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ABSTRACT 16 

Background. Yak (Bos grunniens) is the most important domestic animal for people living at 17 

high altitudes, especially on the Qinghai-Tibetan Plateau. Yak ordinarily feed by grazing. Yak 18 

grazing has a strong impact on pedigree record accuracy because it is difficult to control 19 

mating in grazing yak. Polled yak are less dangerous to herdsman than horned yak. For this 20 

reason, polled yak breeding is preferred by herdsmen.  21 

Methods. A standardized set of microsatellite loci was assessed and applied to parentage 22 

testing and individual identification in yak. Seventy-one microsatellite loci were selected from 23 

literature databases, . Mmost of them were used for cattle. Thirty-five microsatellite loci 24 

generated excellent results from PCR amplification and were evaluated for parentage testing 25 

and individual identification in 236 unrelated polled yaks. Seventeen loci had polymorphic 26 

information content (PIC) > 0.5 and were in Hardy-Weinberg equilibrium without linkage 27 

disequilibrium. Of these 35 markers, the seventeen loci were used in a core set of multiplexed 28 

markers suitable for parentage testing and individual identification in polled yak.  29 

Results. The multiplex PCRs and loading systems provided very high exclusion probabilities 30 

(EP) determined from combined core set genotypes. The followed combined exclusion 31 

probabilities were obtained: EP1 (exclusion probability for one candidate parent when one 32 

confirmed parental genotype is missing) = 0.99718116; EP2 (exclusion probability for one 33 

candidate parent when one confirmed parental genotype is available) = 0.99997381; EPP 34 

(exclusion probability for one alleged parental genotype pair is available) = 0.99999998. The 35 

combined EI (exclusion probability of finding two identical genotypes) and combined ESI 36 

(exclusion probability of finding the identity of two siblings) were > 0.99999999 and 37 

0.99999899, respectively. The results of this analysis indicated that this combination of 38 

seventeen microsatellite markers could improve process efficiency, reliability, and utility in 39 

paternity testing and individual identification. 40 

Discussion. Fluorescent detection primers can identify many microsatellite alleles that are 41 

applicable in polled yak population genetics analyses. Fluorescence labeling is useful for 42 

multiplex amplification and loading systems, decreases detection time, reduces testing costs, 43 
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and generates copious amounts of microsatellite genotype data. Polymorphic microsatellite 44 

loci are suitable for parentage/relatedness analysis in other yak breeds with locus allele 45 

frequencies similar to those of the polled yak. 46 

 47 

Keywords Polled yak, Microsatellites, Short tandem repeats, Simple sequence repeats, 48 

Forensic genetics, Exclusion probabilitiesIdentification, Parentage testing,   Conservation 49 

biology, Genetic diversity 50 

 51 

INTRODUCTION 52 

Yak (Bos grunniens), a member of the Bovidae, has successfully adapted to the severe cold 53 

and low oxygen levels characteristic of high altitude regions (~2,500-5,500 m) such as the 54 

Himalayas in south-central Asia, the Qinghai-Tibetan Plateau, Mongolia, and Russia (Wu 55 

2016). These regions are known for their high elevations, pristine natural environments, and 56 

frequent seasonal variations (Haynes & Yang 2013; Ishizaki et al. 2005; Mizuno et al. 2015). 57 

The ability of yak to survive in such rugged natural environments is the result of numerous 58 

behavioral, physiological, and genetic adaptations (Barsila et al. 2014; Ding et al. 2015; Hu et 59 

al. 2012; Huang et al. 2012; Qiu et al. 2012; Wang et al. 2017b). For instance, yak have 60 

steady daily fasting heat production levels at constant ambient air temperatures even with 61 

increasing altitude (Ding et al. 2014; Han et al. 2003). Yak can thrive in an extreme 62 

environment such as the Tibetan Plateau where few other animals can survive. Yak have 63 

made significant contributions to human life in the Tibetan Plateau by providing meat, milk, 64 

fur, leather, transportation, and more (Hu et al. 2016; Lee et al. 2017; Medhammar et al. 2012; 65 

Wang et al. 2018). 66 

The ~13 million domestic yak in China constitute ~90% of the global yak population. 67 

There are fourteen yak breeds in China, of which one is artificial (Wu 2016). Polled yak strain 68 

have been bred for many years at the foot of the Ashidan Mountain. Polling is very useful in 69 

herd management because it reduces the risk of horn-inflicted injury or death among the 70 
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herdsman. Polled yak breeding is very valuable in pasturing areas. Accurate genealogical 71 

records help estimate genetic parameters and improve breeding programs, and. They ensure 72 

efficient and effective breeding progress and  avoiding excessive inbreeding. When yak graze, 73 

however, mating is very difficult to control. Semen samples could be mislabeled in error 74 

during preparation, and mating records might be confused as a result of clerical errors made 75 

during artificial insemination. Therefore, accurate yak pedigree records compiled by paternity 76 

testing and individual identification are essential in polled yak breeding. 77 

Molecular markers like microsatellite DNAcan indicate the degree of genetic relatedness 78 

between animals and facilitate paternity verification and individual recognition (Estoup et al. 79 

2002; Zhang et al. 2006). Microsatellites, namely short tandem repeats (STR) or simple 80 

sequence repeats (SSR), are tracts of repetitive DNA in which certain motifs ranging in length 81 

from 1-10 nucleotides are repeated 5-50 times× (Carneiro Vieira et al. 2016). Microsatellite 82 

DNA can be used to develop pedigreed animal populations and evaluate animal breeding to 83 

support genetic improvement by selective breeding (Weising et al. 1998). The application of 84 

microsatellites as molecular markers for animal identification and parentage verification is 85 

highly accurate and effective in both breedingroutine applications and forensic casework 86 

(Budowle et al. 2005; Iyengar & Hadi 2014; Linacre et al. 2011).  87 

Recently, DNA Analysis of microsatellite markers has been used to verify parentage in 88 

breed registries and identify individual animals linked to a particular database or owner. 89 

Microsatellite panels have been well characterized for cattle (Zhao et al. 2017), horses (Kang 90 

et al. 2016), sheep (Rosa et al. 2013), dogs (Jeong et al. 2015) and parrots (Coetzer et al. 91 

2017). Many highly polymorphic microsatellites have been identified, characterized, and 92 

mapped for bovine breeds. Marker panels have also been developed (Carolino et al. 2009). 93 

Microsatellite marker panels have been used to identify and assign individuals to families and 94 

populations (Stevanovic et al. 2010). The application of microsatellites in the identification of 95 

yak relationships has seldom been reported. Moreover, there are no reports on paternity 96 

testing for yak breeds. Consequently, there is a strong requirement for yak identity control and 97 

parentage verification.  98 
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A highly informative set of DNA markers whose alleles can be easily scored is critical if it 99 

is to be used effectively in paternity testing and individual identification. The objective of the 100 

present study was to develop and evaluate multiplex microsatellite systems designed for the 101 

purposes of polled yak parentage control and kinship analyses. Many of these microsatellite 102 

loci are already commonly used to characterize genetic parameters for cattle. This study 103 

aimed to validate a set of highly polymorphic microsatellites for use in parentage testing and 104 

individual identification in polled yak. The results of this study can be used to develop 105 

powerful, efficient genetic tools for breeders to verify parentage verification and match 106 

individual identification. 107 

yaks when their identities are ambiguous or missing. 108 

MATERIALS AND METHODS 109 

Marker selection and primer design 110 

Microsatellites were selected from cattle breeding literature. The markers had to meet the 111 

following criteria: (a) high PIC and heterozygosity; (b) a large number of alleles; (c) no 112 

known null alleles; (d) homogeneous repeat motifs (Schnabel et al. 2000). A total of 71 113 

bovine microsatellite markers were selected, of which 65 were derived from cattle references 114 

and 6 exclusively for yak (Li 2004). All 71 microsatellites and their flanking sequences were 115 

found on the cattle genome. Their corresponding sequences on the yak genome were sought. 116 

Primers for most of the loci used in earlier studies were adapted to the yak genome because of 117 

mutations or low scores. The following 14 loci did not need adjustment: BM1824, BM2113, 118 

BMS2533, ETH121, ETH225, ILSTS008, INRA124, RM099, INRA126, UMN0103, 119 

UMN0307, UMN0920, UMN2303, UMN3007, and UMN3008. The primers used in this 120 

study are listed in Table S1. 121 

 122 

Sample collection 123 

The polled yaks were selected from the herds on Ashidan Mountain in Qinghai province. To 124 
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avoid consanguinity, only samples without genetic relationship were selected in pedigree. 125 

Blood was drawn from the jugular veins of 236 unrelated individuals, including 38 sires and 126 

198 dams. All yaks were handled in strict accordance with good animal practice according to 127 

the Animal Ethics Procedures and Guidelines of the People's Republic of China, and the study 128 

was approved by the Animal Administration and Ethics Committee of Lanzhou Institute of 129 

Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences 130 

(Permit No. SYXK-2016-0039). The blood was mixed with preservation buffer (1.5 mg mL-l 131 

EDTA and 137 mmol L-l NaCl) at a 5:1 ratio. The blood was stored at -80 ºC in an ultra-cold 132 

freezer prior to DNA extraction. 133 

 134 

DNA extraction and quantification 135 

Genomic DNA was extracted from white blood cells digested with proteinase-K. The samples 136 

were centrifuged at 5,000 g for 2 min. The clear aqueous layer was then transferred to a new 137 

test tube and 0.5 mL of 10 mg mL-l RNase A was added to it. The sample was then extracted 138 

with phenol:chloroform:isoamyl alcohol (25:24:1) followed by chloroform. The DNA was 139 

precipitated with ethanol then resuspended in 50 mL TE buffer (10 mM Tris-HCl and 1 mM 140 

EDTA, pH 8.0). The extracted DNA was quantified using a NanoDrop 2000 fluorometer 141 

(Thermo Fisher Scientific, Waltham. MA, USA). OD260:280 = 1.7-1.9 and OD260:230 = 2.0-2.2 142 

(data not shown). 143 

 144 

Preliminary primer screening 145 

Unlabeled primer pairs (Table S1) were ordered for each microsatellite marker and sample 146 

fragments were amplified. The PCRs were conducted in 20-μL aliquots consisting of 20-50 147 

ng genomic DNA, 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 1.5 mM MgCl2, 2.0 mM of each 148 

dNTP, 5 ng BSA, and 1.0 U TaqTM Hot Start Version polymerase (TaKaRa Bio Inc., Kusatsu, 149 

Shiga, Japan). Primer concentrations ranged from 1.0-5.5 μM. The thermal cycle parameters 150 

were 5 min at 95 ºC followed by 35 cycles of 30 s at 95 ºC, 30 s at 55-58 ºC (Table S1), and 151 
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20 s at 72 ºC, then a final extension step of 5 min at 72 ºC in a Verity PCR Veriti 96-Well 152 

Thermal Cycler (Applied Biosystems Corp., Foster City, CA, USA). After amplification, the 153 

PCR products were visualized on 2% agarose gel (Gene Tech Co. Ltd., Chai Wan, Hong 154 

Kong). A 5-μL sample was mixed with 1 μL loading dye (TaKaRa Bio Inc., Kusatsu, Shiga, 155 

Japan). Electrophoresis was run for 35 min at 85 V and the samples were visualized with an 156 

GelDocTM XR+ gel imaging system  (Bio-Rad Corp., Hercules, CA, USA).  157 

The amplification fragments with high specificity, high amplification efficiency, and loci 158 

that were either non-syntenic or separated by >10 cM (to avoid strong genetic linkage) (Table 159 

S2) were manually cut out of the agarose gel and send to the biological companies for 160 

sequencing. The samples were forwarded to Invitrogen (Carlsbad, CA, USA) and Thermo 161 

Fisher Scientific (Waltham, MA, USA) without prior purification. Fragment analysis was 162 

conducted on an ABI 3730xl automated sequencer (Applied Biosystems Corp., Foster City, 163 

CA, USA). Only forward primers were used to sequence the targets. Repeat marker sequences 164 

were revealed with Sanger sequencing (Invitrogen, Carlsbad, CA, USA, and Thermo Fisher 165 

Scientific, Waltham, MA, USA).  166 

 167 

Genetic information acquisition 168 

Confirmed primer sequences flanking microsatellite loci were synthesized with a fluorescent 169 

label attached to the 5' end of each forward primer. The forward primers set was fluorescently 170 

labeled with FAMTM, HEXTM, or TAMRATM dyes (Thermo Fisher Scientific, Waltham, MA, 171 

USA). Microsatellites were separately amplified by PCR to identify loci with high levels of 172 

allelic polymorphism. The amplification systems and conditions were similar to those used 173 

with the unlabeled primers described above.  174 

After amplification, 1 μL amplified fragment mix was added to 0.5 μL loading buffer (blue 175 

dextran, 50 mg mL-l; EDTA, 25 mM) and 4 μL deionized formamide then denatured by 176 

incubation for 5 min at 95 ºC. Then, 0.5 μL internal size standard (Thermo ABI 4322682; 177 

Thermo Fisher Scientific, Waltham, MA, USA) was added to each sample. Fluorescently 178 

labeled PCR products were identified by capillary electrophoresis (ABI3730xl Genetic 179 
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Analyzer, Applied Biosystems Corp., Foster City, CA, USA). The fluorescently labeled DNA 180 

fragments were analyzed with GENESCAN v. 3.7 (Applied Biosystems Corp., Foster City, 181 

CA, USA) then with GENOTYPER v. 3.7 NT (Applied Biosystems Corp., Foster City, CA, 182 

USA) and automatically sorted according to the internal size standard. The numbers of the 183 

microsatellite repeat motifs were calculated on the basis of the fragment lengths of the PCR 184 

product (Table S3). 185 

 186 

Genetic information analysis 187 

Genotypic data were initially processed in Microsoft Office Excel 2007, manually checked 188 

for errors, and transformed into other input files for various analyses. Performance 189 

characteristics [observed heterozygosity (HO); expected heterozygosity (HE); polymorphism 190 

information content (PIC); estimated null allele frequency (F(null)); Hardy-Weinberg 191 

equilibrium (HWE); and genotypic disequilibrium] were measured with GENEPOP v. 4.6 192 

(Raymond & Rousset 1995; Rousset 2008) and CERVUS v. 3.0.7 (Kalinowski et al. 2007; 193 

Kalinowski et al. 2010; Slate et al. 2000). 194 

 195 

Multiplex PCR conditions 196 

Genotyping 236 yak for 35 loci (Table 1) produced a core set of 17 loci with high PICs (Table 197 

2). Four multiplex PCRs were assembled, each of which contained four or five microsatellite 198 

markers. A list of the primer sequences used in the multiplex appears in Table 2. The 199 

multiplex PCR amplification was performed in 15-μL volumes per sample. Each of these 200 

consisted of ~25 ng genomic DNA, 10 mM Tris-HCl (pH 8.3), 35 mM KCl, 1.8 mM MgCl2, 201 

5.0 mM of each dNTPs, and 2.5 U TaqTM Hot Start Version polymerase (TaKaRa Bio Inc., 202 

Kusatsu, Shiga, Japan). The primer concentrations are shown in Table 2. For PCR 203 

amplification, a thermal cycler (Veriti 96-Well, Applied Biosystems Corp., Foster City, CA, 204 

USA) was run at 95 ºC for 5 min followed by 25 cycles of 95 ºC for 30 s, 55-58 ºC for 30 s 205 

and 72 ºC for 30 s, then 10 cycles of 95 ºC for 30 s, 53 ºC for 30 s, and 72 ºC for 30 s, 206 
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finishing with a final extension at 72 ºC for 5 min. Genetic typing of these microsatellite loci 207 

was performed in a manner similar to that described above. 208 

 209 

Paternity test and individual identification 210 

Different types of exclusion probability were determined with CERVUS v. 3.0.7. These 211 

included (a) EP1, the exclusion probability for one candidate parent when one confirmed 212 

parental genotype was missing; (b) EP2, the exclusion probability for one candidate parent 213 

given the genotype of a known parent of the opposite sex; (c) EPP, the exclusion probability 214 

for one candidate parent pair; (d) EI, the exclusion probability for the identity of two 215 

unrelated individuals; and (e) ESI, the exclusion probability of finding the identity of two 216 

siblings (Kalinowski et al. 2007; Kalinowski et al. 2010; Slate et al. 2000).  217 

Three parental exclusion probabilities were calculated corresponding to different scenarios. 218 

EP1 assumes that genotypes are known for the offspring and one putative parent but not the 219 

other. EP2 assumes that genotypes are known for the offspring, one confirmed parent, and 220 

one putative parent (both parents genotyped). EPP assumes that genotypes are known for the 221 

offspring and one parent pair; it is the probability of a misattributed progeny (mismatched 222 

with both parents) from two genotyped parents (Jamieson & Taylor 1997).  223 

 224 

RESULTS 225 

Microsatellite loci genetic characteristics 226 

The numbers of alleles, allele size ranges, HO, HE, PIC, F(null), and HWE for the 35 227 

microsatellite loci for the polled yak are presented in Table 1. A total of 214 alleles were 228 

identified in the polled yak population. Significant (P < 0.001) heterozygote deficits were 229 

detected at loci BM2943, INRA035, and RM099 because they were monomorphic. For the 32 230 

polymorphic loci left, the number of alleles per locus ranged from 3 (CSSM013 and 231 

CSSM033) to 12 (SPS115) and the PIC varied from 0.084 (MM12) to 0.815 (ILSTS028). 232 
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Four of the 32 polymorphic loci had PIC < 0.25 (low). Eleven of them had moderate PIC 233 

values ranging from 0.25 to 0.50. The remaining 17 loci had high PIC (>0.50) (Table 1). 234 

The 17 genetic markers with high PIC were reproducible, informative, and robust for 235 

parentage testing and identification program. The numbers of alleles ranged from 5 to 12 236 

within this subset of 17 polled yak loci. Heterozygosities ranged from 0.573 (POTCHA) to 237 

0.806 (ILSTS028) with an overall average of 0.662. Deviations between observed and 238 

estimated heterozygosity ranged from 0.003 (INRA005) to 0.103 (TGLA126). The 17 239 

markers had an average PIC of 0.636 ranging from 0.529 (INRA005) to 0.815 (ILSTS028). 240 

F(null) alleles were estimated to be in the range of -0.0218 for YAK08 to +0.0819 for 241 

TGLA126 (Table 1).  242 

 243 

Hardy-Weinberg and genotypic disequilibrium tests 244 

Exclusion probabilities were calculated from the allele frequencies based on the underlying 245 

assumptions of HWE. The HWE tests for the 17 microsatellite loci were not significant (P > 246 

0.05). The 17 loci with high PIC (>0.5) were selected for yak paternity testing. Non-random 247 

gamete association to form genotypes also influences the allele frequencies used to calculate 248 

genotype frequencies. In natural populations, this effect probably occurs because of 249 

population substructuring. Genotypic disequilibrium within the polled yak resulted in 136 250 

comparisons. There were no interlocus disequilibria.  251 

 252 

Multiplex amplification and loading 253 

Multiplexes were organized such that four groups of four or five loci with high PIC were 254 

co-amplified by PCR. Non-overlapping allele lengths were chosen in such a way that they 255 

would have the same fluorescent color label. Typical fluorescence signals of detections for the 256 

core 17 microsatellite loci are shown in Figure 1. Using the three available fluorescent colors, 257 

we multiplex-loaded and scored two groups of eight or nine loci in each single gel lane. 258 

 259 

Commented [WU24]: There is no evidence to support 

robustness, as far as I could see. 

Commented [WU25]: A frequency estimate cannot be a 

negative value 

Commented [WU26]: Misplaced; does not fit the heading. 

Moreover EP is a biased statistic for measuring information 

content; please use the standard matching probability or 

conversely discriminating power. 

Commented [WU27]: It does not seem correct and does not 

fit Results section 

Formatted: Highlight

Formatted: Highlight

Commented [WU28]: Idem 

Formatted: Highlight

Formatted: Highlight

Commented [WU29]: I do not understand - the number of 

pairwise combinations of 17 loci is 153. 

Commented [WU30]: Please show test results supporting 

this sentence. 

Commented [WU31]: See next comment 

Formatted: Highlight

Commented [WU32]: I do not understand: ABI3730xl is a 

capillary platform. 

Formatted: Highlight

javascript:;


11 

Parentage inference 260 

The EP1 of the 17 markers ranged from 0.189 (BM720) to 0.503 (ILSTS028) and their 261 

average value was 0.285. The average EP2 was higher than that for the EP1. The average for 262 

all markers was 0.451 and the range was from 0.328 (INRA005) to 0.673 (ILSTS028). For all 263 

17 markers, the combined EP1 and EP2 were 0.99718116 and 0.99997381, respectively. For 264 

the alleged parents, the combined EPP was 0.99999998. The combined EI and ESI were > 265 

0.99999999 and 0.99999899, respectively (Table 2). Therefore, the identity and parentage 266 

exclusion probabilities based on the 17 microsatellite loci were highly discriminant.  267 

 268 

DISCUSSION 269 

Previous studies implied that 3-4% of the losses in genetic progress were caused by 10% 270 

increases in pedigree errors per year in dairy breeding (Israel & Weller 2000). Nevertheless, 271 

other studies indicated that these dairy breeding pedigree errors have increased to 22% since 272 

the 1980s (Ron et al. 1996; Visscher et al. 2002). In fact, the yak pedigree error rate may be > 273 

22% since yak feed primarily by grazing. On the other hand, wrong insemination records 274 

caused by clerical- and insemination errors and by stain disappearance may also influence 275 

pedigree error rates. Therefore, it is necessary to identify and correct the pedigree through 276 

paternity testing and individual identification. These practices are essential for reliable 277 

breeding programs aimed at the genetic improvement of yak. Several reports have been 278 

published on the use of microsatellite markers for cattle identification (Sharma et al. 2015; 279 

Zhao et al. 2017), but the performance characteristics of a yak identification panel have not 280 

yet been characterized. Paternity testing in yak breeding would increase profitability by 281 

improving selective breeding program efficiency. 282 

The method of choice for livestock identification and parentage verification has been based 283 

on microsatellites (Jan & Fumagalli 2016; Jeong et al. 2015; Wang et al. 2017a). For swine 284 

(Sus scrofa) and cattle (Bos taurus), single nucleotide polymorphisms (SNPs) have been 285 

applied in identification and parentage verification (Eggen 2012; Rohrer et al. 2007). A recent 286 
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study debated whether SNPs rather than microsatellites should be used for parentage 287 

verification (Kaiser et al. 2017). Nevertheless, the interpretation of complex parentage cases 288 

may require >700 SNP markers. The simplified international exchange of microsatellite 289 

profiles involves only 32 genotypes as opposed to the 1,400 genotypes for SNPs (Strucken et 290 

al. 2016). For these reasons, microsatellites are preferred over SNPs for parentage testing.  291 

The cattle identification and parentage verification panel recommended by the ISAG 292 

(International Society for Animal Genetics) consists mainly of dimeric microsatellite repeat 293 

motifs. Similarly, all of the microsatellite markers applied in the present study were dimeric. 294 

The various repeat patterns have both advantages and disadvantages. Dinucleotide 295 

microsatellites may have mutations or stutter bands which can introduce allele interpretation 296 

errors (Walsh et al. 1996). For trimeric-, tetrameric-, and pentameric repeat motifs, stutter 297 

slippage efficiency during PCR is even lower (Gill et al. 2005), and ensures clear peak 298 

discrimination. On the other hand, an appropriate mutation rate is beneficial for 299 

multigenerational parentage verification. For trimeric-, tetrameric-, pentameric-, and 300 

hexameric microsatellites, gaps during sequence variant visualization within repeat units 301 

result in larger bin sizes (Gill et al. 2000). When sequence variants span too widely, however, 302 

it becomes increasingly difficult to confine the microsatellite marker within the same 303 

fluorochrome to a single multiplex PCR system. Multimeric repeats can also be compound. 304 

The microsatellite markers used in the present study were all dimeric with homogeneous 305 

repeat motifs, so the genotyping was unambiguous. 306 

Microsatellite loci must have few null alleles, to be in Hardy-Weinberg equilibrium 307 

balance, and absence of gametic association (no linkage disequilibrium)a  if they are to be 308 

effectively used in exclusion probability determinations for paternity testing and individual 309 

identificationverification. Null alleles are loci that fail to amplify to detectable levels by PCR 310 

because of primer binding site mutations and other errors (Dakin & Avise 2004; Kline et al. 311 

2011). Null alleles frequencies are estimated by comparing the observed and expected 312 

numbers of homozygotes for a locus (Dąbrowski et al. 2015; Dakin & Avise 2004). There 313 

may be an increased risk of null alleles for certain markers. This fact must be considered 314 
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when genotyping individual yak for paternity testing, . For example, when there is an apparent opposite homozygosity 315 

between  mismatch of an allele for which both parent and offspring. are homozygous, the allele should be sequenced to screen for null alleles. Their estimated  risks of null allele occurrencefrequencies wereere  highest for HEL10 (F(Null)) 316 

= 0.703) and MGTG4B (F(Null)) = 0.163) in this study. Therefore, these loci were excluded 317 

from the core set used in parental identification. 318 

The formulae for estimating exclusion probabilities assume random mating and non-319 

random association among alleles and loci. The allele frequencies used in the calculation of 320 

genotype frequencies and exclusion probabilities must be consistent with Hardy-Weinberg 321 

assumptions. The 17 loci selected as core microsatellite markers were all in Hardy-Weinberg 322 

equilibrium. We tested for linkage disequilibrium because linked loci are relatively ineffective 323 

at determining paternity or individual exclusion and the yak locus locations on chromosomes 324 

are unknown. Genotypic disequilibrium tests showed no consistent deviations in populations 325 

not expected a priori to have them. None of the 17 loci was in disequilibrium, which means 326 

that they could be used in polled yak exclusion probability (PE) determincalculations.  327 

The microsatellites used in cattle parentage testing could not be applied to yak 328 

identification directly because it was uncertain as to whether the primers used for cattle would 329 

produce the desired results for yak. In addition, allelic frequencies differ between cattle and 330 

yak. In the present study, the primers were designed according to yak gene sequences then 331 

tested by PCR amplification and electrophoresis. There is a strong correlation between PIC 332 

and exclusion probability. In addition, allelic frequencies differ between cattle and 333 

yak; .Eeven among various cattle breeds, the PIC of the same microsatellites have different 334 

values (Mao et al. 2008; Vohra et al. 2017), and the same applied to yak breeds (Zhang et al. 335 

2008). For this reason, when determining the exclusion probabilities of parentage testing and 336 

individual identification for a new breed, the allele frequencies and PIC should be calculated 337 

de novo. In the current study, the polled yak population was repeatedly tested on the proposed 338 

microsatellite markers. Since some markers have similar allele frequencies and PIC among 339 

yak breeds, they are expected to generate accurate results for other yak populations.  340 

In the present study, Microsatellite loci with high PIC (> 0.5) were selected for the 341 

identification panels.  Nevertheless, the PICs of these loci were still slightly lower than those 342 
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used for cattle research (Stevanovic et al. 2010; Vohra et al. 2017). Therefore, a greater 343 

number of microsatellite markers were selected for the present study, . Thea set of 17 STRs 344 

provedmicrosatellites sufficiented  for PE determinations. The combined probabilities of 345 

excluding a wrongly assigned sire were 99.718116%, 99.997381%, and 99.999998% for EP1, 346 

EP2, and EPP, respectively. These results were similar to those reported for multiplexing 347 

systems in Angeln dairy cattle, . They hadwith 16 microsatellites markers and nearly 99.9% 348 

PE1 (Sanders et al. 2006).  349 

We used several mapped cattle microsatellites to develop sets of yak loci apt for multiplex 350 

PCR amplification and multiplex loading into a single gel lane. PCR-based methods, highly 351 

variable microsatellite loci, and fluorescent-based genotyping establish a new standard for 352 

parentage testing. Furthermore, multiplexing reducinges human errors, microsatellite typing 353 

costs and time. Nevertheless, selecting the markers comprising a universal panel depends on a 354 

balance among the required panel accuracy, amplicon length, and ability to undergo a 355 

successful multiplex reaction. Multiplex PCR amplifications are technically more difficult 356 

than their single-locus counterparts. Multiplex amplifications are also less likely to transfer 357 

across species than single-locus amplifications. There is also a relatively higher risk of 358 

introducing genotyping errors with multiplex amplifications due to allelic drop-out or false 359 

allele production (Taberlet & Luikart 1999). Many multiplex PCR and loading optimization 360 

methods have been investigated for cattle paternity testing. Nevertheless, these methods 361 

cannot be directly applied to yak identification. Therefore, we developed four multiplex 362 

amplifications, each of which contained four or five loci and two multiplex loads each 363 

containing eight or nine loci. They were run in two gel lanes. The main advantage of this 364 

system is that the allele length ranges do not overlap within the same fluorochrome. Multiplex 365 

primer sets to amplify 17 microsatellite markers and fluorescent dye technology combined 366 

form a rapid and powerful yak parentage testing method.  367 

We propose that a combination of 17 genetic markers could yield a polled yak panel with 368 

enhanced processing efficiency, reliability, and utility. This system exploits the advancements 369 

made in DNA fragment analysis technology. These markers combined with likelihood-based 370 
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parentage testing will help improve breeding programs and accurately determine polled yak 371 

pedigrees. If some of the polled yaks identified by this system were not descendants of the 372 

expected breeding male yak, they would be eliminated from a breeding group by breeders to 373 

ensure genetic purity and improvement. On the other hand, when semen samples of high-374 

grade male yak are mixed with those of other males, the detection system in this study could 375 

identify the semen using the blood sample of the high-grade male yak. Multiplex systems can 376 

also be used for the rapid assessment of breed population history, structure, and diversity, and 377 

for reconstructing relationships among breeds. These multiplexes may also work in other yak 378 

breeds with gene frequencies similar to that of the population tested in the present study. 379 

 380 

CONCLUSIONS 381 

The set of 17 microsatellite markers can be amplified in four multiplex PCR reaction systems 382 

and genotyped in two multiplex loading systems. The high variability displayed by these 383 

microsatellite loci demonstrates that highly precise genotyping panels could potentially be 384 

used in individual genotyping, parentage verification, and individual identification. The 385 

microsatellites authenticated reported in this study could also serve in studies of yak 386 

population structure, history, and diversity, providing . They are importanta resources for the 387 

genetic improvement of domestic yak.  388 
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