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ABSTRACT
The Bertalanffy–Pütter growth model describes mass m at age t by means of
the differential equation dm/dt = p �ma - q �mb. The special case using the von
Bertalanffy exponent-pair a = 2/3 and b = 1 is most common (it corresponds to
the von Bertalanffy growth function VBGF for length in fishery literature).
Fitting VBGF to size-at-age data requires the optimization of three model parameters
(the constants p, q, and an initial value for the differential equation). For the
general Bertalanffy–Pütter model, two more model parameters are optimized
(the pair a < b of non-negative exponents). While this reduces bias in growth
estimates, it increases model complexity and more advanced optimization methods
are needed, such as the Nelder–Mead amoeba method, interior point methods, or
simulated annealing. Is the improved performance worth these efforts? For the case,
where the exponent b = 1 remains fixed, it is known that for most fish data any
exponent a < 1 could be used to model growth without affecting the fit to the
data significantly (when the other parameters were optimized). We hypothesized that
the optimization of both exponents would result in a significantly better fit of the
optimal growth function to the data and we tested this conjecture for a data set
(20,166 fish) about the mass-growth of Walleye (Sander vitreus), a fish from
Lake Erie, USA. To this end, we assessed the fit on a grid of 14,281 exponent-pairs
(a, b) and identified the best fitting model curve on the boundary a = b of the
grid (a = b = 0.686); it corresponds to the generalized Gompertz equation
dm/dt = p �ma - q � ln(m) �ma. Using the Akaike information criterion for model
selection, the answer to the conjecture was no: The von Bertalanffy exponent-pair
model (but not the logistic model) remained parsimonious. However, the bias
reduction attained by the optimal exponent-pair may be worth the tradeoff with
complexity in some situations where predictive power is solely preferred. Therefore,
we recommend the use of the Bertalanffy–Pütter model (and of its limit case, the
generalized Gompertz model) in natural resources management (such as in fishery
stock assessments), as it relies on careful quantitative assessments to recommend
policies for sustainable resource usage.
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INTRODUCTION
Size-at-age (length or mass) is an important metric about animals (Google search:
ca. 286,000 results), in particular for fisheries management (Ogle & Iserman, 2017).
Consequently, various models for size-at-age have been proposed, whereby models aiming
at biological explanations for growth focus on mass-at-age (c.f. Ursin, 1979; Enberg,
Dunlop & Jørgensen, 2008). Here, we investigate a general class of growth models in terms
of the Von Bertalanffy (1957) and Pütter (1920) differential equation (1):

dm tð Þ
dt

¼ p �m tð Þa � q �m tð Þb (1)

Equation (1) describes body mass (weight) m(t) > 0 as a function of age t, using five
model parameters: a, b, p, q, m0. Thereby, m0 > 0 is an initial value, that is, m(0) = m0.
The exponent-pair a < b (“metabolic scaling exponents”) is non-negative and also the
constants p and q are non-negative. Several “named models” are special instances of (1):
To describe mass-at-age, Von Bertalanffy (1957) suggested the exponent-pair a = 2/3
and b = 1,West, Brown & Enquist (2001) proposed a = 3/4, b = 1, other authors considered
a = 1, b = 2 (logistic growth of Verhulst, 1838), Richards (1959) recommended a = 1
while retaining b > 1 as a free parameter, and the generalized Bertalanffy growth model
assumes b = 1, using a < 1 as parameter (recommended, e.g., by Pauly, 1981). There are
also models of type (1) for length-at-age, notably VBGF, the von Bertalanffy growth
function with exponent-pair a = 0, b = 1 (bounded exponential growth) which is widely
used in fishery literature (Google search for “VBGF, fish”: ca. 15,000 results). VBGF is
equivalent to the model with the von Bertalanffy exponent-pair (a = 2/3, b = 1) for
mass-growth (Von Bertalanffy, 1957).

In the case of equal exponents, the generalized Gompertz differential equation (2)
replaces Eq. (1). Its right-hand side is the limit of the right-hand side of (1), assuming b
approaches a. Its special case a = 1 defines the Gompertz (1832) model;

dm tð Þ
dt

¼ p �m tð Þa � q � ln m tð Þð Þ �m tð Þa (2)

In general, the solutions of (1) and (2) involve non-elementary functions, namely
hypergeometric functions and exponential integrals, respectively (Ohnishi, Yamakawa &
Akamine, 2014; Marusic & Bajzer, 1993; further explanations: Seaborn, 2013). The
solutions of the more special “named models” are elementary.

Concrete values for the parameters of Eqs. (1), (2) are obtained by identifying a
growth function (i.e., a concrete solution of the differential equations) with the best fit to
the data. Experience has shown that no single of the above-mentioned “named models”
was exactly correct for all species (c.f. Killen, Atkinson & Glazier, 2010 for fish;White, 2010
for mammals). Renner-Martin et al. (2018) explored the situation for the generalized
von Bertalanffy model (the exponent b = 1 is held fixed) and found that for most species
of fish there was a high variability, meaning that any exponent (i.e., 0 � a < 1) could be
used to model growth without affecting the fit to the data significantly (when the other
parameters p, q, m0 were optimized). They explained this by data quality, as for
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wild-caught fish and also for wildlife data there is always the problem of “haphazard”
sampling, which may result in unreliable growth parameter estimates (Wilson et al., 2015).

Is this high variability for fish data still observed, if both exponents (a, b) of the
Bertalanffy–Pütter model are optimized? We explore the region of near-optimal exponent-
pairs and hypothesize that the additional degree of freedom for the optimization of the
exponent-pair (instead of the optimization of one exponent, only) would result in a
significantly better fit of the optimal growth function and thus in a small region of
near-optimality. Thereby, the term “near-optimal” (see Discussion) may be defined
by different measures of the goodness of fit. Here we consider two such measures: One is
the sum of squared errors (SSE), which comes from the most common approach to
data fitting, the method of least squares; the other is the Akaike weight, which comes
from the theory of model selection by means of the Akaike (1974) information criterion
(AIC). For a discussion of alternative information measures, c.f. Dziak et al. (2017).

MATERIALS AND METHODS
Study overview
We started with a literature search for mass-at-age data of fish. These data are exceptional,
as most growth data for fish are length-at-age. In view of the computational complexity
of optimizing the Bertalanffy–Pütter-model, we focus on one case study and identify
optimal exponents for one fish data-set only.

Technically, given the data, we studied the function SSEopt(a, b), which for each
exponent-pair (a, b) identifies the minimal SSE that can be obtained optimizing the
parameters p, q, m0. As we aimed at evaluating and minimizing this target function SSEopt
on a large grid of exponent-pairs, a fast and reliable optimization method was needed.
We therefore started with several advanced general-purpose methods and a coarse grid in
order to obtain a rough idea about the shape of SSEopt and the performance of the different
methods. We then selected a method (interior point optimization) and applied it to a
refined grid. Finally, we developed a custom-made method (based on simulated annealing)
to identify the globally optimal exponent-pair (which no longer needed to be a grid
point). As a complication, for the chosen data also the boundary diagonal a = b of the
parameter region (i.e., 0 � a < b) needed to be considered, whence the same computations
were repeated for this diagonal. This search of optimal parameters for Eqs. (1) and (2)
used Mathematica 11.3.

For a given exponent-pair (a, b), we then assessed the goodness of the fit of its optimal
model curve to the data in relation to the globally optimal exponent pair (and its best-
fitting model curve). We plotted the respective model curves, compared SSEopt(a, b) with
the minimal value of SSEopt, and used this information to compute also the respective
values of AIC and the Akaike weights. We outline the details of our methodological
approach below. There we also mention alternative approaches (i.e., different definitions of
the target function). With respect to the results of this paper, we expected that different
approaches might result in different optimal exponent-pairs (because then a different
function is optimized). However, we expected that the general feature of the present
optimization problem, such as the flatness of the target function in a large neighborhood of
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the optimal exponent-pair (whence, e.g., elementary methods of optimization may
fail) will persist independently of the other methodological details. We therefore selected
a relatively elementary approach that nevertheless could be adapted to any of the
other mentioned methodological variants.

Data
We used “FSAdata WalleyeErie2” from Ogle (2018) about Walleye (Sander vitreus)
from Lake Erie, USA, and retrieved a sub-sample (20,166 data-points) about male fish.
The data informed about mass (in gram) and age (in years from otholits) of wild-caught
fish. We applied MS Excel to retrieve the data and to pivot them (i.e., to identify
average weights for the age classes). Figure 1 plots the data and the average weights.

There were few data about young fish (14 of age 0) and likewise few about older fish
(22 with age 16–20 years), and none about fish with age 21–29 (maximal observed age
reported in FishBase: Froese & Pauly, 2018). This may indicate gear bias (where small
or large fish were not adequately sampled). In order to obtain more balanced class-sizes,
smaller classes were merged; the outcome is Table 1, reporting of each class the average
mass at the average age. Thus, 13 classes representing larger samples were evaluated
instead of originally 20 age classes.

At first it may appear troubling to take more than 20,000 data points and then aggregate
them to merely 13 mass-at-age classes. However, for data fitting it was the distance
between the model curve and the average of each class that mattered. The distances
between the average and the other class data could not be improved by a growth model.
Further, in view of the large sample size it was reasonable to assume that average mass
might be normally distributed (even if mass itself might follow another distribution),
as in general average values are asymptotically normally distributed. However, we do not
use this assumption.

Figure 1 Weight-at-age and average weight (red dots) of male Walleye from Lake Erie.
Full-size DOI: 10.7717/peerj.5973/fig-1
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General approach to data fitting
Numerical instability tends to impede fitting the generalized Bertalanffy model (i.e.,
optimization of a, p, q, m0, when b = 1) to noisy data (Shi et al., 2014). Even for simple
models (meaning: certain values for the exponents are assumed and the other three
parameters are optimized) literature reported that optimization failed to converge
for certain data sets (Apostolidis & Stergiou, 2014). One of the reasons was the use of
parametrizations that require bounded growth functions (Cailliet et al., 2006), whereas
not all data may support bounded growth. Another reason was the observation that
even for simple models the problem of data fitting may overtask straightforward
optimization routines. Clearly, with more parameters to optimize the problem of
convergence becomes more demanding and also powerful methods slow down. In
order to avoid running into numerical instability by the use of too many parameters,
we used a grid search, where for each grid-point (exponent-pair a, b) we identified
model parameters (p, q, m0) that minimized the following function:

SSEopt a; bð Þ ¼ min
m0; p; q

SSEð Þ for growth functions with exponents a; b (3)

There are various improvements of regression models, such as mixed-effect models to
identify explanatory factors for growth (Strathe et al., 2010). However, such models
require highly controlled experiments, whereas the present data are about wild-caught fish
with unknown life history. In view of the difficulties with the convergence of optimization
we did not consider more complex model assumptions, such as heteroscedastic growth
that assumes a larger variance for a higher mass, or models that need additional parameters
to distinguish different growth phases (Manabe et al., 2018). Further, in order to allow
a meaningful visual comparison of the goodness fit of different model by an inspection
of the plotted model curves, we did not use weighted sums of squared errors. Examples

Table 1 Average weight-at-age (rounded) for male Walleye, based on ca. 20,000 age-weight data
points (rounded to one decimal for the ease of presentation; the computations of the paper used
data rounded to three decimals).

Age (years) Weight (g) Class size Comment

0 192.1 14

1 423.7 4,009

2 761.8 5,181

3 1018.0 3,870

4 1221.6 2,262

5 1442.8 1,519

6 1644.5 1,471

7 1802.0 690

8 1880.7 446

9.5 1895.3 430 classes 9 + 10

11 1982.6 105

12.4 2140.4 104 classes 12 + 13

15.3 2228.5 65 classes 14-20
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for weights used in literature are the counts of fish at age and the reciprocals of the
standard deviations of their masses. Otherwise, a curve whose plot appears to fit well may
actually fit poorly, if it misses a heavily weighed data point. Thus, the purpose
of optimization was the identification of a suitable growth curve for the considered
species and not the identification of a growth curve that would minimize errors in relation
to a given population. We did not simplify optimization by adding assumptions about
parameter values, for example, eliminating two parameters from optimization by using
a literature value for the initial condition m0 (rather than optimizing it) and using a
literature value for the asymptotic mass (defined below). In this case SSEopt(a, b) could
have been computed very fast from the optimization of only one parameter, but at the
cost of weakening the link to the data.

The use of grid-points helped to identify failures of optimization by a visual inspection
(e.g., a grid-point with exceptionally high SSEopt, when compared to neighboring grid-points).
In order to do not miss the optimum, we used different approaches to data-fitting to
identify and correct miscalculations. Thereby, computation time was an issue. For instance,
commercially available software packages for fisheries management use powerful numerical
methods to determine the model parameters even for the simple models (Mildenberger,
Taylor & Wolff, 2017). These methods aim at optimizing one given model, where computing
time is not an issue. Instead, here we aimed at optimizing a large number of models
simultaneously in order to explore the function SSEopt; that is, each grid point defined amodel
(defined from the exponent pair a, b) for which optimal parameters were identified.While for
each grid-point SSEopt could be obtained fast, optimizing over the whole grid was time
consuming. For example, covering the region 0� a� 1, a < b� 3 by a grid with neighboring
points at distance 0.01 would define 25,250 grid points. For this grid, assuming six
optimizations per minute would require 70 h of computing (CPU) time.

Optimization proceeded in three stages. First, SSEopt was computed on a coarse grid
(step-size 0.1) to sketch the shape of SSEopt and locate a region of near-optimal exponents.
This used methods of optimization that were fast, but not necessarily accurate. In the
second stage, the computations were repeated with a finer grid (step-size 0.01) and using
more accurate methods of optimization. These computations allowed to identify
candidates for the optimum. In the final stage a search for the global optimum was
performed, starting with these candidate points. The specific methods of optimization used
in each step are explained below (c.f. the survey of Cedersund et al., 2015).

In order to speed up computations all approaches solved the differential equations (1)
and (2) numerically (Leader, 2004). Using the analytic solutions of the differential
equations (available in Mathematica) would make data fitting time consuming even for a
given exponent pair. As the numerical methods used by Mathematica 11.3 work with high
precision, this did not compromise the accuracy of optimization.

Starting values for data fitting
For most iterative methods of optimization, reasonable starting values for the parameters
are needed to ensure convergence of optimization. For instance, the starting value for the
initial value m0 was the first data point of Table 1.
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For the other parameters, practitioners use various rules of thumb (Carvalho &
Santoro, 2007), which utilize general considerations about the possible shape of the
growth functions. For the typical solutions of (1) and (2) are increasing, bounded and
sigmoidal. However, there are also non-sigmoidal solutions, for example, a = 0, and
unbounded solutions, for example, q = 0 and p > 0. Initially the rate of growth increases,
until the inception point is reached. Subsequently it decreases to zero in the limit, when
the asymptotic massmmax is reached; there the right-hand side of (1) and (2), respectively,
vanishes. For Eq. (1) with a < b this results in the following equation:

mmax ¼ p
q

� �1=b�a

(4)

To obtain a starting value q0 for the parameter q, we assumed for the moment that the
asymptotic mass would exceed the maximal observed mass by 20%, that is, we solved
the equation mmax = 1.2 ·max(m) for q, referring to Eq. (4). This resulted in
q0 = p0/(1.2 ·max(m))b–a, where p0 was the starting value for p.

In order to obtain a starting value for p, we evaluated Eq. (1) approximately at t = 0,
using for the right-hand side the above mentioned starting value m0 for m and q0 for q.
As approximate value for the derivative, m′(0), we used the derivative at t = 0 of the
quadratic interpolation polynomial (Burden & Faires, 1993) through the first three points
listed in Table 1. This polynomial was an approximation for the growth function in
the neighborhood of t = 0. Solving (1) for p = p0 resulted in the following equation:

p0 ¼ m0 0ð Þ � 1:2b �max mð Þb
1:2b �max mð Þb �ma

0 � 1:2a �max mð Þa �mb
0

(5)

These formulas defined starting values form0, p, and q. The formulas were problematic for
exponents close to the diagonal, as the function p0 tends to infinity in the limit a/b.
Therefore, for exponents b = a + 0.01 we used simulated annealing (see below) in case
that optimization using these starting values did not converge.

Preparatory screening
SSEopt was computed for a coarse grid (distance 0.1 between adjacent points), using
two general purpose methods for global optimization in parallel, simulated annealing
and the Nelder–Mead amoeba method. Both methods are available for the Mathematica
function NMinimize.

We used simulated annealing, as we expected it to produce reasonable results. It used
random numbers as starting values (using multiple starting values) and then altered
them by random fluctuations, accepting parameters with lower values of SSE, but also
accepting with a certain probability (that became lower in subsequent iteration steps)
parameters with a higher SSE to escape from suboptimal local extrema (Vidal, 1993).
In order to ensure replicability, the default random seed 0 was used. Therefore, if SSE
was optimized repeatedly for the same grid-point, the outcome remained the same.

We used the amoeba method because it is fast. Given the exponent-pair a, b, the
method first evaluates four corners of a tetrahedron (simplex) in parameter space
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(dimensions m0, p, q) and successively applies reflections (moving the point with
highest SSE through the opposite side of the tetrahedron to a point with perhaps lower
SSE) and shrinking (zooming in to a local minimum point).

In order to avoid obviously meaningless parameter values, we added constraints to
ensure an in relation to the data biologically reasonable initial value m0 >10 and positive
parameters p > q.

Semi-automated optimization
In order to employ also methods developed specifically for the least squares method,
we used an alternative approach using the Mathematica function NonlinearModelFit.
It implements the most common methods for nonlinear regression.

The optimization loop assumed a fixed value for a, whereas b proceeded from
b = a + 0.01 to b = 2 with step size 0.01. Further, for each exponent a = n ·0.01 we plotted
the hitherto obtained values of SSEopt(a, b). If the plot showed a U-shape, then we
could identify a minimum of SSE on the line a = n ·0.01, b > a; otherwise (human
intervention) we added more values of b to the loop until we could discern the U-shape.
We thereby assumed that for still larger exponents b the fit could only become worse.
This assumption was corroborated by the initial screening.

The optimization started at a = 0, b = 0.01 with initial values for m0, p, and q explained
above. For the subsequent computations, where a was kept fixed and bmoved, the iterative
optimization at the next b, namely at b + 0.01, started with the optimal parameters
from the previous optimization (for b).

However, in order to ensure convergence (and an empirically meaningful outcome),
we minimized SSE subject to certain constraints (m0 > 10 and q > 0), whence many
common methods from regression analysis (e.g., Levenberg–Marquardt algorithm) were
not applicable. Instead, we used an interior point method. These methods (e.g., barrier
methods initially developed in the 1960s) became popular in 1984, when an interior
point method (Karmakar, 1984) solved linear optimization problems in polynomial time;
Forsgen, Gill & Wright (2002) refer to the “interior point revolution.” This setting was
also advantageous for the present problem.

Custom-made simulated annealing
Based on this preparatory work, we could evaluate SSEopt(a, b) for almost all grid points.
In order to improve the estimates of SSE at the best fitting grid points and to move
from there to the optimal exponent-pair (no longer a grid-point), we developed a custom-
made approach of simulated annealing. We used the general purpose method of
Mathematica in the preparatory screening, but its performance was suboptimal, whence
modifications were needed to ensure convergence in reasonable time. The main difference
to general purpose simulated annealing was the use of a (sort of) geometric Brownian
motion. For each step, rather than adding a small random number to the parameters,
they were multiplied by a random number, whence positive values were retained. The
optimization used a loop with 500,000 steps: It started with the parameter values obtained
from the preparatory optimization steps.
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RESULTS
Table 2 lists the optimal parameters for three exponent-pairs, Bertalanffy, logistic, and
the optimal pair (of Gompertz-type), and Fig. 2 visualizes the model curves defined
from these optimal parameters; all model curves remained reasonably close to the data.
Failing optimizations often converged to a curve close to the mean value of the average
masses. The following optimization aimed at finding improvements of SSEopt = 23,709
for the Bertalanffy-pair, which was obtained in the initial round of optimizations.

First round of optimization: We evaluated SSEopt at grid-points 0 � a � 1 and
a < b � 1.5, for growth functions (1) and at 0 � a = b � 1 for (2). These grid-points were
exponent-pairs at distance 0.1 between successive grid-points. For each grid-point the
better of the outcomes from (general purpose) simulated annealing and from the amoeba
method was used; SSEopt(0.7, 0.7) = 21,310 was optimal. However, the initial optimization
became problematic for b > 1.2 and it did not allow to decide, if optimization would
require a search in this problematic region. Further, it could not be decided if the optimum
would be located on or above the diagonal.

Second round of optimization: We conducted a systematic search (semi-automated
data fitting) confined to Eq. (1). It used a fine grid (distance 0.01 between successive
exponent-pairs), aiming at identifying for each exponent a with 0� a� 1 an exponent b > a
with minimal SSE. It was sufficient to screen exponents b � 2. The improved accuracy

Table 2 Optimal parameters for selected models.

Model Comment* a b m0 p q SSE

Bertalanffy First (a, b given) 2/3 1 203.8 11.2 0.86 23,709

Logistic First (a, b given) 1 2 301.716 0.528051 0.000253611 72,283

Optimal Third (a optimized) 0.686028 = a 175.67 21.3148 2.76054 21,286

Note:
* First and third refer to the initial and final rounds of optimization.

Figure 2 Comparison with the data of the growth curve using the Bertalanffy exponent-pair (red),
the logistic exponent pair (blue) and of the best fitting growth curve (black); parameter values as
in Table 2. Full-size DOI: 10.7717/peerj.5973/fig-2
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of this search was demonstrated for the Bertalanffy exponent-pair with a lower
SSEopt(0.67, 1) = 23534.6. Figure 3 plots the outcome from the optimization at 14,282 grid
points (exponent-pairs). The black dots indicate, for each exponent a, for which exponent b
the value of SSE was minimal. Thereby, SSEopt(0.67, 0.7) = 21287.1 was the least observed
optimized SSE for Eq. (1). This demonstrates that optimization showed the following
pattern: For a = 0 the minimum SSE was reached close to b = 2. For the following
values there was a distinct U-shape to be observed till a = 0.67. Finally, the optimum was
attained close to the diagonal a = b (dots moving upwards), but the optimum value
was increasing compared to the previous ones. This pattern supported the hypothesis that
the optimal SSE would be attained within the (topological closure of the) search region.
However, the computations did not allow to decide, whether the global minimum of SSE was
attained for b > a, that is, for Eq. (1), or for b = a, that is, Eq. (2). Further, optimization
proceeded smoothly till a = 0.7, but for larger exponents optimization became increasingly
more difficult and fewer results could be accepted. In particular, grid points near the diagonal
were problematic.

Third round of optimization: We tackled these issues using a global optimization.
It started with the near-optimal parameters found previously. For Eq. (1), starting from
a = 0.68 and b = 0.69, the least SSEopt(0.666703, 0.705181) = 21287.5 was achieved.
However, for Eq. (2), that is, on the diagonal a = b, a slightly better outcome
SSEopt(0.686028, 0.686028) = 21286.4 was obtained (parameters in Table 2). The custom-
made method of simulated annealing improved insofar upon the same method as
implemented by Mathematica (which was used in the initial step), as it was more accurate.

Figure 3 Contour plot of the optimal SSE on a grid of exponent-pairs with distance 0.01 between
adjacent points and for each exponent a, plot of the exponent-pair with smallest SSE (black dots).

Full-size DOI: 10.7717/peerj.5973/fig-3
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Further, despite the high number of computing steps its performance was more reliable
(no unexpected computer crashes).

In summary, during the three rounds of optimization the fit achieved by the
Bertalanffy exponent-pair (a = 2/3, b = 1 with SSEopt = 23,709) could be substantially
improved. The first round identified a better exponent-pair (a = b = 0.7 with SSEopt =
21,310). The second round, using more accurate computations, found a still better
exponent pair (a = 0.67, b = 0.7 with SSEopt = 21287.1). The final round converged to
the minimal SSEopt = 21286.4 at a = b = 0.686028. Thus, by using different exponent-pairs
and also by using more accurate optimization methods, SSEopt could be reduced by
10% from the initial estimate using the von Bertalanffy pair.

DISCUSSION
Optimization identified an exponent-pair that achieved a 10% reduction of SSEopt,
when compared to the von Bertalanffy-pair. Was this reduction worth the efforts?
The answer to this question depends on what notion of “near-optimality” is used
(considered in this section) and for what purpose the model is needed (considered in
the Conclusion).

An obvious definition of near-optimality would set a maximal percentage by which
the optimal SSE may be exceeded. However, the appropriate percentage may vary with
the data. Here, we explain a definition of near-optimality that refers to the Akaike
weight; it therefore has the same meaning for all data. Specifically, we used an index AICc

for small sample sizes (Burnham & Anderson, 2002; Motulsky & Christopoulos, 2003).
AICc was defined from the least SSE for the model with exponent-pair (a, b), that is,
SSE(model) = SSEopt(a, b), from the number N = 13 of data-points (size of Table 1
rather than the number of fish), and from the number K of optimized parameters:

AICc modelð Þ ¼ Nln
SSE modelð Þ

N

� �
þ 2 � K þ 2 � K � K þ 1ð Þ

N � K � 1
(6)

prob modelð Þ ¼ e�D=2

1þ e�D=2
;whereD ¼ AIC modelð Þ�AIC best fittingmodelð Þ. 0 (7)

The Akaike weight prob compares a model with the best fitting model in terms of the
least AICc: Its Akaike weight prob(model) is the probability that this model is true
(assuming that one of the two models is true); the maximal Akaike weight is 50%.
This interpretation is based on the assumption of normally distributed errors. As the data
were average values of large samples, this assumption was justified. However, the
Akaike weight may also be interpreted as just another measure of the goodness of fit to
the data; see below. Such an interpretation does not need the assumption of a normal
distribution.

Technically, the application of the above criteria requires that two distinctions are made:
First, the differential equations (1) and (2) that set the general framework for this
study need to be distinguished from the different growth models that may or may not
assume specific values for the exponent-pair. Thereby, each grid point defined a concrete
model of type (1) with an assumed exponent-pair (a, b); for example, logistic model with
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(a, b) = (1, 2). The (other) model parameters (m0, p, q) were optimized (data fitting).
However, the third round of optimization in addition sought for optimal exponents,
referring to the general Bertalanffy–Pütter model and the general Gompertz model,
respectively. Thereby, the AIC of models with assumed exponent-pairs was computed with
K = 4 (as implicitly also SSE was optimized). The AIC of the general Bertalanffy–Pütter
model and the general Gompertz model was computed with K = 6 and K = 5, respectively,
as also the exponents were optimized. Owing to this penalty for additional parameters,
the best fitting model in terms of the least SSE could have a higher (worse) AIC than other
models. Second, we interpreted the Akaike weights in two ways. If the AIC was computed
with the above explained correct number of parameters, the Akaike weights might be
interpreted in the usual way as probabilities about the truth of a model. However, we
also used the Akaike weights with an incorrect number of parameters, assuming K = 4
for all models; that is, also the models with optimized exponents were treated as if these
exponents were given in advance. For this application, the Akaike weight was merely a
measure of the good fit (low SSE) that was comparable across different data-sets, but not
a probability of truth.

We use the second interpretation to define acceptability and near-optimality
(Renner-Martin et al., 2018): A model defined from an assumed exponent-pair (a, b)
has an acceptable fit, if in comparison to the optimal exponent-pair its Akaike weight is
2.5% or higher (i.e., the lowest 5% of Akaike weights are deemed as inacceptable), whereby
all Akaike weights are computed with K = 4 (assuming that the optimal exponent-pair
was given in advance). The exponent-pairs with an acceptable fit define the region of near-
optimality. Using some algebra, this definition is equivalent to the following condition
in terms of SSE, N and t (the above threshold), which defines acceptability by a maximal
percentage (dependent on N), by which the optimal SSE may be exceeded (e.g., for N = 13
and t = 0.025 = 2.5%, an excess of 75.7% is acceptable):

SSE modelð Þ
SSE best fitting modelð Þ , 1:757 ¼ 1

t
� 1

� �2=N

(8)

Figure 4 (all Akaike weights computed with K = 4) shows that amongst generalized
von Bertalanffy models (defined by exponent pairs with b = 1), the comparison with
the best-fitting model did affect the Akaike weights only slightly. For instance, for the
Bertalanffy pair the Akaike weight was reduced from 36% (comparison with the optimal
exponent a, assuming b = 1) to 34% (comparison with the best-fitting exponent-pair).
For lower Akaike weights the reduction was even smaller, whence the Akaike weights
could not be pushed below the 2.5% threshold. Thus, despite the comparison with the
overall optimal Bertalanffy–Pütter model, for the class of generalized von Bertalanffy
models (b = 1) all exponents 0 � a < 1 were acceptable.

Figure 5 illustrates how this variability extended into two dimensions (the
dimensions referring to the number of considered exponents). The green area
represents exponent-pairs, whose AIC was below the correct AIC of the best-fitting model.
Thereby, AIC for given exponent-pairs was computed with K = 4, while the AIC for
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best fitting Gompertz-type model was computed with K = 5, whence there was a penalty.
The red area represents additional exponent-pairs, whose fit was deemed as acceptable
in the meaning above (Akaike weight of 2.5% or higher, using K = 4 also for the best
fitting model). The red area was bounded, meaning that in two dimensions not all
exponent-pairs were acceptable.

The following examples illustrate these concepts. In Fig. 2, the best fit in terms of SSE
was achieved by the optimal exponent-pair, followed by the von Bertalanffy-pair, while
logistic growth had the poorest fit. However, owing to the penalty in the definition of AIC
for using more parameters, the von Bertalanffy exponent-pair was in the green region of

Figure 4 Plot of the Akaike weights for exponent-pairs with b = 1, using the least AIC amongst
generalized Bertalanffy-models (red) and the least AIC amongst all considered models (blue); all
AICs using K = 4. Full-size DOI: 10.7717/peerj.5973/fig-4

Figure 5 Plot of the grid points a < b with AIC below AIC of the best fitting model (green; the AIC of
the best fitting model was higher due to the penalty for an additional parameter) and with acceptable
fit (red). The Bertalanffy and the logistic exponent-pairs are displayed in yellow.

Full-size DOI: 10.7717/peerj.5973/fig-5
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Fig. 5. Therefore, when choosing between the von Bertalanffy and the best fitting
exponent-pair, the criterion of parsimony would recommend to select the former one.
The logistic exponent-pair was outside the red or green regions of Fig. 5, whence this
fit was deemed as not acceptable, although in Fig. 2 it still appeared to be reasonable.
In summary, when comparing these exponent pairs, the von Bertalanffy-pair would be
selected as parsimonious; the logistic pair would be refuted due to its poor fit; and the
optimal pair would be refuted, as its 10% reduction of SSEopt (in comparison to the von
Bertalanffy exponent-pair) did not justify the optimization of an additional parameter.
Figure 6 indicates that Eqs. (1) and (2) may indeed result in overfit due to the optimization
of too many parameters. Using model (2) together with the optimal exponent, it plots
the region of the “other parameters” (m0, p, q), where SSE was bounded by 107

(ca. 500 times the least SSE). Despite this large SSE, the region was extremely thin,
suggesting some relation between the parameters. This indicates that a subclass of the
Bertalanffy–Pütter model using fewer parameters may provide the same fit and therefore
suffice for the modeling of growth. There remains the problem to find such a subclass that
in addition is empirically meaningful.

Figure 6 Plot of part of the region of exponents m_0 p, q for model (2) with the optimal exponent
a = 0.686028, where SSE does not exceed 107. Full-size DOI: 10.7717/peerj.5973/fig-6
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CONCLUSION
The paper conducted a case study about Bertalanffy–Pütter exponent-pairs (a, b) for fish.
It was based on mass-at-age data of Walleye (S. vitreus). Comparing the von Bertalanffy
exponent-pair model with the general Bertalanffy–Pütter and Gompertz models, the general
models reduced bias in growth estimates (SSE) but increased model complexity.
However, there was a large region of near-optimal exponent-pairs, amongst them the
von Bertalanffy exponent-pair. Therefore, parsimonious model selection (AIC) confirmed
the established practice to describe growth in term of the Bertalanffy models (VBGF
for length, the von Bertalanffy exponent-pair for mass). However, there are purposes where
the predictive power of models and the good fit of the model curve to the data is more
important than simplicity. For example, if a model is used to justify policy recommendations
on the basis of certain data, such as size-based catch-limitations in fishery stock assessments,
it is of crucial importance that the model curve fits well to the data. Further, even in
cases where the Bertalanffy-exponent pair is the most parsimonious model, it may not be
true, as biological arguments (e.g., about metabolism) may support different exponent-pairs
(e.g., the models mentioned in the introduction). Thus, Pauly (1981) recommended
to use the class of generalized von Bertalanffy models (b = 1 and the exponent a is free).
We go one step further and recommend the use of the Bertalanffy–Pütter model (and of its
limit case, the generalized Gompertz model) in natural resources management and
other contexts that rely on careful quantitative assessments.

With respect to future research, we speculate that for the best fitting parameters
there may exist additional relations, whence optimization might be further constrained
by some functional relationship between the parameters. This would define a subclass of
Bertalanffy–Pütter models with optimal or near-optimal fits. In order to identify it, we
suggest to evaluate the optimal exponent-pairs for different data and species and search
for a biologically meaningful pattern of these exponent-pairs. However, for this task it may
be necessary to use different target functions for the evaluation of the goodness of fit.
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