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ABSTRACT
The present research investigated the response of silver maple (Acer saccharinum L.) to
salt treatment. The short- and long-term effects of NaCl and CaCl2 treatments on plant
fitness characteristics (growth parameters, leaf chlorophyll content) and biochemical
stress-coping mechanisms (proline accumulation as well as enzymatic activities) were
examined. We found that the silver maple response to salt stress strictly depended on
salt type and dose—calcium chloride was less toxic than sodium chloride, but high
concentrations of both salts negatively influenced plant growth. The accumulation of
proline, slight changes in the activity of superoxide dismutase and marked changes
in catalase and peroxidase activities in the roots and leaves indicated complexity of
the plant response. It was also shown that after one year, enzymatic parameters were
restabilized, which indicates plant recovery, but the reduced mass of seedlings suggests
that one year is not enough to cope with the prolonged cyclic salt stress, both resulting
from NaCl and CaCl2 application. Therefore, seedlings of silver maple should be
considered as moderately susceptible to salinity. Hence, it is recommended to use silver
maple on non-de-iced urban areas, while planting on often de-iced roads should be
avoided.

Subjects Plant Science, Biosphere Interactions, Environmental Contamination and Remediation
Keywords Acer saccharinum L., Sodium chloride, Calcium chloride, Salt stress, Plant growth,
Proline, Antioxidant enzymes

INTRODUCTION
In urban areas, each winter, various chemical and abrasive materials are used on roads and
sidewalks to prevent ice formation. The two most commonly used de-icing salts worldwide
are sodium (Na+) chloride (NaCl) and calcium (Ca2+) chloride (CaCl2). Although CaCl2 is
better for melting ice (Nixon, 2008) and less damaging to plants (Trajkova, Papadantonakis
& Savvas, 2006), NaCl is used most extensively (c.a. 9–10 million tons per year compared
to 0.3 million tons of calcium chloride—Ramakrishna & Viraraghavan, 2005) because it is
less expensive and easier to handle (Nixon, 2008). The commonly used salts are dispensed
directly or mixed with sand before they are applied to the road (Simini & Leone, 1986).

Salinity of soils located near de-iced roads changes with the distance from road margin.
For example, it was indicated that Na+ concentration within five meters from road margin
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remains at constant concentration (101–154 mg kg−1) and then drastically decreased
within next five meters (Bryson & Barker, 2002). The maximal salt accumulation zone
is located about one meter from road margin where trees are often planted in urban
environment (Cunningham et al., 2008). It is also worth noticing that salt accumulation
depends on abiotic factors (e.g., soil properties, landscape, weather) as well as biotic
factors (e.g., local vegetation) (Cunningham et al., 2008) and may show strong variation
(Bryson & Barker, 2002; Cunningham et al., 2008). Therefore, in many cases, accurate
estimation of salt concentration within the nearest area from de-iced roads is hard, but
severe accumulation of salts in non-permeable soils is highly probable due to winter
maintenance of roads. Although the application of salts is necessary for traffic safety, it
can cause damage to adjacent roadside trees and shrubs. Several de-icing investigations
have attributed roadside plant damage to the combination of aerial spray of road salts,
direct foliar contact with salt ions and high soil salt concentrations (Davison, 1971; Dirr,
1976; Hofstra, Hall & Lumis, 1979; Czerniawska-Kusza, Kusza & Duzyński, 2004; Gałuszka
et al., 2011; Douglas, 2011). It is established that at least along major highways, salt spray
causes more damage to trees and shrubs than salt absorbed from the soil (Dirr, 1976;
Hofstra, Hall & Lumis, 1979; Sucoff, Hong & Wood, 1976; Langille, 1976). Salt spray injury
is more commonly observed in evergreen coniferous tree species, while soil uptake injury
is more common in deciduous trees (Hofstra, Hall & Lumis, 1979; Mekdaschi et al., 1988;
Kozłowski, 1997; Bryson & Barker, 2002). Salts affect plant growth in several ways. De-icing
salts cause damage through direct contact of the salt solution with plant foliage (referred
to as ‘‘spray zone’’ injury) and through chemical and physical modification of the soil as a
result of salt accumulation (Douglas, 2011). Dissolved salt ions originating from chemical
de-icers (e.g., Na+, Cl−) can cause osmotic stress in plants (Paul, Rocher & Impens, 1987).
High concentrations of inorganic chloride salts in the soil make cations (such as potassium,
calcium, and magnesium) unavailable to plant roots (White & Broadley, 2001; Tester &
Davenport, 2003). Furthermore, the accumulation of specific ions can cause toxicity within
plant cells (Levitt, 1980; White & Broadley, 2001; Raveh & Levy, 2005) and reduce both
frost hardiness (Sucoff, Hong & Wood, 1976) and drought tolerance (Maas, 1985).

Salinity is a stress factor enhancing the production of reactive oxygen species (ROS)
which can lead to oxidative damage in plant cells. Therefore, robust metabolism of ROS is
believed to protect plant tissues from injuries under salt conditions as well as during other
abiotic stresses (e.g., drought and light stress) (Miller et al., 2010). On the other hand, tuned
ROS balance play role in signal transduction pathways and are among factors activating
plant responses to environmental stimuli (Miller et al., 2010). This can be modulated
and fine-tuned by enzymatic antioxidants, such as superoxide dismutase (SOD), catalase
(CAT) and peroxidase (POD). Increasing SOD activity was shown to be involved in salt
stress tolerance in herbaceous (reviewed by Gill & Tuteja, 2010) and woody plant species
(Wang et al., 2010). A similar conclusion could be drawn with regard to studies on the
involvement of CAT and POD in the response of Populus cathayana Rehder to salt stress
(Yang et al., 2009). The accumulation of osmolytes is also one of the salt-induced stress
coping mechanisms. During NaCl stress, Na+ ions are stored in vacuoles, while potassium
ions (K+) and compatible chemicals (such as proline, sucrose, glycine, betaine, mannitol)
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are accumulated in the cytosol and other organelles to balance the osmotic pressure of ions
in the vacuoles (Wang et al., 2005; Lee et al., 2007; Székely et al., 2008). Similar changes can
be observed during cold (Naidu et al., 1991), drought (Choudhary, Sairam & Tyagi, 2005),
oxidative (Yang, Lan & Gong, 2009) and heavy metal (Siripornadulsil et al., 2002) stress.
Proline is probably the most widely distributed osmolyte, and it occurs not only in plants
but also in many other organisms (Delauney & Verma, 1993). In addition to regulating
osmotic pressure, proline is implicated in plant tissue defense against osmotic stress and
in the protection of plasma membrane integrity (Mansour, 1998) or as a source of carbon
and nitrogen (Peng, Lu & Verma, 1997; Soshinkova et al., 2013).

Silver maple (Acer saccharinum L.) is a common, floodplain deciduous tree originating
from North America that is adapted to saturated soils and flooding (Saeki et al., 2011).
It is also common and widely cultivated in the northern temperate zone (Day, Seiler
& Persaud, 2000). In many countries, including Poland (where silver maple is not
protected species), this tree species is planted in street settings, parks, and residential
and commercial landscapes. Its widespread popularity results from its rapid growth and
attractive appearance—leaves are gently-lobed, deeply dissected and glaucous silvery-
white on abaxial side (Saeki et al., 2011). From a practical point of view, appropriate tree
selection should be based on information about the relationship between tree growth and
stress-coping mechanisms that pertain to the urban environment, such as salt stress, soil
compaction and heat island effect. Although some studies have suggested that silver maple
is a plant sensitive to salinity (Buschbom, 1968; Dmuchowski, Baczewska & Bra̧goszewska,
2011; Dmuchowski, Brogowski & Baczewska, 2011), the available information about the
salinity tolerance level of silver maple at different stages of growth is scarce, e.g., the salinity
tolerance of silver maple seedlings is not well known. Furthermore, studies on the role of
antioxidant enzymes during salt stress and on the plant growth parameters accompanying
it allow us to estimate range and amplitude of response to salinity in this woody species.
Therefore, the aim of this investigation was to determine the effects of de-icing salts on the
silver maple at four time-steps (14 d, 28 d, 180 d and 360 d). We also assayed how different
salinity levels altered the biochemical stress-coping mechanism and changed the fitness of
this widely used plant.

MATERIAL AND METHODS
Seed material
Mature seeds were collected from 10 randomly selected silver maple (Acer saccharinum L.)
trees (c.a. 10% of total seed pool were gathered from single mother tree) in Lodz, central
Poland (19◦20′N/19◦38′E), on 30 June 2013. The local climate is temperate, and the seasons
are clearly differentiated. Meteorological data (Lodz Meteorological Station) based on a
10-year period (2000–2010) indicated that the mean annual temperature was 8.8 ◦C. The
average low temperature during winter was ≤2.5 ◦C, and the average high temperature
during summer was 22.4 ◦C. Annual total precipitation (rain and snow) was 587.2 mm.
The frost-free period averages 271 d (days).
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Seed germination
The silver maple seeds were mixed before tests in order to fulfill the randomization
requirement. The seeds were surface sterilized with 70% (v/v) ethanol for 1 min and with
10% (v/v) sodium hydrochloride for 20 min. Then, the sterilized seeds were soaked for 4 h
(hours) in sterile distilled water. The seeds were germinated on trays (100 seeds per tray)
containing wet perlite (previously tested not to release salt) at 25 ◦C. All used seeds were
viable and the final germination rate was above 75%.

Growth conditions
After a week, seedlings of similar size were individually transplanted into 500-cm3 pots filled
with perlite. The pots were watered to saturation twice daily with Hoagland’s solution (half
strength) (Hoagland & Arnon, 1950). The plants were grown in a growth chamber with a
16:8 h photoperiod and a light intensity of 900–1,200 µmol m−2 s−1. Relative humidity
was maintained between 60% and 70% and thermoperiod of 25 ◦C/18 ◦C (day/night).
The pots of replicate treatments (see below) were rotated periodically within the chamber
rooms to reduce the effects of possible temperature and/or light variation.

Plant treatments
After 2 months, the seedlings were divided into 12 groups. Each group was treated with
one solution of NaCl (0, 10, 30, 60, 100 and 120 mM) or CaCl2 (0, 6.7, 20, 40, 66 and
80mM). The control groups (0 NaCl and a 0 CaCl2) were not treated with any salt solution.
The plants were treated three times at two-week intervals with 25 cm3 of the appropriate
salt solutions. To prevent the accumulation of salts in perlite, distilled water was applied
every three days. The concentrations of NaCl and CaCl2 were chosen to achieve the same
concentration of dissociated ions in the corresponding solutions (10 mM NaCl and the
corresponding 6.7 mM CaCl2, 120 mMNaCl and 80 mM corresponding CaCl2). NaCl and
CaCl2 are used in Poland both is solid (10–30 g m−2 of NaCl) and dissolved (40–160 cm3

m−2 of 25% NaCl or 15/30% CaCl2 solution) form (Czarna, 2013). The concentrations of
salt solutions used in this study were chosen to simulate distribution of road salt residues
which depends on distance from salted surfaces (the maximal accumulation of salt can be
observed in area located nearest to the road margin).

Then, 14 and 28 d after treatment (three doses of salt solution), leaves and roots were
collected for the analysis of enzymatic and nonenzymatic parameters. These parameters
were analyzed again 360 d after treatment. In addition, seedling growth was measured
180 and 360 d after treatment. For each treatment in each time point, four plants were
subjected to biochemical analysis and another four plants were subjected to analysis of
growth parameters.

Growth parameters
Fresh (FW) and dry (DW) weights of the plant shoots and roots were measured at 180 and
360 d. To determine dry mass, the material was dried for 48 h in a forced-draft oven at
60 ◦C. To determine the relative growth rate (RGR), plants were harvested immediately
prior to the beginning of the salt treatments. Thereafter, successive harvests were taken at
180 and 360 d. The relative growth rate (RGR) was calculated using the following formula:
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RGR = (ln mass2 * ln mass1/time) (Khan, Unagr & Showater, 2000). The dry mass of each
harvest was used for calculations. RGRs were expressed in g g−1 FW d−1.

Biochemical analysis
Chlorophyll a and b contents in the fresh leaf samples were measured using the method of
Arnon (1949) and Ashraf et al. (1994). Pigment concentrations were calculated from the
absorbance of extract at 663 nm (A663) and 645 nm (A656) using the following formula:

Chlorophyll a (mg g−1 FW) = [12.7 * (A663) − 2.69 * (A645)] * 0.5
Chlorophyll b (mg g−1 FW) = [22.9 * (A645) − 4.69 * (A663)] * 0.5
The content of photosynthetic pigments was expressed in mg g−1 FW.
Free proline accumulation was determined using the method of Bates, Waldren &

Teare (1973). The content of free proline was expressed in mg g−1 FW. For enzymatic
analysis, the leaf fragments were homogenized (1:10 ratio) in 0.05 phosphate buffer (pH
= 7.0) containing 1mM EDTA and 1% soluble PVP (polyvinylpyrrolidone). Then, the
homogenates were centrifuged at 15,000 rpm for 15min at 4 ◦C. The resulting supernatants
were immediately used to analyse protein content and enzymatic activity. Superoxide
dismutase (SOD, EC 1.15.1.1) activity was determined spectrophotometrically using
the assay of Beauchamp & Fridovich (1971). The absorbance was measured 10 min after
starting at a wavelength of 560 nm. The total reaction mixture of 2.7 cm3 contained 50 mM
potassium phosphate buffer pH 7.8, 13 mM methionine, 75 µM NBT, 2 µM riboflavin,
0.1mMEDTA and the enzyme extract. The reaction was started by turning on theUV lamp.
The enzyme activity was expressed in units, each representing the amount of the enzyme
required to inhibit 50% of the photochemical reduction of NBT, min−1 mg−1 protein.
Catalase (CAT, EC 1.11.1.6) activity was determined spectrophotometrically using the assay
of Dhindsa, Plumb-Dhindsa & Thorpe (1981). Absorbance was measured at a wavelength
of 240 nm (ε= 36.1 mM−1 cm−1). The total reaction mixture of 2 cm3 contained 50 mM
potassium phosphate buffer pH 7.0, 15 mM H2O2 and the enzyme extract. The enzyme
activity was expressed in units, each representing 1 mM H2O2 decomposed, min−1 mg−1

protein. Peroxidase (POD, EC 1.11.1.7) activity was determined spectrophotometrically
using the assay of Maehly & Chance (1954). Absorbance was measured at a wavelength of
470 nm (ε= 26.6 mM−1 cm−1). The total reaction mixture of 2 cm3 contained 25 mM
acetate buffer pH 5.6, 5 mM guaiacol, 15 mM H2O2 and the enzyme extract. The enzyme
activity was expressed in units, each representing 1 µmol tetraguaiacol formed, min−1

mg−1 protein. Protein content was assayed by the Bradford method (1976) using bovine
serum albumin as a standard.

Statistical analysis
Measurements at each time point were obtained from four independent replicates. The
data for all statistical tests were log10 transformed to meet the assumptions of normality
and homogeneity of variances implicit in parametric statistical procedures. The data
were analyzed by one-, two- or three-way ANOVA. When significant differences were
found among means, Tukey’s multiple comparison post hoc test (HSD-test) after one-way
ANOVAwas carried out to determine if significant (P < 0.05) differences occurred between
individual treatments. Statistical analysis was carried out using Statistica 10 PL.
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Ethics statement
The plant material (seeds of Acer saccharinum L.) was collected in Lodz. The area of Lodz
city reported in this paper is controlled by the government of the Poland and is not privately
owned, nor protected. The species studied here is not yet a protected species in Poland and
permit for collection of seeds was not required (Poland Ministry of the Environment, 2013;
Poland Ministry of the Environment, 2014). Furthermore, neither local population size nor
population fitness was affected.

RESULTS
Growth Parameters
In general, both salt types caused a reduction in the fresh weight of the seedlings; however,
a greater reduction in the shoot and root fresh weight occurred after NaCl treatments
(all corresponding NaCl vs CaCl2 comparisons in each time point were significant at
P < 0.001). The total dry weight accumulation was not significantly inhibited at low
salinities (<30 mM)—this parameter was strongly inhibited at concentrations >60 mM
of NaCl and >40 mM of CaCl2 (Table 1). On the other hand, weight of seedlings showed
substantial promotion at low salinity caused by CaCl2 (6.7 and 20 mM for both fresh and
weight dry weight) after the first harvest (Table 1). Further increasing salinity caused a
progressive decline in weight. Analysis of variance of the salt-treated plants indicated a
greater reduction of the fresh weight of roots than of shoots. In the contrary, dry weight
of shoots were much more affected by increasing salt concentration than dry weight of
roots. (Table 1). Only dry weight of roots were not significantly affected by interaction of
all studied factors, while other weight parameters were strongly affected by the salt type,
dose and time as well as their interaction (Table S2).

During the 180- to 360-d periods, the highest RGR was observed in the groups treated
with low salinity (both NaCl and CaCl2, <30 mM and <20 mM, respectively) as well as
with medium salt dose (60 mM NaCl and 40 mM CaCl2) (Fig. 1). The highest salinity
substantially inhibited seedlings growth. Higher growth rates were usually observed during
the 0- to 180-d period. Non saline controls and the groups subjected to the low salinity
treatments were not significantly different from each other. Leaves of the plants from
both NaCl and CaCl2 treatments (except control groups—0 mM NaCl and 0 mM CaCl2)
developed a reddish color and became more brittle and dry; however, this was more
prevalent for the NaCl-treated plants.

Photosynthetic pigments
Comparing to control groups, reduced concentrations of chlorophyll a were observed
under the influence of solutions >100 mM NaCl at 14 d (Fig. 2). Significant reduction of
chlorophyll b concentration was observed only at 28 d in group treated with 120 mMNaCl.
CaCl2 solutions did not trigger any significant changes of chlorophyll a and b concentration
in any group. At 360 d, the chlorophyll a and b contents were similar in all groups (no
significant differences were observed for all corresponding NaCl vs CaCl2 comparisons;
ANOVA with Tukey’s post-hoc test). Interestingly, this parameter were affected by all
individual factors, while their interaction were not significant (Table S3).
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Table 1 The fresh and dry weight of the roots and shoots from the silver maple seedlings exposed to different salt type (NaCl or CaCl2) and
dose after 180 and 360 d.

Salinity (mM) Fresh weight (mg plant−1) Dry weight (mg plant−1)

root shoot total root shoot total

After 180 d
0 NaCl 480.6± 12.91 310.2± 10.91 790.8± 12.01 62.7± 1.81 214.5± 8.91 277.2± 8.41

10 NaCl 467.0± 8.91 305.7± 5.31 772.7± 21.61 60.3± 5.41 227.0± 11.31 287.3± 5.71

30 NaCl 322.4± 5.52 258.4± 9.82 580.8± 16.62 56.1± 4.712 188.9± 6.82 245.0± 8.12

60 NaCl 309.1± 7.62 242.7± 7.623 551.8± 12.82 55.9± 8.912 155.0± 4.63 210.9± 4.23

100 NaCl 244.5± 12.23 225.7± 12.13 470.2± 8.93 51.5± 2.812 123.2± 5.24 174.7± 3.34

120 NaCl 217.0± 15.04 197.0± 5.84 414.0± 9.84 46.0± 6.32 100.7± 6.15 146.7± 4.15

0 CaCl2 536.5± 4.83 414.1± 13.52 950.8± 12.82 87.2± 5.22 272.4± 6.31 359.6± 5.72

6.7 CaCl2 565.9± 6.52 416.5± 6.52 982.4± 21.82 103.1± 5.71 280.5± 7.51 383.6± 6.31

20 CaCl2 596.3± 7.41 447.2± 7.91 1043.5± 23.21 108.9± 2.81 236.6± 9.52 345.5± 8.72

40 CaCl2 499.0± 12.24 385.3± 11.23 884.3± 14.23 81.6± 7.523 197.0± 6.83 278.6± 7.63

66 CaCl2 457.7± 8.65 358.6± 8.14 816.3± 15.94 72.5± 4.63 152.7± 6.34 225.2± 3.54

80 CaCl2 412.5± 8.66 336.7± 6.85 749.2± 11.65 59.6± 4.64 134.8± 5.75 194.4± 4.25

After 360 d
0 NaCl 553.8± 12.91 670.9± 10.42 1224.7± 21.62 86.4± 4.31 407.1± 6.52 493.5± 9.52

10 NaCl 573.2± 8.91 771.4± 27.31 1344.6± 25.21 81.5± 5.612 448.0± 6.31 529.5± 6.81

30 NaCl 412.6± 5.52 607.5± 18.23 1020.1± 19.73 70.8± 7.12 344.5± 11.83 415.3± 5.63

60 NaCl 379.5± 7.63 463.1± 14.94 842.6± 12.54 69.0± 5.423 229.1± 5.94 298.1± 4.34

100 NaCl 276.3± 12.24 398.3± 17.55 674.6± 10.65 58.0± 6.634 145.5± 8.05 203.5± 5.25

120 NaCl 243.2± 15.05 394.6± 13.25 637.8± 9.86 49.0± 4.84 122.1± 8.96 171.1± 3.46

0 CaCl2 536.7± 4.84 634.0± 45.83 1170.7± 27.13 124.7± 5.93 580.8± 17.91 705.5± 8.92

6.7 CaCl2 865.9± 6.51 1383.4± 23.21 2249.3± 21.51 140.9± 6.22 615.5± 15.91 756.4± 9.61

20 CaCl2 652.2± 7.42 897.0± 15.32 1549.2± 17.42 172.9± 7.11 530.0± 17.52 702.9± 7.62

40 CaCl2 588.0± 12.23 596.5± 14.93 1184.5± 12.63 109.4± 6.44 346.0± 12.03 455.4± 6.43

66 CaCl2 477.2± 8.65 525.5± 21.14 1002.7± 12.54 92.4± 4.35 240.1± 3.94 332.5± 5.34

80 CaCl2 465.0± 14.45 473.2± 10.45 938.2± 8.95 73.5± 3.86 213.5± 5.95 287.0± 3.85

Notes.
Values are mean± SD (n= 4). Values in each column with the same number are not significantly different at P < 0.05, Tukey’s multiple test.

Proline content
The proline content was significantly greater in the roots and leaves under all stress
conditions (Fig. 3). The highest levels of proline compared to the control plants were
observed at 360 d. In addition, greater changes were observed after treatment with high
concentrations of NaCl than with CaCl2 (significant changes >60 mM NaCl in leaves and
100 mM in roots; ANOVA with Tukey’s post-hoc test). Both leaf and root proline amount
were dependent of all tested factors and all their interactions (Tables S3 and S4).

Superoxide dismutase activity
A statistically significant increase in SOD activity was demonstrated in the roots and leaves
at 14 d after treatment with NaCl as well as at 14 and 28 d after treatment with CaCl2
(Fig. 4). It is noteworthy that after 360 d of treatment, SOD activity in most cases did not
differ from the control plants. The slight increase was recorded only in the roots of plants
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Figure 1 Effects of saline stress on the relative growth rate (RGR) of the silver maple seedlings exposed
to different salinity levels (NaCl or CaCl2) after 180 (A, C) and 360 (B, D) days (g g−1 FW d−1). Values
are mean± SD (n = 4). Different numbers above each bar indicate significant differences by ANOVA
followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-1

treated with 100 and 120 mM NaCl. Comparing corresponding salt treatments, some
differences were observed in leaves (100 mM NaCl vs 66 mM CaCl2 at 14 d; 60 mM NaCl
vs 40 mM CaCl2 and 100 mM NaCl vs 66 mM CaCl2 at 28 d) as well as in roots (only 120
mM NaCl vs 80 mM CaCl2 at 360). A three-way ANOVA showed significant influence of
all factors, except interaction of time and salt treatment on activity of this enzyme in roots
(Tables S3 and S4).

Catalase activity
After 14 and 28 d, CAT activity significantly increased in the roots of almost all salt-treated
plants (except 10 and 120mM of NaCl at 14 d and 6.7 mM of CaCl2 at 14 and 28 d) (Fig. 5).
At 360 d, this parameter was slightly but statistically significantly higher in both treatment
variants. In the leaves, at 14 and 28 d after NaCl treatment, CAT activity decreased in
groups treated with solutions of 30–60 mM. Significant differences were also observed in
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A B

D E

C

F

Figure 2 Effects of saline stress on the content of photosynthetic pigments (chlorophyll a and b) in the
leaves from the silver maple seedlings exposed to different salinity levels (NaCl or CaCl2) after 14 (A,
D), 28 (B, E) and 360 (C, F) days. Values are mean± SD (n= 4). Different numbers above each bar indi-
cate significant differences by ANOVA followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-2

CaCl2 treated plants and those changes intensified with increasing salt concentration. At
360 d, slight but significant changes were observed. Interestingly, when compared to 14
and 28 d, the trend of changes reversed at 360 d (Fig. 5). Comparing corresponding salt
treatments, differences were observed in roots (30 mM NaCl vs 20 mM CaCl2 and 60 mM
NaCl vs 20 mM CaCl2 at 14 d; all comparisons at 28 d and 100 mM NaCl vs 66 mM CaCl2
and 120 mM NaCl vs 80 mM CaCl2 at 360 d) as well as in leaves (100 mM NaCl vs 66 mM
CaCl2 and 120 mM NaCl vs 80 mM CaCl2 at 14 and 28 d and 30 mM NaCl vs 20 mM
CaCl2 at 360 d). All factors showed significant influence on activity of CAT, except time
and salt type interaction in leaves (three-way ANOVA) (Tables S3 and S4).

Peroxidase activity
A significant increase in POD activity was observed in the roots throughout the experiment.
The highest POD activity (approximately five times greater than the control) was observed
at 14 d in the plants treated with 120 mMNaCl solution (Fig. 6). In the leaves, POD activity
increased with the increasing salt concentration at 14 and 28 d; however, greater changes
were observed at 14 d. At 360 d after treatment, no significant differences in leaves were
observed (Fig. 6). Comparing corresponding salt treatments, differences were observed
leaves (all comparisons except control groups and the highest dose at 14 d) as well as in
roots (30, 60, 100 mM NaCl vs 20, 40, 66 mM CaCl2, respectively, at 14 d, 30, 60, 100,
120 mM NaCl vs 20, 40, 66, 80 mM CaCl2, respectively, at 28 d, 30, 60, 120 mM NaCl vs
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Figure 3 Effects of saline stress on the content of proline in the roots and leaves from the silver maple
seedlings exposed to different salinity levels (NaCl or CaCl2) after 14 (A, D), 28 (B, E) and 360 (C, F)
days. Values are mean± SD (n= 4). Different numbers above each bar indicate significant differences by
ANOVA followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-3

20, 40, 80 mM CaCl2, respectively, at 360 d). All factors showed significant influence on
activity of POD (three-way ANOVA) (Tables S3 and S4).

Protein content
In the roots watered with 100–120 mMNaCl solution, slight reductions in protein content
were recorded in the early phase of the experiment (14 d), while a slight increase was
characteristic of the 28 and 360 d. On the other hand, CaCl2 treatment caused an increase
in the total protein content at 14, 28 and 360 d. Long-term changes in CaCl2-treated plants
were similar to those observed in NaCl-treated plants. The leaves from plants subjected
to CaCl2 treatment showed significantly increased protein content at 360 d (Table S1). A
three-way ANOVA showed significant influence of all factors on protein content, both in
roots and leaves (Tables S3 and S4).

DISCUSSION
Although the reduction in growth parameters were smaller in CaCl2-treated plants than in
NaCl-treated plants, its harmful effect was still manifested. Hall, Hofstra & Lumis (1972)
showed that increasing salt concentration (changing with distance from a de-iced highway)
strongly affected the reduction of plant growth parameters, namely, the weight of buds,
needle length and fresh weight, as well as annual radial increments in eastern white pine
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Figure 4 Effects of saline stress on the superoxide dismutase (SOD) activities in the roots and leaves
from the silver maple seedlings exposed to different salinity levels (NaCl or CaCl2) after 14 (A, D), 28
(B, E) and 360 (C, F) days. Values are mean± SD (n= 4). Different numbers above each bar indicate sig-
nificant differences by ANOVA followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-4

(Pinus strobus L.). It shows that injury caused by salt-based de-icing agents in woody species
not tolerant to salt, such as P. strobus or studied A. saccharinum (Dirr, 1976), is a rather
common result of road maintenance. Reduction of growth parameters (shoot length, total
leaf area and total DW) was also reported for six olive cultivars treated with a relatively high
dose of NaCl (>50 mM) (Chartzoulakis et al., 2002). The authors also indicated that a low
dose of salt (25 mM) stimulated olive plant growth. Similar results were observed in our
study for CaCl2 treatment (6.7 and 20 mM), while no positive effects of NaCl treatment
were observed. Optimal calcium supplementation stimulates growth in many plant species
(Fenn & Feagley, 1999). Furthermore, calcium is one of the macronutrients necessary for
plants due to its role in cell development and stress response. It is also known to contribute
to the physical integrity and functionality of membranes (Hopkins, 1995). It seems that a
similar protective effect of low doses of calcium can be observed for silver maple.

It was demonstrated that snowmelting might be a substantial source of chloride ions
and could increase the pH of soil, which resulted in its alkalization (Gałuszka et al., 2011).
It was also shown that the alkaline pH of soils favored greater bioavailability of boron and
reduced bioavailability of zinc for the examined trees. The negative symptoms included
loss of photosynthetic activity and decreased vitality. Although in our study perlite was
used as substratum (and alkalization was not monitored), such a mode of action is likely
in natural conditions and probably enhance negative effect of salinity. Soil salinity causes
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Figure 5 Effects of saline stress on the catalase (CAT) activities in the roots and leaves from the silver
maple seedlings exposed to different salinity levels (NaCl or CaCl2) after 14 (A, D), 28 (B, E) and 360 (C,
F) days. Values are mean± SD (n= 4). Different numbers above each bar indicate significant differences
by ANOVA followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-5

rapid osmotic stress, which reduces growth of shoots, slows development and accelerates
aging of cells in many plant species (Parida & Das, 2005). It is believed that Na+ causes
osmotic stress in leaves, affects plant growth (reduces cell expansion and elongation),
reduces leaf thickness and disturbs photosynthesis (Tester & Davenport, 2003). Application
of salt was showed as agent reducing plant size and the number of leaves of cotton varieties
(Gossypium hirsutum L.) (Saleh, 2012). The authors also showed that the number of leaves,
chlorophyll a and b content and SPAD (soil plant analyses development) can be used
to discriminate between salt-tolerant and salt-sensitive varieties. It was demonstrated
that even plants not very susceptible to salinity (six species from the Leguminosae family)
reacted to increasingNaCl concentrationwith a reduction in plantmass (Felker et al., 1981).
Another study indicated that citrus (Citrus tangerine Hort. ex Tanaka) seedlings treated
with 100 mM NaCl showed a reduction of leaf size, shoot and root length and seedling
mass. Furthermore, photosynthesis limitation was observed (Wu, Zou & He, 2010). NaCl
treatments (0, 50 and 100 mM) were also shown to decrease chlorophyll a and b contents,
CO2 assimilation rate and stomatal conductance in P. cathayana and affected chloroplast
functioning (Yang et al., 2009). Described perturbations affecting photosynthesis may have
a negative impact on plant primary metabolism and plant growth. Our results showed
that the reductions in chlorophyll a content under the influence of NaCl concentrations
>60 mM at 14 d coincided with the reduction in RGR, FW and DW accumulation during
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Figure 6 Effects of saline stress on the peroxidase (POD) activities in the roots and leaves from the sil-
ver maple seedlings exposed to different salinity levels (NaCl or CaCl2) after 14 (A, D), 28 (B, E) and 360
(C, F) days. Values are mean± SD (n= 4). Different numbers above each bar indicate significant differ-
ences by ANOVA followed by Tukey’s test at P < 0.05.

Full-size DOI: 10.7717/peerj.5958/fig-6

the experiment, even at 360 d. It can be suggested that lowered chlorophyll content in the
early phase of the experiment contributed to disturbances in plant metabolism that could
not be fully compensated with time.

It is accepted that all trees are affected by salt stress, but some species are more tolerant
than others (Dirr, 1976; Douglas, 2011). Numerous studies showed induced proline
accumulation (Munns & Tester, 2008; Aziz, Martin-Tanguy & Larher, 1999; Acosta-Motos
et al., 2017) during stress and indicated that it could be a protective mechanism against
increased osmotic pressure resulting from salt stress (Hoque, 2008). Previous studies
showed a high accumulation of proline in two poplar cultivars under the experimental
conditions of salt stress (combined SO2 and NaCl treatment) (Karolewski, 1989). It was also
indicated byMarin et al. (2010) that the highest concentration of proline in in vitro-grown
roots of selected Prunus species could be observed in groups treated with the highest
concentration of NaCl (180 mM), which is similar to the results provided in our study.
Proline accumulation in roots may be one of the mechanisms involved in ROS scavenging
and may contribute to the enzymatic quenching of ROS (Gill & Tuteja, 2010). This process
is mediated by POD and CAT, whose activities increased significantly in salt-treated plants
tested in our study at 14 and 28 d, respectively. Furthermore, elevated proline content was
shown to protect enzymatic ROS-scavengers such as CAT and POD (Hoque et al., 2007).
It can be concluded that coordination of proline accumulation and changing activities
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of CAT and POD may be treated as an adjustment to salt stress. On the other hand,
our results indicate that for silver maple, such a mode of action could not be enough
to cope with salt stress, which was manifested in plant growth parameters. Long-term
accumulation of proline in leaves was shown in studies on olive (Olea europaea L.) treated
with salt (Ben Rouina et al., 2006) and subjected to drought (BenAhmed et al., 2009). The
authors suggested a possible beneficial role of proline in improving photosynthetic activity
by triggering osmotic adjustment throughout the stress period. Similar results were also
shown in our study regarding the coincidental increase in proline and stable chlorophyll
contents.

Studies on two poplar species showed increased CAT and SOD activities in leaves and
xylem sap of salt-stressed tolerant Euphrates poplar (P. euphratica Oliv.) and sensitive P.
popularis ‘35–44’ plants, especially at high salinity levels (up to 250 mM NaCl). Separation
of the isoforms of leaf SOD andCAT by polyacrylamide gel electrophoresis revealed that the
salt-induced activities of CAT resulted from increased activity of all the detected isoenzymes
(Wang et al., 2008). Particularly high SOD and CAT activities were found 18 d after NaCl
treatment, which seems to be in agreement with our studies. The authors concluded that
P. euphratica plants subjected to saline conditions controlled ROS homeostasis by osmotic
control of NaCl-induced ROS production and by rapid upregulation of antioxidant defense
to prevent oxidative damage (Wang et al., 2008). In studies on oak, SOD activity increased
in young stalks under stress conditions (NaCl treatment). Moreover, the SOD isozyme
pattern of oak leaves was altered when compared to the control group (Sehmer, Alaoui-Sosse
& Dizengremel, 1995). The effects of different saline water irrigation levels were also studied
in olive trees (Olea europaea L.) in which the activities of SOD and CAT in young leaves of
salt-treated plants were 2.67 and 1.85 times higher than in the control, respectively. It was
concluded that the interaction between the antioxidant defense system and proline content
is involved in salt tolerance (BenAhmed et al., 2009). Similar results were shown in a study
on physic nut (Jatropha curcas L.) (Silva et al., 2013). The conclusion can be formulated
that a similar mechanism is mounted in silver maple subjected to salinity stress and that
the activation of SOD is involved in enzymatic antioxidation, especially during intensifying
salt stress (>30 mM of NaCl).

We showed that the activity of CAT increased after NaCl and CaCl2 treatment. This
increase was marked in the roots at 14 and 28 d after NaCl treatment, while we were not
able to detect any greater changes in the leaves during the experiment. In the contrary,
studies conducted on salt-resistant brush cherry (Eugenia myrtifolia Sims) watered with
saline reclaimed water showed that long-term response (23 weeks) involved increased CAT
activity in leaves, but this change seemed not be correlated with salt dose (Acosta-Motos et
al., 2017). The authors pointed that the observed CAT changes did not appear to be enough
to cope with the stress induced by the long-term exposure to salinity. Based on previous
studies of barley (Hordeum vulgare L.) cultivars (Fan et al., 2014), it was concluded that
changes in CAT activity in leaves should not be used as a standalone biochemical marker
proving salinity tolerance in crop plants. We showed that sequential biochemical testing
of roots and leaves accompanied with growth analysis can fulfill the requirements for salt
sensitivity testing in trees. CAT was recently suggested as a main factor controlling salt
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tolerance triggered by H2O2 (Gondim et al., 2012). This is in agreement with experiments
conducted on physic nut (Jatropha curcas L.) which is a salt-tolerant species (Gao et al.,
2008). It seems that elevated CAT activity in both leaves and roots has a protective effect,
while increased activity just in one organ is not enough to trigger adequate response.
Surprisingly, in the early stage of our experiments, CAT activity remarkably increased
just in the groups treated with the medium NaCl solutions (30 and 60 mM). Increasing
concentrations of salt (100 and 120 mM) stopped this effect, which may indicate that
plants were not able to cope with severe salt stress. A similar relationship was recorded by
Sorkheh et al. (2012) for 8 wild almond species (Prunus spp.) treated with a wide range of
NaCl solutions. The gradual increase in CAT activity after 28 d during NaCl-induced stress
recorded in the present study is similar to the phenomenon reported before in date palm
(Phoenix dactylifera L.) (Al-Qurainy et al., 2017). It is noteworthy that CaCl2 triggered only
slight CAT changes in silver maple tissues, which may indicate its lower phytotoxicity.

We observed that POD activity increased dramatically in the roots at 14 d after treatment
with NaCl and then decreased with time. Moreover, a positive relationship between POD
activity level and salt concentration was observed in both NaCl and CaCl2. The profiles of
changes were similar; however, they were markedly more pronounced in the NaCl variant.
Some studies indicate that POD is involved in a salinity stress response in Kashgar tamarisk
(Tamarix hispida Willd.) and is regulated by ABA-dependent signaling pathways covering
salt tolerance in many plant species (Gao et al., 2010). Due to the multifunctional activity
of POD, it is believed that its activity is a good marker of plant stress response; however,
its role during abiotic stress is still not fully elucidated (Passardi et al., 2005). It was also
proposed that peroxidases may play a protective role acting as scavengers of H2O2, which
overproduction took place under salt stress (Novo-Uzal et al., 2014). No greater changes in
the leaves and roots were observed 360 d after treatment. Therefore, it can be concerned
that one year is enough to cope with salt stress and to start recovery. On the other hand,
long-lasting stress under urban conditions is severe, and its cyclicality may make the plant
unable to cope with it.

CONCLUSION
It was shown in this study that the plant growth parameters, namely, fresh and dry weight,
were reduced by high concentrations of NaCl and CaCl2. Furthermore, the response
strictly depended on the salt type and dose. Our experiments indicate the existence of
short-term stress-coping reactions (increased enzyme activity coincident with increased
proline content under salt stress). Restabilization of long-term biochemical traits and
inhibited growth suggest that the studied species can survive de-icing treatments, but
subsequent recovery is needed. Overall, this indicates that silver maple seedlings should
be considered susceptible to long-lasting severe salt stress. Hence, it is recommended to
use silver maple plantings on secondary avenues or park alleys, while planting on often
de-iced pavements and roads (e.g., highways) should be avoided. Our study also suggests
that CaCl2 shows less toxicity to plants and therefore that its use should be considered.
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