially delayed relative to skeletal ossification

(Vickaryous & Hall, 2008), so it is difficult to infer a more accurate ontogenetic age for

Atoposaurus specimens based solely on a lack of osteoderms. However, there are additional

morphological aspects that demonstrate that Atoposaurus might not be a juvenile.

Similar to most other atoposaurids, Atoposaurus has a relatively short, low, acute,

triangular skull. However, as with some theropod dinosaurs, the extant crocodylian

Osteolaemus, and perhaps even the alligatoroid Alligator, shortening of the rostral region

may be a paedomorphic feature, with the morphology similar to juveniles and sub-adult

specimens of Melanosuchus (the black caiman) (Foth, 2013). A platyrostral skull is also

known in basal eusuchians such as Iharkatosuchus maxakii (Osi, Clark & Weishampel,

2007), and is distinct from the majority of contemporaneous crocodylomorphs, including

goniopholidids and thalattosuchians. Heterochrony in crocodylomorphs may be directly

related to body size or diet, as atoposaurid species and Osteolaemus are relatively small

forms that occupy distinctive ecologies. However, patterns of heterochrony, particularly

relating to paedomorphosis, in ‘dwarfed’ species are currently poorly understood in

crocodylomorphs, but could be responsible, at least in part, for the lack of osteoderm

ossification in Atoposaurus.

The degree of suturing between the vertebral centrum and neural arch provides

ontogenetic information (Mook, 1933; Brochu, 1996). Closure of cervical sutures is a

consistent indicator of morphological maturity, and is known in basal crocodylomorphs

(e.g., thalattosuchians; Delfino & Dal Sasso, 2006) and advanced eusuchians (Brochu,

1996). In Atoposaurus jourdani, the neural arches are fused to the centra (MNHN 15680;

J Tennant, pers. obs., 2013), which implies that this specimen represents a more mature

growth stage despite the size of the individual. Furthermore, it is interesting to note that

other putative atoposaurids of diminutive size, such as the 160 mm long Karatausuchus

(Efimov, 1976), also lack osteoderms, suggesting that osteoderm development might be

positively correlated with body size in atoposaurids. We therefore suggest that Atoposaurus

represents an extreme case of dwarfism.
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Alligatorium is currently composed of three species: A. meyeri from Cerin, France

(Vidal, 1915), and A. franconicum (Ammon, 1906) and A. paintenense (Kuhn, 1961)

from Painten, central Bavaria, Germany. However, based on the figures and descriptions

provided by Wellnhofer (1971), A. franconicum (an articulated hindlimb and pelvic girdle)

cannot be distinguished from A. paintenense (a near-complete, articulated skeleton), aside

from slight differences in femur-to-tibia length proportions. Given that both specimens are

from the same locality, we tentatively conclude that they do not represent distinct species,

and regard A. paintenense (Kuhn, 1961) as synonymous with A. franconicum (Ammon,

1906), pending the relocation of the type material and/or discovery of new material. The

type specimen of A. paintenense is clearly distinct from A. meyeri and both species of

Alligatorellus, based on its more longirostrine snout, and dorsal osteoderms which each

possess a longitudinal keel and an anterolateral hook (Wellnhofer, 1971). Alligatorium

meyeri can be distinguished from Alligatorellus based on the absence of a longitudinal

keel on all osteoderms in the latter taxon, as well as disparity in the cranial sculpting

between the two taxa. As well as differing from Alligatorellus and Alligatorium in terms of

the absence of osteoderms, Atoposaurus can also be distinguished via caudal osteoderm

counts, with ten less caudal vertebrae in the latter taxon (the number is unknown for

Alligatorium). A higher number of caudal vertebrae in Atoposaurus is additional evidence

that this taxon is not an immature individual of at least Alligatorellus, given that we would

not expect an individual to lose vertebrae with increasing maturity. In summary, we retain

Alligatorellus, Alligatorium and Atoposaurus as distinct atoposaurid genera, with each

genus comprising a valid French and German species.

European atoposaurid diversity
The Late Jurassic–Early Cretaceous of Europe records high atoposaurid diversity, compris-

ing the multispecific genera Alligatorellus, Alligatorium, Atoposaurus and Theriosuchus, as

well as Montsecosuchus depereti (Gervais, 1871; Owen, 1879; Wellnhofer, 1971; Buscalioni

& Sanz, 1990a; Brinkmann, 1992; Schwarz & Salisbury, 2005). Currently valid European

species of Theriosuchus include: T. guimarotae from the Kimmeridgian of Portugal

(Schwarz & Salisbury, 2005); T. pusillus from the Berriasian of England (Owen, 1879; Salis-

bury, 2002); T. ibericus from the Barremian of Spain (Brinkmann, 1989; Brinkmann, 1992);

and T. sympiestodon from the Maastrichtian of Romania (Martin, Rabi & Csiki, 2010; Mar-

tin et al., 2014). However, support for the monophyly of these species of Theriosuchus has

yet to be adequately evaluated. Such evaluation is particularly required in view of the spa-

tiotemporal distribution of the genus as currently understood, which spans some 90 mil-

lion years and includes a putative Asian occurrence (T. grandinaris; Lauprasert et al., 2011).

Along with these relatively well-known species, there is a host of European material

ascribed to Theriosuchus sp. from: the Kimmeridgian of northwest Germany (Thies,

Windolf & Mudroch, 1997; Karl et al., 2006); the Berriasian of Scandinavia (Schwarz-

Wings, Rees & Lindgren, 2009); the Berriasian of Charente, France (Poueche, Mazin &

Billon-Bruyat, 2006); the Berriasian–Valanginian of northern Germany (Hornung, 2013);

the Valanginian–Barremian of England (Buffetaut, 1983); and the Hauterivian–Barremian

Tennant and Mannion (2014), PeerJ, DOI 10.7717/peerj.599 26/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.599


of Iberia (Buscalioni & Sanz, 1984; Buscalioni & Sanz, 1987b; Ruiz-Omenaca et al., 2004;

Buscalioni et al., 2008; Canudo et al., 2010). Indeterminate atoposaurid remains from

the Cenomanian of France (Vullo & Néraudeau, 2008), and mid-Coniacian Kaiparowits

Formation of Utah, US (Eaton et al., 1999), as well as Theriosuchus-like teeth from

the Santonian of Hungary (Ösi et al., 2012) and the Upper Campanian-Maastrichtian

of Portugal (Galton, 1996), bridge the temporal gap between these Late Jurassic–Early

Cretaceous atoposaurid remains and Theriosuchus sympiestodon from the latest Cretaceous

of Romania (Martin, Rabi & Csiki, 2010; Martin et al., 2014). They also hint at a cryptic

diversity of mid-Late Cretaceous atoposaurids, as well as their presence in North America.

Additionally, tracks from the Kimmeridgian of Asturias, Spain (Avanzini, Piñuela &

Garcia-Ramos, 2010), might be attributable to atoposaurids, extending their Late Jurassic

geographic range. The taxonomic utility of crocodyliform teeth clearly requires further

investigation, and may help to resolve scenarios where multiple, but clearly distinct, tooth

morphotypes are present in the same locality (e.g., the presence of atoposaurid-like teeth

alongside Theriosuchus throughout the late Berriasian-early Aptian Wealden Group, UK;

Sweetman, 2011).

It is possible that the high diversity of Late Jurassic to Early Cretaceous European

atoposaurids is related to the island archipelago system that existed during this time

(Fig. 1), with epicontinental seas driven by fluctuating highstand sea levels (Ziegler, 1988;

Schwarz & Salisbury, 2005; Miller et al., 2005). The separation of areas (e.g., basins in

present day Cerin and Bavaria) might have led to allopatric speciation, evidenced by closely

related species found in each region (i.e., Alligatorellus beaumonti, Alligatorium meyeri

and Atoposaurus jourdani in Cerin, and Alligatorellus bavaricus, Alligatorium franconicum

and Atoposaurus oberndorferi in Bavaria). The small body size of atoposaurids in general

might also be explained by these environmental conditions, via ecological partitioning

with other contemporary crocodyliforms, including thalattosuchians and goniopholidids.

There is potentially evidence for niche partitioning in the Early Cretaceous of western

Europe, when comparably small-bodied bernissartiid crocodylomorphs lived alongside

Theriosuchus. Whereas both groups had a heterodont dentition, bernissartiids also

possessed tribodont teeth, suited to a durophagous or conchifragous diet (Buffetaut

& Ford, 1979; Sweetman, Pedreira-Segade & Vidovic, in press). This dietary partitioning

might have been key to two otherwise similar groups living side-by-side. It is also possible

that the small body size of atoposaurids (and potentially bernissartiids) reflects insular

dwarfism driven by a sea level-driven reduction in range size, as also proposed for the

contemporaneous Late Jurassic German sauropod dinosaur Europasaurus (Sander et al.,

2006; Marpmann et al., in press). This reasoning is also supported by the persistence of

atoposaurids into the Maastrichtian as part of an assemblage of insular island dwarfs in

a range of environments and localities, including the Haţeg Basin of Romania (Benton et

al., 2010; Csiki & Benton, 2010; Martin, Rabi & Csiki, 2010; Martin et al., 2014). Dwarf

crocodiles are also known from the Quaternary of the Aldabara Atoll (western Indian

Ocean), with Aldabrachampsus dilophus (Brochu, 2006) indicating that island dwarfism in
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crocodylomorphs might not be an uncommon feature. The existence of three sympatric

lineages of the dwarf crocodile Osteolaemus in present day western Africa (Eaton et al.,

2009; Shirley et al., 2013) also supports the idea that atoposaurids could similarly have had

multiple co-existing lineages, such as that seen in the French and German basins.

Currently, testing of these hypotheses is limited as a result of the small number of

localities preserving atoposaurids. To support the hypothesis of insular dwarfism, basal

members of Atoposauridae should be expected to be much larger than these Late Jurassic

European forms; however, we will only be able to demonstrate this with the discovery of

well preserved, stratigraphically older forms, from non-island archipelago settings.

CONCLUSIONS
We have presented a new description of a Late Jurassic German atoposaurid specimen

previously referred to a subspecies of Alligatorellus beaumonti, otherwise known only

from coeval deposits in France. We recognise it as a distinct species of Alligatorellus,

based on numerous features across the skeleton, and re-rank it as Alligatorellus bavaricus.

Emended diagnoses are provided for the genus, as well as the French and German species.

Comparisons with contemporaneous atoposaurids support the validity of Atoposaurus and

Alligatorium, alongside Alligatorellus, with a species of each genus present in Late Jurassic

basins in both France and Germany, providing evidence for sea level-driven allopatric

speciation.
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Anatomical Abbreviations

Af antorbital fenestra

Cav caudal vertebra

Cev cervical vertebra

Ch chevron

C coracoid

Co caudal osteoderm
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Dov dorsal vertebra

Dr dorsal ridge

Ds dermal sculpting
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En external nares

Fi fibula

Fr frontal

Hu humerus

Il ilium

Is ischium

Ju jugal

La lacrimal

Ltf lateral temporal fenestra

Ma manus

Man mandible

Max maxilla

Mp manual phalanx

MT metatarsal

Na nasal

No nuchal osteoderm

Or orbit

Pa parietal

Pal palatine

Pe pes

Pmn premaxilla-maxilla notch

Pmx premaxilla

Po postorbital

Pp pedal phalanx

Pu pubis

Ra radius

Qj quadratojugal

Qu quadrate

Rad radiale

Ri rib

Sc scapula

So sacral osteoderm

Sof suborbital fenestra

Sq squamosal

Stf supratemporal fenestra

Sym symphysis

Ti tibia

Ul ulna

Uln ulnare

Up ungual phalanx
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Jurassic dwarf sauropod Europasaurus holgeri (Dinosauria, Camarasauromorpha):
ontogenetic changes and size dimorphism. Journal of Systematic Palaeontology In Press
DOI 10.1080/14772019.2013.875074.

Martin JE, Rabi M, Csiki Z. 2010. Survival of Theriosuchus (Mesoeucrocodylia: Atoposauridae)
in a Late Cretaceous archipelago: a new species from the Maastrichtian of Romania.
Naturwissenschaften 97:845–854 DOI 10.1007/s00114-010-0702-y.
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