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There is a gradual shift from representing a species’ genome by a single reference
genome sequence to a pan-genome representation. Pan-genomes are the abstract
representations of the genomes of all the strains that are present in the population or
species. In this study, we employed a pan-genomic approach to analyze the intraspecific
mitochondrial genome diversity of Fusarium graminearum. We present an improved
reference mitochondrial genome for F. graminearum with an intron-exon annotation that
was verified using RNA-seq data. Each of the 24 studied isolates had a distinct
mitochondrial sequence. Length variation in the F. graminearum mitogenome was found to
be largely due to variation of intron regions (99.98%). The “intronless” mitogenome length
was found to be quite stable and could be informative when comparing species. The
coding regions showed high conservation, while the variability of intergenic regions was
highest. However, the most important variable parts are the intron regions, because they
contain approximately half of the variable sites, make up more than half of the
mitogenome, and show presence/absence variation. Furthermore, our analyses show that
the mitogenome of F. graminearum is recombining, as was previously shown in F.
oxysporum, indicating that mitogenome recombination is a common phenomenon in
Fusarium. The majority of mitochondrial introns in F. graminearum belongs to group |
introns, which are associated with homing endonuclease genes (HEGs). Mitochondrial
introns containing HE genes may spread within populations through homing, where the
endonuclease recognizes and cleaves the recognition site in the target gene. After
cleavage of the “host” gene, it is replaced by the gene copy containing the intron with
HEG. We propose to use introns unique to a population for tracking the spread of the given
population, because introns can spread through vertical inheritance, recombination as well
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as via horizontal transfer. We demonstrated how pooled sequencing of strains can be used
for mining mitogenome data. The usage of pooled sequencing offers a scalable solution for
population analysis and for species level comparisons studies. This study may serve as a
basis for future mitochondrial genome variability studies and representations.
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ABSTRACT

There is a gradual shift from representing a species’ genome by a single reference genome sequence
to a pan-genome representation. Pan-genomes are the abstract representations of the genomes of all
the strains that are present in the population or species. In this study, we employed a pan-genomic
approach to analyze the intraspecific mitochondrial genome diversity of Fusarium graminearum. We
present an improved reference mitochondrial genome for F. graminearum with an intron-exon annotation
that was verified using RNA-seq data. Each of the 24 studied isolates had a distinct mitochondrial
sequence. Length variation in the F. graminearum mitogenome was found to be largely due to variation
of intron regions (99.98%). The “intronless” mitogenome length was found to be quite stable and
could be informative when comparing species. The coding regions showed high conservation, while
the variability of intergenic regions was highest. However, the most important variable parts are the
intron regions, because they contain approximately half of the variable sites, make up more than half
of the mitogenome, and show presence/absence variation. Furthermore, our analyses show that the
mitogenome of F. graminearum is recombining, as was previously shown in F. oxysporum, indicating that
mitogenome recombination is a common phenomenon in Fusarium. The majority of mitochondrial introns
in F. graminearum belongs to group | introns, which are associated with homing endonuclease genes
(HEGs). Mitochondrial introns containing HE genes may spread within populations through homing,
where the endonuclease recognizes and cleaves the recognition site in the target gene. After cleavage
of the “host” gene, it is replaced by the gene copy containing the intron with HEG. We propose to use
introns unique to a population for tracking the spread of the given population, because introns can spread
through vertical inheritance, recombination as well as via horizontal transfer. We demonstrated how
pooled sequencing of strains can be used for mining mitogenome data. The usage of pooled sequencing
offers a scalable solution for population analysis and for species level comparisons studies. This study
may serve as a basis for future mitochondrial genome variability studies and representations.
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INTRODUCTION

One of the most ideal markers for monitoring the distribution and spread of populations is the mitochon-
drial genome (Harrison, 1989). Due to its high copy number within individual cells, the mitochondrial
genome is easy to access. Furthermore, it is mostly maternally inherited and it is less likely to recombine
than the nuclear genome. In fungi gender is not genetically determined, and since maternal structures
and meiosis require resources, the better adapted genotype is more likely to act as the maternal strain.
This means that the mitochondrial genotype has the potential to be used to track the successful nuclear
genotypes.

Mitochondrial sequences have been used for resolving phylogenetic and evolutionary relationships
between fungi at all taxonomic levels (Liu et al., 2009; Avila-Adame et al., 2006; Fourie et al., 2013).
In 2003, the DNA barcoding initiative started, aiming at using a single marker for taxon identification.
The marker that was selected was a mitochondrial gene, cytochrome ¢ oxidase I — COI or cox! (Hebert
et al., 2003). In Fusarium however, the use of cox! was abandoned as a barcoding region, because of the
frequent presence of introns in the gene made this region impractical for PCR amplification (Gilmore et al.,
2009). Next generation sequencing (NGS) and new analysis methods have resolved this issue (Brankovics
et al., 2016).

Fusarium graminearum is the major causative agent of Fusarium head blight (FHB), a devastating
disease of small grain cereals. Besides reducing yield, the fungus contaminates crops with mycotoxins
such as trichothecenes and zearalenone, which pose a serious threat to food and feed safety (Desjardins,
2006). Population studies of F. graminearum showed that the populations are highly dynamic and several
displacements have been reported (Gale et al., 2007; Ward et al., 2008). Monitoring these population
shifts is important, as they may differ in virulence, fungicide resistance and/or mycotoxin profile (Gale
et al., 2007; Zhang et al., 2012).

The mitochondrial genome of F. graminearum encodes all genes typically associated with mtDNAs
of filamentous fungi: two rRNA coding genes, 14 protein coding genes and a large set of tRNA coding
genes (Al-Reedy et al., 2012). In addition, a large open reading frame with unknown function (LV-
uORF) was found, flanked by tRNA genes. The first comparative studies of mitochondrial genomes of
Fusarium spp. have revealed that F. graminearum has a significantly larger mitogenome than Fusarium spp.
belonging to other species complexes analyzed so far (Fourie et al., 2013; Al-Reedy et al., 2012). Intron
variation within the FGSC has not yet been analyzed, but the mitogenomes of different species within the
F. fujikuroi species complex showed diversity in intron content based on the sequences of F. circinatum,
E fujikuroi and F. verticillioides (Fourie et al., 2013).

Most mitochondrial introns found in Fusarium are group I introns. These introns are self-splicing
ribozymes, which frequently contain homing endonuclease genes (HEGs) (Haugen et al., 2005). The
combination of intron and HEG forms a mobile element that is able to invade intronless copies of the
“host” gene (Haugen et al., 2005), thereby enabling horizontal spread of the mobile element through the
population. This mechanism is called homing, since the homing endonuclease recognizes a target site
of 15-45 bp, which makes the insertion highly sequence specific (Haugen et al., 2005). A functional
homing endonuclease is needed for the homing of the intron, but the intron may be retained as long
as the self-splicing function of the intron is intact. Since the mitochondrial genes are crucial for the
proper functioning of the cell, if an intron loses its ability to self-splice, then the intron is lost through
precise excision (Goddard and Burt, 1999). This mechanism allows an intron to spread in populations to
strains that do not possess the given intron. This dispersion does not require further recombination. The
mechanism does not allow one haplotype of an intron to replace another one, since the horizontal transfer
is mediated only by the cleavage of an intronless copy. Hence, the replacement of one haplotype by
another one can only be explained either by recombination or by loss of the original intron and insertion
of the new haplotype.

Pan-genomes are the abstract representation of the genomes of all the strains that are present in the
population. The idea of pan-genome or supra-genome comes from bacterial genomics, and originated
from the distributed genome hypothesis (DGH) (Ehrlich, 2001; Tettelin et al., 2005). According to the
DGH, each strain within a population/species contains a subset of contingency genes from within the
supra-genome (pan-genome), i.e., the supra-genome is distributed among many individual strains (Ehrlich,
2001; Ehrlich et al., 2004). Pan-genome based analysis can be used to identify conserved, variable and
strain specific regions within a group of genomes. Pan-genomes can be also employed to contrast two
populations or two species.
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In order to create a pan-genome for the mitogenome of F. graminearum, we have to better understand
the nature and dynamics of the diversity in the mitochondrial genome of this organism. To accomplish
this, a reliable reference has to be established as a basis for all comparative analyses. To this end, we
resequenced the reference strain of F. graminearum, PH-1, assembled its mitochondrial genome, improved
its annotation and validated the annotation using RNA-seq. Subsequently, this reference was used to
study the SNP frequencies, intron distribution and sequence variability of the different regions of the
mitogenome within the species, by analyzing a total of 24 strains, which were individually sequenced,
representing a wide range of hosts and geographic origins. Finally, we evaluated the efficacy of using
pooled sequencing in assessing the mitogenome sequence diversity within a sample. Pooled sequencing
offers the possibility of analyzing populations directly from field samples.

MATERIALS & METHODS

Strains

Thirteen F. graminearum strains were sequenced individually on the Illumina Miseq platform (Table 1).
In addition, F. graminearum strain PH-1 (CBS 123657, NRRL 31084) was sequenced on the Illumina
Hisgq platform both as a single strain and as part of pooled set of five F. graminearum strains (Table 1).
Besides the newly sequenced strains, the whole genome sequencing reads of ten F. graminearum were
downloaded from the SRA database of NCBI that were produced by other research groups (Laurent et al.,
2017; Wang et al., 2017). The outgroup, F. gerlachii strain was sequenced for an earlier publication (Kulik
et al., 2016). A detailed description of the fungal strains is given in Table 1.

Sequencing

lllumina Miseq

Whole genome libraries were prepared using the Nextera XT kit (Illumina, San Diego, CA, USA) from
gDNA extracted from mycelium. The constructed libraries were sequenced on the Illumina Miseq platform
with 250 bp paired-end read, version 2. The fungal genomes were sequenced in a multiplexed format (6-7
samples per run), where an oligonucleotide index barcode was embedded within adapter sequences that
were ligated to DNA fragments (Smith et al., 2010). Next, the sequence reads were de-multiplexed and
filtered for low quality base calls, trimming all bases from 5’ and 3’ read ends with Phred scores <Q30.

lllumina Hiseq

For F. graminearum strain PH-1 (CBS 123657, NRRL 31084) a random sheared shotgun library was
prepared using the NEXTflex ChIP-seq Library prep kit with adaptations for low input gDNA according
to manufacturer’s protocol (Bioscientific). The library was loaded as (part of) one lane of an Illumina
paired-end flowcell for cluster generation using a cBot. Sequencing was done on an Illumina HiSeq2000
instrument using 101, 7, 101 flow cycles for forward, index and reverse reads respectively. De-multiplexing
of resulting data was carried out using the Casava 1.8 software. Sequencing reads have been uploaded to
the European Nucleotide Archive (ENA) with the accession number PRJEB18592.

The same method was applied for the pooled sequencing with the adjustment that random sheared
shotgun library was prepared by using equal amounts of genomic DNA extract from all five strains
(Table 1). Sequencing reads have been uploaded to the European Nucleotide Archive (ENA) with the
accession number PRIEB18596.

Third party sequencing data

Besides the sequencing data that we have generated, we also made use of sequencing data produced

by other research groups that had been submitted to SRA (Sequencing Read Archive) databases. This

included a dataset of SRA data of 6 strains isolated from France (PRINA295638; Laurent et al., 2017), 3

strains from China (PRINA296400; Wang et al., 2017) and one strain from Australia (PRINA235346;

Gardiner et al., 2014). The mitochondrial genome sequences for the strains sequenced by third party,
are available in the Third Party Annotation Section of the DDBJ/ENA/GenBank databases under the

accession numbers TPA: BK010538-BK010547

Assembly

GRADbB was used with SPAdes assembler to reconstruct the mitogenome of the strains. GRAbB (Brankovics
et al., 2016) was chosen because it is a wrapper program for iterative de novo assembly based on a ref-
erence sequence. SPAdes 3.8.1 (Bankevich et al., 2012; Nurk et al., 2013) assembler was used, since
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it offers good insight for the user into the relationship between nodes in the assembly graph and the
relationship between nodes, contigs and scaffolds. The mitochondrial genomes were assembled from
NGS reads using GRAbB by specifying the mitogenome sequence of PH-1 strain (HG970331) as query
sequence.

For each individually sequenced strain it was possible to resolve the assembly to a single circular
sequence. When the GRAbB run finished for the strains that were pooled for sequencing, the final
assembly graph was visualized using Bandage (Wick et al., 2015) and the assembly was resolved to two
circular sequence variants to capture all the variation within the dataset (Supplementary Text 1). For the
first circular sequence, referred to as “short”, the shorter alternative contigs were included in the path at
each position where continuity was ambiguous. Whilefor the other sequence, referred to as “long”, the
longer alternatives were included. In this way, all the different sequence regions were represented at least
once in the two sequences.

Sequence annotation

The initial mitogenome annotations were done using MFannot (http://megasun.bch.umontreal.
ca/cgi-bin/mfannot/mfannotInterface.pl)

and were manually improved: annotation of tRNA genes was improved using tRNAscan-SE (Pavesi
et al., 1994), annotation of protein-coding genes and the rnl gene was corrected by aligning intron-
less homologs to the genome. Intron encoded proteins were identified using NCBI’s ORF Finder
(http://www.ncbi.nlm.nih.gov/gorf/gorf.html) and annotated using InterPro (Mitchell
et al., 2015) and CD-Search (Marchler-Bauer and Bryant, 2004). The annotated mitochondrial genome
sequences are available under the following GenBank accession numbers: BK010538-BK010547,
KP966550-KP966561, KR011238 and MH412632.

Read mapping and SNP discovery

The mitogenome of F. graminearum strain PH-1 and the two mitogenome sequences obtained from the
assembly of the pooled dataset were used as reference sequences for the read mapping and SNP discovery.
The read mapping was done using aln and sampe subcommands of the Burrows-Wheeler Alignment tool
(BWA-0.7.12-r1034) (Li and Durbin, 2009). SNP calling was done using SAMtools mpileup (1.3.1) with
-g and -f flag and BCFtools call (1.3.1) with -mv flag (Li et al., 2009).

Coverage analysis

Coverage of different regions was estimated by, first, mapping reads of the pooled dataset to the reference
sequence using the sampe subcommand of the Burrows-Wheeler Alignment tool (BWA-0.7.12-r1034) (Li
and Durbin, 2009). Then, read coverage was calculated using the genomecov command of bedtools
v2.26.0. The following single copy nuclear protein coding genes were used to represent single copy
nuclear regions: y-actin (act), B-tubulin II (fub2), calmodulin (cal), 60S ribosomal protein L10 (rpl10a),
the second largest subunit of DNA-dependent RNA polymerase II (rpb2), translation elongation factor
la (tefla), translation elongation factor 3 (fef3) and topoisomerase I (fopl). The reference sequences
were extracted from the genome of PH-1 (4 chromosomes: HG970332, HG970333, HG970334, and
HG970335). The nuclear mitochondrial DNA segment (NUMT) used for coverage comparison was
identified during the assembly of the pooled data (see Supplementary Text 1).

Intron validation

The RNA-seq data for F. graminearum PH-1 was downloaded from NCBI’s SRA database, accession
number PRINA239711 (Zhao et al., 2014). Read mapping was done by subjunc command of the Subread
aligner (Liao et al., 2013). Intron positions were identified from the CIGAR string of the SAM file
produced by the aligner.

Linear model
R was used for linear model analysis to test whether the intron variation is the main reason of mitochondrial
genome length variation within the species. The linear model was the following:

y=x+c¢
where y was the total length of the mitochondrial genome, x was the length of the intron sequences and

¢ was the y-intercept (average intronless length of the mitochondrial genomes). The R? value obtained
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from linear model analysis specifies what percentage of the variation of the dependent value (mitogenome
length) is explained by the variation in the independent value (intron length).

B SS residual
S Slotal

R*=1

Residual sums of squares (SSyesiqguqr) @nd total sums of squares (SS;4;q;) Were calculated using the deviance
function of R.

Comparative sequence analysis

The nucleotide sequences were aligned using MUSCLE (Edgar, 2004b,a). Sequence variability of given
regions was calculated by aligning the sequences. Then the number of characters with multiple character
states was calculated and divided by the total number of characters in the alignment. This step was
done using fasta_variability from the fasta_tools package (https://github.com/b-brankovics/
fasta_tools).

Phylogenetic analysis

The most appropriate substitution evolution model was determined using jModelTest 2 (Darriba et al.,
2012) for each of the regions analyzed. Phylogenetic trees were calculated using RAxML version
8.2.4 (Stamatakis, 2014). Two measures of clade support were used in this study: i) bootstrap (BS) values
calculated by 1000 bootstrap runs using RAXML and ii) Bayesian posterior probability (BPP). In order to
obtain BPP values, phylogenetic reconstruction has been conducted using MrBayes 3.2.5 (Ronquist et al.,
2012). The MCMC algorithm was run for 4,000,000 generations with four incrementally-heated chains,
starting from random trees and sampling one out every 1000 generations. Burn-in was set to relative
burn-in of 0.25. The generated tree-space was used to calculate the BPP.

Detecting the presence of recombination
The intergenic regions were analyzed using the ®,,-test implemented in SplitsTree (Bruen et al., 2006) to
detect whether there is recombination in the mitochondrial genome.

RESULTS

Mitochondrial genome of F. graminearum

The mitochondrial genomes of all 24 strains sequenced individually were assembled into single circular
contigs. The re-sequencing of the mitochondrial genome of F. graminearum strain PH-1 revealed two
SNPs compared to the most recent published mitogenome assembly (HG970331.1) of the strain that
was based on next generation sequencing reads (King et al., 2015). The correction of these SNPs was
supported by the fact that all the other strains contained the same two SNPs obtained in the new assembly
of PH-1. The newly assembled mitochondrial genome of the PH-1 strain as well as the other mitochondrial
genomes were annotated. The mitochondrial genomes of all strains contained the same set of genes in
the same order and orientation (Fig. 1). To test whether the intron-exon models were predicted correctly,
RNA-seq reads were mapped against the mitogenome of F. graminearum strain PH-1. The results of the
read mapping supported all of the predicted intron-exon boundaries.

Mitogenome variability in F. graminearum

The mitogenomes of F. graminearum strains analyzed showed variation in size, ranging from 93,560 bp
to 101,424 bp (Table 2). To test whether intron variation is the main reason of mitochondrial genome
length variation within the species, linear model analysis was used. The linear model that assumed that
mitochondrial length variation is due only to variation of the length of intron regions explained 99.98% of
intraspecific length variation observed in the data, showing that intron variation is the main reason behind
intraspecific mitochondrial genome length variation. The standard deviation of the mitogenome length
was 1818 bp, which is 1.87% of the average mitochondrial genome length.

The coding regions (tRNA, rRNA and conserved protein coding genes) showed low levels of variation
both within F. graminearum (0.02%) and when compared to F. gerlachii (0.02%). In addition, none of the
SNPs found in protein coding regions caused amino acid substitution.

The large ORF with unknown function (LV-uORF) located in the large variable region of the mi-
togenome contained five SNPs within F. graminearum and the sequence in the F. gerlachii strain was
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identical to the most frequent haplotype within F. graminearum. All five SNPs resulted in amino acid
substitution in the putative peptide sequences. The variability of the conserved protein coding regions was
0.02%, while the variability of the LV-uORF region was 0.09% within F. graminearum. The difference
in variability was even more striking on the protein sequence level, where the conserved protein genes
showed no variation, while the LV-uORF showed 0.26% variability.

The variability of the intergenic regions was 1.63% and 2.30% for intraspecies and interspecies,
respectively. The overall sequence variability of intron sequences was 0.68% and 0.71% for intraspecies
and interspecies, respectively. Although the variability of intron regions was significantly less than that of
intergenic regions, both regions contained approximately equal numbers of variable sites (Table 3) due to
the large length difference between the two regions. The intron regions were the most variable part of
the mitochondrial genomes, because approximately half of the variable sites was located in introns, and
introns were the only regions showing presence/absence variation within F. graminearum.

Interestingly, strains CBS 128539 and CBS 138561 had identical intergenic sequences, while strains
CBS 104.09 and CBS 119800 (isolated 81 years apa identical intron sequences. However, all the
strains had a-unique mitochondrial genome sequences

Intron patterns and phylogeny

A total of 39 intron sites were found in the individually sequenced dataset (Supplementary Table ). Out
of the 39 introns, 32 were present in all strains and 21 of these showed no variation at the intraspecies
level and 14 at the interspecies level. The introns that showed presence/absence variation within the
dataset were cob-i159, cob-i201, cox1-11287, cox2-i228, cox2-i318, cox2-i552 and nad2-i11632 (Fig. 2
and Supplementary Table ). The intron names contain the gene name where they are located and the
coding nucleotide position of the host gene after which they were inserted.

It was not possible to group the strains based on their intron patterns (presence/absence for each
intron) without allowing for multiple gain or loss of introns (Supplementary Table ). This could be the
result of recombination of the mitochondrial genome or the horizontal transfer of introns. Recombination
would affect intergenic regions, while the horizontal transfer of the intron by homing would not affect the
intergenic regions. Recombination of the intergenic regions was well supported (p = 2.26 % 107%) by the
D, -test.

Strategies to analyze pooled mitochondrial NGS data
Two approaches were used to explore the mitogenome variability in the pooled dataset: i) assembling the
reads de novo and ii) mapping the reads to a reference sequence.

De novo assembly approach

The assembly resulted in a graph that contained five ambiguous sites that represented four inser-
tion/deletion variations (three intron presence/absence variation, cob-i201, cox1-11287, cox2-i318, and
a large insertion inside the cob-i490 intron) in the dataset, and one site (located in nad4L.-i1239) where
two different alleles were found in the strain set (Supplementary Text 1). These polymorphic sites were
too far apart to establish linkage between them, so two alternative assemblies were extracted from the
assembly graph: one with the shorter allele at all of the positions and one with the longer allele at all of
the positions (Supplementary Text 1). The assembly method did not reveal SNP variations, only intron
presence/absence variations and one replacement variation.

Mapping approach

To assess the influence of the reference sequence on the mapping and SNP calling results, both of the
sequences obtained from the assembly approach of the pooled dataset were used as references, beside
the curated mitogenome of the PH-1 strain. Besides giving-an insight into the influence of the reference
sequence to the downstream analysis, this also makes it possible to detect variation within intron sequences
that may be absent in some of the reference sequences.

The lowest coverage detected for a single nucleotide allele was 21% of the reads that mapped to the
given position. This is close to the expected value (20%) for an allele present in a single strain in a pool
of five strains. This result shows, that the method was sensitive enough to detect a SNP present in a single
strain. Furthermore, the results of all three analyses identified the same polymorphic sites. This means
that the choice of reference sequence did not influence the SNP detection results.

The three runs of read mapping and SNP calling revealed a total of fifteen, SNPs (Table 4). The allele
ratios were identical even when the reference sequence used for the mapping was different, with one

6/16

Peer] reviewing PDF | (2018:05:28541:0:0:REVIEW 29 Jun 2018)


equus
Cross-Out

equus
Inserted Text
s

equus
Sticky Note
My assumption is that the authors mean that each of the mt-genomes from the different strains was unique, i.e. they were all different. If this is not what was meant, then this sentence should please be reworded for clarity.

equus
Inserted Text
s in

equus
Cross-Out

equus
Replacement Text
providing

equus
Cross-Out

equus
Inserted Text
showed

equus
Cross-Out

equus
Inserted Text
15


Peer]

293
294
295
296
297
298

299

300
301
302
303
304
305
306
307

308

309

310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

345

exception: position 90636. At this position both PH-1 and the pooled assembly analysis showed 70%
for the nucleotide present in the given reference and 30% for the alternative, despite the fact that the two
references had different nucleotides at the given location (Table 4). Examination of the alignment of the
reference sequences revealed that the sequence difference was not only a single nucleotide polymorphism
at position 90636, but there was a 8 bp long indel at position 90627-90634. This nearby indel influenced
the mapping of reads containing the allele differing from the reference sequence. This was the reason
why the SNP calling skewed in favor of the reference allele in both mappings.

Coverage analysis

Coverage values were calculated for different genomic regions in order to determine whether coverage
cutoffs could be used to differentiate between mitochondrial and nuclear regions. The coverage of single
copy nuclear regions that were present in all of the pooled strains was 290x. The coverage of the nuclear
mitochondrial DNA segment (NUMT) sequence was 230x, which suggests that it was present in four of
the five pooled strains. The coverage of mitogenome regions that were present in all strains was 4000x.
While, the coverage of singleton mitochondrial regions, present only in a single strain, was 475x. The
coverage gap was sufficiently high between shared single copy nuclear regions (290x) and singleton
mitochondrial sequence (475x) to allow clear differentiation between them.

DISCUSSION

Comparative genomics analyses are traditionally reference (Laurent et al., 2017) or pairwise based (Fourie
et al., 2013). Reference based methods are efficient at identifying regions that are present in the reference,
but absent in other individuals, or detecting smaller variations, like SNPs. This method does not identify
regions that are absent from the single reference, while these regions might be valuable for clustering the
non-reference individuals. Pairwise comparison is able to identify unique regions for both individuals;
however, it is difficult to scale to a larger sample size, because every individual has to be compared to
every other individual, then the results have to be brought to the same scale.

To take full advantage of next generation sequencing data, a paradigm shift is needed: from focusing
on a single reference genome to using a pan-genome, that is, a representation of all genomic content in
a certain population, species or phylogenetic clade (Computational Pan-Genomics Consortium, 2018).
In this study, we used an ad hoc pan-genomic analysis of the mitochondrial genomes of Fusarium
graminearum. The reason for using an ad hoc approach is that pan-genomics is still a young field of
research, and as such, there are no clear standards developed yet for analysis, for files or for data sharing.
The goal of the analysis was to understand the nature and the dynamics of mitogenome variability, then
to identify the implications of these results for mitogenome based population studies or track & trace
implementations. The results of this study can be utilized for the development of suitable data structures
and file formats for capturing the variability of mitochondrial pan-genomes.

In this study, we improved the mitochondrial genome reference for F. graminearum strain PH-1,
which is recognized as the reference strain of this species for genomic studies (Al-Reedy et al., 2012;
King et al., 2015; Cuomo et al., 2007). The first mitochondrial genome sequence was produced using
Sanger sequencing and primer walking by Al-Reedy et al. (2012). The assembly was improved by King
et al. (2015) using NGS reads. This assembly corrected 15 SNPs and 30 indels in the sequence. Here, we
present a new assembly, which corrected 2 more SNPs, complete with a detailed annotation. The introns
that were predicted during the annotation process were all verified by RNA-seq data.

The mitochondrial genomes of F. graminearum and F. gerlachii contained the same genes and ORFs
in the same orientation. The coding sequences showed high levels of conservations, and all SNPs found in
protein coding genes were synonymous substitution, The genetic variation in the mitochondrial genome
could be classified i two groups: small sequence variations (SNPs and short indels) and intron gain
and loss. Although; variations resulting from SNPs and short indels were twice as frequent in intergenic
regions as in intron regions, about half of the variable sites was located in intron regions. The second
type of variation, the presence/absence of introns, accounted for 99.98% of the length variation between
the mitochondrial genomes. In conclusion, the majority of the sequence variation within the species
was related to intron regions: either SNPs and short indels or the presence/absence of complete introns.
Thus, in mitogenome comparative analysis or pan-genomic studies, special attention should be given to
accurately capturing the intron variation, since it is the most informative fraction of the mitogenome.

An alternative way to sequencing strains individually is sequencing them in a pool. The pooled
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sequencing approach is more cost efficient than sequencing the strains separately. The data produced by
pooled sequencing of strains from a given population could be viewed as the pan-genomic sequencing
reads of that population. In this study, we have demonstrated how sequencing data from pools of strains
can be mined for mitochondrial genome variation. Sequencing in pools has already been used to discover
rare alleles of nuclear loci (Raineri et al., 2012). This method can be used for finding rare alleles, but
it also allows a scalable solution for analyzing complete populations. So far, the application of pooled
sequencing data has been used for SNP discovery in nuclear loci from samples (Raineri et al., 2012).
However, analyzing mitochondrial genome data of fungi pessesses some additional challenges. We have
demonstrated that besides SNPs, intron presence/absence variation is a major element of the mitogenome
variation. To assess what kind of approach can detect intron presence/absence variation and SNP variation,
we analyzed the data using a de novo assembly approach followed by a read mapping and SNP-calling
approach. The results show that the assembly approach is able to identify sequence differences affecting
sequence regions longer than individual sequencing reads, such as; insertions and deletions of intron
sequence or long polymorphic sequences, while it is unable to identify SNPs or short indels. Read
mapping and SNP calling analysis has to be performed to identify SNPs. This method in turn is unable to
identify sequence differences affecting longer sequence regions. For optimal results, a sequential approach
is needed for analyzing pooled samples: first, an assembly step to identify introns or larger indels absent
from the reference genome, then using both the reference and the newly identified extra regions for read
mapping and SNP-calling.

The drawbacks of pooled data are that short indel variation might be missed and linkage between
markers is lost when using short read sequencing technologies, although linkage information is not crucial
when comparing pan-genomes with each other. Furthermore, pooling large amount of strains could mean
the loss of the coverage gap between mitochondrial copies and nuclear copies, which makes NGS analysis
of mitochondrial genomes more advantageous to PCR methods. This means that nuclear mitochondrial
sequences (NUMTs) might affect the results. With sufficient caution the effects of NUMTSs can be
minimized, since they can be identified in the assembly step. In the assembly step, NUMTs may appear as
separate contigs, as in our example, or as new paths similar to introns with the significant difference that
intron segments are joined to the rest of the mitochondrial assembly on both termini, while the flanking
nuclear regions of NUMTs would only be joined on one of the termini of the segment. Despite these
concerns, the benefits of pooled sequencing of large numbers of strains offers a scalable solution for
population or species level comparisons. After a reference sequence is established, each population or
species could then be represented by pools of multiple strains.

Most of the introns in F. graminearum are group I introns, and contain homing endonuclease genes
(HEGsS). Group I introns harboring a functional HEG can spread in a population through homing. Homing
is facilitated by the homing endonuclease that cleaves the target gene at a 15-45 bp recognition site. The
resulting double strand break stimulates homologous recombination based DNA repair. Since all copies of
the mitochondrial genome that contain the recognition site are susceptible to the homing endonuclease, the
only viable template for homologous repair is a genome that contains a copy of the intron. The insertion
of the intron into the recognition site modifies the sequence, and it will no longer be recognized by the
homing endonuclease.

The mitochondrial genome of F. graminearum shows evidence of recombination. We recently showed
that mitochondrial recombination does also happen in the F. oxysporum species complex (Brankovics et al.,
2017). Recombination of the mitochondrial genome in Fusarium appears to be a common phenomenon,
since both F. oxysporum and F. graminearum show signs of mitochondrial recombinations, despite the
fact that F. oxysporum is an asexual fungus with a putative parasexual cycle, while F. graminearum is
a homothallic species that has an active sexual cycle (Yun et al., 2000). Due to the recombination of
the mitogenome, it cannot directly be used as a marker to track successful nuclear genotypes as was
proposed. However, based on the spreading mechanism of introns, introns could be used for track and
trace implementations. The intron sequences spread through clonal & sexual reproductions, and through
horizontal transfer. Due to the effect of the homing endonuclease, all offspring of a sexual cross would be
tagged by all the introns that are specific to either parent. The appearance of a new intron in a population
could be a sign of migration or gene flow.

The annotation of strain CBS 119173 revealed a putative nested intron in cox1-i906. All other strains
contain a haplotype that is 1006 bp long, while this strain contains a haplotype that is 2084 bp long. The
sequence comparison indicates that the additional 1078 bp region is an intron that was integrated inside
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the homing endonuclease of the acceptor intron. This putative intron contains an additional HEG, but
the annotation pipeline did not identify the sequence as an intron. This indicates that introns and intron
encoded genes themselves are susceptible for intron invasions. The question is whether the invading
intron has to retain its self-splicing function or the “host” (or acceptor) intron can splice the complete
nested construct with its own self-splicing activity.

The intron regions contain most of the variation within F. graminearum and population specific introns
promise to be valuable markers for tracking.

CONCLUSIONS

We have improved the reference mitochondrial genome reference sequence for F. graminearum. Intraspe-
cific mitochondrial genome length variations are mainly due to intron presence/absence variation, thus
using “intronless” length—subtracting the length of the intron regions from the total mitogenome length—
could be a-valuable information when comparing species. Mitogenomes are also subject to recombination
in both F. graminearum and in F. oxysporum, indicating that it is a common phenomenon in Fusarium.
We proposed that introns unique to a single population could be used to track the spread of the given
population, because introns can spread through vertical inheritance, recombination and horizontal transfer.
We also demonstrated how pooled sequencing of strains can be used for the mitogenome. The usage of
pooled sequencing offers a scalable solution for population analysis and for species level comparisons
studies. The results of this study represent an important step towards establishing pan-genomics for
mitochondrial genomes.
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Supplementary Table 1

Intron locations, lengths and haplotypes within standard mitochondrial genes of Fusarium gramin-
earum and F. gerlachii strains. The different haplotypes are displayed with different background color
per intron site. Haplotypes that have identical length are differentiated from each other by using °, " or *,
corresponding to the number of SNPs differentiating the haplotypes (haplotypes 1159° and 1159 differ

by 2 SNPs, while 1159 and 1159 differ by 3 SNPs).

Supplementary Text 1
Assembling the pooled data set.

TABLES AND FIGURES

Table 1. List of Fusarium strains analysed in this study

Year of Sequenced

Species Strain Origin Host . . individually
isolation .
or in a pool
CBS123657
F. graminearum | (PH-1) USA maize 1996 both
NRRL31084

F. graminearum | CBS119173 USA wheat head 2005 individually
F. graminearum | CBS139513 Argentina barley 2011 individually
F. graminearum | CBS139514 | Argentina barley 2010 individually
F. graminearum | CBS119799 South Africa | wheat kernel 1987 individually
F. graminearum | CBS119800 South Africa | maize 1990 individually
F. graminearum | CBS110263 Iran maize 1968 individually
F. graminearum | CBS123688 Sweden oats unknown | individually
F. graminearum | CBS128539 Belgium wheat kernel 2007 individually
F. graminearum | CBS138561 Poland wheat kernel 2010 individually
F. graminearum | CBS138562 | Poland wheat kernel 2010 individually
F. graminearum | CBS138563 Poland wheat kernel 2003 individually
F. graminearum | CBS104.09 unknown unknown 1909 individually
F. graminearum | CBS185.32 unknown maize 1932 individually
F. graminearum | CS3005 Australia barley 2001 individually
F. graminearum | HN9-1 China wheat 2002 individually
F. graminearum | HN-Z6 China wheat 2012 individually
F. graminearum | INRA-156 France wheat 2001 individually
F. graminearum | INRA-159 France wheat 2001 individually
F. graminearum | INRA-164 France wheat 2002 individually
F. graminearum | INRA-171 France wheat 2001 individually
F. graminearum | INRA-181 France wheat 2002 individually
F. graminearum | INRA-195 France wheat 2002 individually
F. graminearum | YL-1 China wheat 2012 individually
F. graminearum | bfb0999_1 China barley 2005 pooled
F. graminearum | 68D2 Netherlands wheat 2001 pooled
F. graminearum | CHGO13 China maize 2005 pooled
F. graminearum | CHG157 China barley 2005 pooled
F. gerlachii CBS123666 | USA wheat head 2000 individually
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Figure 1. The mitogenome of F. graminearum strain PH-1. Green blocks: tRNA coding genes, blue
arrows: genes or ORFs (no labels added for short ORFs), yellow arrows: protein coding sequences, red
arrows: rDNA coding sequence, purple arrows: intron encoded homing endonuclease genes, gray box:
the large variable (LV) region with orf1931 (LV-uORF).
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Figure 2. Pan-genomic representation of the presence/absence variation of introns in the
mitochondrial genomes of the 24 F. graminearum strains.

In the figure, the thick orange lines highlight intron sequences in the alternative sequences. (SNPs and
short indels are not indicated.) a) The insertion of nad2-i1632; b) the insertion of cox2-i228, cox2-i318
and cox2-i552; c¢) the insertion of cob-1159 and cob-i201; d) longer variant of cob-i490; e) intron
insertion in the HEG located in cox1-1906; and f) the insertion of cox1-1287.
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Table 2. Mitochondrial genome variation of the Fusarium graminearum strains

GenBank . .
. . Size Intronic | Core
Strain ID accession (bp) Introns (bp) (bp)
numbers P P P

CBS123657 (PH-1) | MH412632 | 95638 34 49429 | 46209
CBS185.32 KP966550 | 96300 34 50120 | 46180
CBS110263 KP966551 | 97364 35 51165 | 46199
CBS119173 KP966552 | 100342 37 54130 | 46212
CBS119799 KP966553 | 96005 35 49919 | 46086
CBS119800 KP966554 | 97462 35 51280 | 46182
CBS123688 KP966555 | 95035 34 48837 | 46198
CBS128539 KP966556 | 96134 35 49996 | 46138
CBS138561 KP966557 | 95034 34 48837 | 46197
CBS138562 KP966558 | 99062 36 52865 | 46197
CBS138563 KP966559 | 99068 36 52865 | 46203
CBS139514 KP966560 | 96167 35 49980 | 46187
CBS139513 KP966561 | 95041 34 48837 | 46204
CBS104.09 KRO11238 | 97460 35 51280 | 46180
CS3005 BKO010538 | 93560 33 47381 | 46179
HNO9-1 BKO010539 | 96307 35 51567 | 44740
HN-Z6 BKO010540 | 97767 34 50120 | 47647
INRA-156 BKO010541 | 101424 37 55243 | 46181
INRA-159 BKO010542 | 96199 35 49996 | 46203
INRA-164 BKO010543 | 99678 37 53476 | 46202
INRA-171 BKO010544 | 96199 35 49996 | 46203
INRA-181 BKO010545 | 96187 35 49996 | 46191
INRA-195 BKO010546 | 97358 35 51165 | 46193
YL-1 BKO010547 | 97996 36 51777 | 46219

Core stands for the total mitogenome length minus the length of the intron regions.

Intraspecies Interspecies
Length | Variable | Variation | Length | Variable | Variation
(bp) positions | frequency (bp) positions | frequency
Coding 21572 4 0.02% 21572 5 0.02%
intron 59091 399 0.68% 59091 419 0.71%
Intergenic | 18982 310 1.63% 18982 436 2.30%
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Table 3. Distribution of variation in the intron and intergenic regions within and between species
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Table 4. List of single nucleotide polymorphisms identified in the pooled dataset of Fusarium
graminearum strains. Positions are aligned positions between the PH-1 reference sequence and the
pooled sequences (“short” and “long”). “Reference” refers to the nucleotide found in the given reference
sequence used for mapping, while “Alternative” refers to the nucleotide suggested by the mapped reads.
Position 90636 shows unusual ratios: in both mappings the reference nucleotide (C or A) has a frequency
of 70% and the alternative nucleotide has 30%. This is due to an adjacent indel that affects the mapping

results.
PH-1 Pooled
Position | Reference | Alternative | Reference | Alternative

2337 | A (0.77) G (0.23) A (0.77) G (0.23)
6288 | C(0.41) A (0.59) A (0.61) C (0.39)
6355 | T (0.42) C (0.58) C (0.60) T (0.40)
13540 | C(0.78) A (0.22) C (0.78) A (0.22)
37126 | C(0.75) T (0.25) C (0.75) T (0.25)
37773 | A (0.75) G (0.25) A (0.75) G (0.25)
44773 | A (0.62) G (0.38) A (0.62) G (0.38)
64776 | G (0.53) A (0.47) G (0.53) A (0.47)
70827 | A (0.62) G (0.38) A (0.62) G (0.38)
89194 | G (0.57) A (0.43) G (0.57) A (0.43)
90636 | C (0.70) A (0.30) A (0.70) C (0.30)
95918 | A (0.43) C (0.57) C (0.59) A (0.41)
99784 | A (0.40) G (0.60) G (0.62) A (0.38)
100362 | C (0.42) A (0.58) A (0.59) Cc 041
100538 | G (0.42) A (0.58) A (0.61) G (0.39)
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