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Anti-predator defences of a bombardier beetle: is bombing

essential for successful escape from frogs?
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Some animals, such as the bombardier beetles (Coleoptera: Carabidae: Brachinini), have

evolved chemical defences against predators. When attacked, bombardier beetles can

discharge noxious chemicals at temperatures of approximately 100°C from the tip of their

abdomens, “bombing” their attackers. Although many studies to date have investigated

how bombardier beetles discharge defensive chemicals against predators, relatively little

research has examined how predators modify their attacks on bombardier beetles to avoid

being bombed. In this study, I observed the black-spotted pond frog Pelophylax

nigromaculatus (Anura: Ranidae) attacking the bombardier beetle Pheropsophus

jessoensis under laboratory conditions. In Japan, Pe. nigromaculatus is a common

generalist predator in grasslands where the bombardier beetle also frequently occurs.

Almost all the frogs (92.3%) observed rejected live bombardier beetles; 65.4% stopped

their attacks once their tongues touched the beetles, and 26.9% spat out the beetles

immediately after taking the beetles into their mouths. Only 7.7% of the frogs swallowed

live bombardier beetles. When dead beetles were provided instead, 85.0% of the frogs

rejected the dead beetles, 65.0% stopped their attacks after their tongues touched the

beetles, and 20.0% spat out the beetles. Only 15.0% of the frogs swallowed the dead

beetles. Rejection rates between live and dead beetles were not significantly different.

Thus, the results suggest that the frogs tended to stop their predatory attack before

receiving a bombing response from the beetles. Therefore, bombing was not essential for

the beetles to successfully defend against the frogs. Using its tongue, Pe. nigromaculatus

may be able to rapidly detect a deterrent chemical or physical characteristics of its

potential prey Ph. jessoensis and thus avoid injury by stopping its predatory attack before

the beetle bombs it.
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12 ABSTRACT

13 Some animals, such as the bombardier beetles (Coleoptera: Carabidae: Brachinini), have evolved 

14 chemical defences against predators. When attacked, bombardier beetles can discharge noxious 

15 chemicals at temperatures of approximately 100°C from the tip of their abdomens, “bombing” 

16 their attackers. Although many studies to date have investigated how bombardier beetles 

17 discharge defensive chemicals against predators, relatively little research has examined how 

18 predators modify their attacks on bombardier beetles to avoid being bombed. In this study, I 

19 observed the black-spotted pond frog Pelophylax nigromaculatus (Anura: Ranidae) attacking the 

20 bombardier beetle Pheropsophus jessoensis under laboratory conditions. In Japan, Pe. 

21 nigromaculatus is a common generalist predator in grasslands where the bombardier beetle also 

22 frequently occurs. Almost all the frogs (92.3%) observed rejected live bombardier beetles; 65.4% 

23 stopped their attacks once their tongues touched the beetles, and 26.9% spat out the beetles 

24 immediately after taking the beetles into their mouths. Only 7.7% of the frogs swallowed live 

25 bombardier beetles. When dead beetles were provided instead, 85.0% of the frogs rejected the 

26 dead beetles, 65.0% stopped their attacks after their tongues touched the beetles, and 20.0% spat 

27 out the beetles. Only 15.0% of the frogs swallowed the dead beetles. Rejection rates between live 

28 and dead beetles were not significantly different. Thus, the results suggest that the frogs tended 

29 to stop their predatory attack before receiving a bombing response from the beetles. Therefore, 

30 bombing was not essential for the beetles to successfully defend against the frogs. Using its 

31 tongue, Pe. nigromaculatus may be able to rapidly detect a deterrent chemical or physical 

32 characteristics of its potential prey Ph. jessoensis and thus avoid injury by stopping its predatory 

33 attack before the beetle bombs it.

34

35 Subjects: Animal Behaviour, Ecology, Entomology, Evolutionary Studies, Zoology

PeerJ reviewing PDF | (2018:02:25710:0:1:NEW 6 Mar 2018)

Manuscript to be reviewed



36 Key words: Carabidae, chemical defence, predator, prey, 

37

38 INTRODUCTION

39

40 Physical and chemical defences have evolved in many organisms to protect against natural 

41 enemies (Edmunds, 1974; Eisner, Eisner & Siegler, 2005). For example, some plant and animal 

42 species have developed physical deterrents such as thorns and spines (Edmunds, 1974; Cooper & 

43 Owen-Smith, 1986; Eisner, 2003; Sugiura & Yamazaki, 2014; Sugiura, 2016; Ito, Taniguchi & 

44 Billen, 2016), while other species produce defensive chemicals, including toxic substances, to 

45 prevent themselves from being eaten (Eisner, 2003; Eisner, Eisner & Siegler, 2005; Derby, 2007; 

46 Mithöfer & Boland, 2012). Organisms whose defence mechanisms can cause severe injury to 

47 their natural enemies have also evolved warning signals, such as conspicuous body colouration 

48 or particular sounds (Lev-Yadun, 2001; Ruxton, Sherratt & Speed, 2004; Inbar & Lev-Yadun, 

49 2005; Bonacci et al., 2008; Lev-Yadun, 2009; Bura et al., 2016; Sugiura & Takanashi, 2018). In 

50 response, predators have evolved specific abilities to avoid such well-defended prey by 

51 recognising warning colouration or detecting chemical signals (Edmunds, 1974; Ruxton, Sherratt 

52 & Speed, 2004; Skelhorn & Rowe, 2006; Williams et al., 2010).

53     Adult bombardier beetles (Coleoptera: Carabidae: Brachinini) bomb, i.e. discharge noxious 

54 chemicals from the tip of their abdomens at temperatures of approximately 100°C, when they are 

55 disturbed or attacked (Aneshansley et al., 1969; Dean, 1979; Eisner, 2003; Eisner, Eisner & 

56 Siegler, 2005; Arndt et. al., 2015). Previous studies have investigated how bombardier beetles 

57 successfully defend against predators (Eisner, 1958; Eisner & Meinwald, 1966; Eisner & Dean, 

58 1976; Dean, 1980a; Eisner, Eisner & Aneshansley, 2005; Eisner et al., 2006). Bombardier 

59 beetles can aim their abdominal discharge in virtually any direction, spraying various parts of 
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60 their own bodies (e.g., legs and dorsal surface) with the toxic chemicals (Eisner & Aneshansley, 

61 1999). Dean (1980b) reported that predators displayed intense responses to the unheated 

62 chemical discharges of bombardier beetles in experiments. This suggests that the cooled 

63 chemicals coating the beetles’ body surfaces function as the primary defence against predators, 

64 although more research is needed to clarify the relative importance of chemical toxicity and heat 

65 for overall successful anti-predatory defence. 

66    Frogs and toads are important predators of carabid beetles (Larochelle, 1974a,b). However, 

67 bombardier beetles have rarely been found in the gut contents and faeces of frogs and toads 

68 (Larochelle, 1974a,b; Sarashina, Yoshihisa & Yoshida, 2011; except Mori, 2008), suggesting 

69 that bombardier beetles are effective at defending themselves against these predators (Eisner & 

70 Meinwald, 1966; Dean, 1980a; Esiner, 2003; Sugiura & Sato, 2018). Still, only a few studies 

71 have investigated the factors that cause anuran predators to stop preying on bombardier beetles 

72 (Dean, 1980b). Elucidating these ecological factors would contribute to a better understanding of 

73 the evolution of anti-predatory defences in insects.

74    This study aims to investigate the responses of the black-spotted pond frog Pelophylax 

75 nigromaculatus (Hallowell) (Anura: Ranidae) to the defensive behaviour of the bombardier 

76 beetle Pheropsophus jessoensis (Morawitz). In July 2017, I found both Ph. jessoensis and Pe. 

77 nigromaculatus co-occurring in the same grassland habitats in Kato City, Hyogo Prefecture, 

78 Japan. Pelophylax nigromaculatus is a generalist predator that has been reported to prey on 

79 carabid beetles (Maeda & Matsui, 1999; Hirai & Matsui, 1999; Sano & Shinohara, 2011; 

80 Sarashina, Yoshihisa & Yoshida, 2011), indicating that this frog species is a potential predator of 

81 adult Ph. jessoensis. Because Ph. jessoensis can spray their predators with hot and toxic 

82 chemicals, it was hypothesised that (1) Pe. nigromaculatus has evolved a high tolerance to heat 

83 and toxins to prey on Ph. jessoensis, or (2) Pe. nigromaculatus has evolved specific behaviours 
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84 in response to warning signals to avoid attacking Ph. jessoensis. To test these hypotheses, I 

85 observed Pe. nigromaculatus attacking Ph. jessoensis under laboratory conditions using a digital 

86 video camera to record the frogs attacking the bombardier beetles. Acceptance or rejection of 

87 prey was investigated using slow-motion videos. Furthermore, both dead and live beetles were 

88 used to test whether bombing is essential for successful defence against predatory attacks by Pe. 

89 nigromaculatus.

90

91 MATERIALS AND METHODS

92

93 Study species

94

95 Pheropsophus jessoensis is a species of bombardier beetles found in East Asia (Ueno et al., 

96 1985; Jung et al., 2012) that commonly inhabits farmland, grassland, and forest edges in Japan 

97 (Habu & Sadanaga, 1965; Ueno et al., 1985; Yahiro et al., 1992; Ishitani & Yano, 1994; 

98 Fujisawa et al., 2012; Ohwaki et al., 2015; Sugiura & Sato, 2018). Adult Ph. jessoensis can eject 

99 toxic chemicals (1,4-benzoquinone and 2-methyl 1,4-benzoquinone) at a temperature of 

100 approximately 100°C from their rear ends when disturbed (Video S1; Kanehisa and Murase, 

101 1977; Kanehisa, 1996). For the experiments, adult Ph. jessoensis were collected from grasslands 

102 and forest edges in Kato (34°54′N, 135°02′E, 120 m above sea level), Hyogo Prefecture, central 

103 Japan, from May to August in 2016 and 2017 (Sugiura & Sato, 2018). The mean body weight (± 

104 SE) of the collected beetles was 213.6 ± 7.0 (range: 110.3–294.0) mg. Study individuals were 

105 maintained separately in plastic cases (diameter: 85 mm; height: 25 mm) with wet tissue paper in 

106 the laboratory at 25°C. Dead larvae of Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) 

107 were provided as food (Sugiura & Sato, 2018). Beetles were not used repeatedly in different 
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108 feeding experiments.

109 Pelophylax nigromaculatus is a species of true frogs that inhabits wetlands and farmlands in 

110 East Asia (Liu et al., 2010; Tsuji et al., 2011; Komaki et al., 2015), and is one of the most 

111 abundant frog species found in traditional agricultural landscapes including farmlands, 

112 grasslands, and forest edges in Japan (Hirai, 2002; Honma, Oku & Nishida, 2006; Tsuji et al., 

113 2011; Matsuhashi & Okuyama, 2015). Using its tongue, Pe. nigromaculatus can easily catch 

114 prey and swallow prey smaller than itself (Video S2; Honma, Oku & Nishida, 2006). For this 

115 study, individuals of Pe. nigromaculatus were collected from wetlands and forest edges in 

116 Takarazuka-shi (34°53′N, 135°17′E, 230 m above sea level), Sanda-shi (34°57′N, 135°11′E, 180 

117 m above sea level), and Sayo-cho (35°02′N, 134°20′E, 180 m above sea level), Hyogo Prefecture, 

118 central Japan, from May to August in 2016 and 2017. Although Pe. nigromaculatus has recently 

119 been classified as near threatened (NT) in the Japanese Red Data List (Ministry of the 

120 Environment of Japan, 2017), this species was abundant at the collection sites. Both juveniles 

121 and adults were collected, with a mean body weight (± SE) of 9.8 ± 1.0 (range: 2.7–26.7) g. 

122 Small and large frogs were maintained separately in small (120 × 85 × 130 mm, length × width × 

123 height) and large plastic cages (120 × 185 × 130 mm, length × width × height), respectively, in 

124 the laboratory at 25°C. Live larvae of S. litura, Tenebrio molitor Linnaeus (Coleoptera: 

125 Tenebrionidae), and Zophobas atratus Fabricius (Coleoptera: Tenebrionidae) were provided as 

126 food. Frogs were starved for 24 h before the feeding experiments to standardise their hunger 

127 level (cf. Honma, Oku & Nishida, 2006). In total, 46 frogs were used in the experiments. As with 

128 the beetles, individual frogs were not used repeatedly. The frogs were released after the 

129 experiments were completed.

130

131 Feeding experiments
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132

133 Feeding experiments were all conducted at 25°C. To start, a frog was placed in a transparent 

134 plastic container (120 × 85 × 130 mm, length × width × height). Then, a transparent glass petri 

135 dish (45 mm in diameter, 15 mm in height) containing a live bombardier beetle was placed 

136 outside the plastic container where the frog could see it. Frogs that did not try to attack the beetle 

137 were not used for the feeding experiments. If a frog displayed attacking behaviour, a live beetle 

138 was then placed in the container with the frog. The resulting behaviours were recorded on video 

139 using a digital camera (iPhone 6 plus, Apple) at 240 frames per second. If a frog swallowed the 

140 beetle, I also observed whether it then vomited the beetle (cf. Sugiura & Sato, 2018). Vomited 

141 beetles were checked to see whether they were still alive. Frogs that did not vomit after 

142 swallowing were considered to have digested the beetle. Frog faeces were examined after the 

143 experiment to confirm whether the beetles were digested. In total, 26 frogs and 26 bombardier 

144 beetles were used for the experiment with live beetles. 

145    A second set of frogs were presented with dead adult beetles to test whether the bombing 

146 response is essential for deterring a predatory attack. Pelophylax nigromaculatus usually does 

147 not attack motionless prey. However, in a pilot test, an individual of Pe. nigromaculatus attacked 

148 and ingested a dead caterpillar (S. litura) when forceps were used to move the caterpillar within 

149 the frog’s field of view. For this experiment, the bombardier beetles were killed in a freezer at 

150 −15°C. First, a dead beetle was placed in the plastic container (120 × 85 × 130 mm, length × 

151 width × height) within the frog’s field of view. If the frog did not initially respond to the beetle, 

152 forceps were used to move the dead beetle within the frog’s field of view again. Frogs that did 

153 not attack the dead beetles were not used in these experiments. The predatory behaviours of the 

154 frogs were recorded using the same digital video camera. Twenty frogs and 20 dead beetles were 

155 used in this experiment.
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156     The videos of frog behaviour were played back using QuickTime Player version 10.4 

157 (Apple, Inc.). Frog responses to the bombardier beetles were grouped into four categories (cf. Ito, 

158 Taniguchi & Billen, 2016; Matsubara & Sugiura, 2017; Sugiura & Sato, 2018): (1) frogs that 

159 contacted the beetles but did not take the beetles into their mouths; (2) frogs that spat out the 

160 beetles after taking them into the mouth; (3) frogs that swallowed beetles but vomited them 

161 afterward; and (4) frogs that swallowed and digested the beetles. 

162     The experiments were undertaken in accordance with the Kobe University Animal 

163 Experimentation Regulations (Kobe University’s Animal Care and Use Committee, H28, H29).

164

165 Data analysis

166

167 Fisher’s exact tests were used to compare the rates of swallowing and digestion by the frogs 

168 between live and dead beetles. A significantly higher rate of swallowing or digesting dead 

169 beetles compared to live beetles would indicate that the beetles’ bombing response is important 

170 for successful defence against frog predation. I also used t-tests to compare the mean weights of 

171 live and dead beetles and the mean weights of the frogs that attacked live and dead beetles. In 

172 addition, generalised linear models (GLMs) with a binomial error distribution and a logit link 

173 were used to identify factors that contributed to frogs’ successful swallowing and digestion of the 

174 bombardier beetles. The success or failure (1/0) of frogs’ swallowing and digesting beetles was 

175 used as the response variable. Frog weight, beetle weight, and beetle condition (live or dead) 

176 were treated as fixed factors. To test the fit using binomial distributions, I also considered 

177 whether residual deviance was larger (overdispersion) or smaller (underdispersion) than the 

178 residual degrees of freedom (Crawley, 2005). All analyses were performed using R ver. 3.3.2 (R 

179 Development Core Team 2016).
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180

181 RESULTS

182

183 In the experiment using live adult bombardier beetles (n = 26), almost all of the frogs (92.3%) 

184 rejected the beetles without swallowing them (Fig. 1); 65.4% stopped attacking the beetles 

185 immediately after touching the beetles with their tongues (Fig. 2; Video S3), and 26.9% spat out 

186 the beetles after taking the beetles into their mouths (Fig. 3; Video S4). In some cases, the beetles 

187 could be heard bombing the frogs just before the frogs spat out the beetles (Video S4). Only two 

188 frogs (7.7%) were observed to swallow the bombardier beetles; one of the frogs successfully 

189 digested the beetle, but the other frog vomited the beetle 18 min after swallowing it (Table 1). 

190 The vomited beetle was still alive. Of the frogs that took the beetles into their mouths, 88.9% 

191 initially stopped attacking the beetles when their tongues first touched the beetles, but resumed 

192 their predatory attack soon thereafter (Fig. 3; Video S4).

193    When dead beetles were used (n = 20), 85.0% of the frogs rejected the dead beetles without 

194 swallowing them (Fig. 1); 65.0% stopped attacking the beetles after their tongues touched the 

195 dead beetles (Video S5), and 20.0 % spat out the beetles after taking the beetles into their mouths 

196 (Fig. 1). Only 15.0% of the frogs swallowed the dead beetles. Similar to the experiment using 

197 live beetles, 85.7% of the frogs that took beetles into their mouths were initially deterred when 

198 their tongues first touched the beetles, but continued with their predatory behaviour soon 

199 afterwards. 

200 No significant differences were found between the proportion of dead and live beetles that 

201 were swallowed (15.0% vs. 7.7%, respectively, p = 0.64, Fisher’s exact test) or digested (15.0% 

202 vs. 3.8%, respectively, p = 0.30, Fisher’s exact test) by the frogs. The mean body weights of the 

203 dead and live beetles used were 216.3 ± 9.4 mg (n = 20) and 211.5 ± 10.3 mg (n = 26), 
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204 respectively, which were not significantly different (t-test, t = −0.35, P = 0.73). Similarly, the 

205 mean body weight of the frogs that attacked dead beetles (8.5 ± 1.4 g, n = 20) was not 

206 significantly different (t-test, t = 1.1, P = 0.26) from the mean weight of the frogs that attacked 

207 live beetles (10.8 ± 1.4 g, n = 26).

208    Whether beetles were swallowed was associated with both frog and beetle size (GLM; Table 

209 1). Beetles were more likely to be swallowed with increasing frog size and decreasing beetle size 

210 (Table 1). Digestion rates were positively correlated with frog size, but not with beetle size 

211 (GLM; Table 2). However, in both analyses, the residual deviance was smaller than the residual 

212 degrees of freedom, indicating underdispersion (Tables 1 and 2).

213

214 DISUSSION

215

216 Some arthropods, anurans, and birds are able to successfully prey on bombardier beetles despite 

217 their bombing defences (Eisner & Dean, 1976; Conner & Eisner, 1983; Nowicki & Eisner, 1983; 

218 Dean, 1980a; Eisner, Eisner & Aneshansley, 2005). In some instances, though, bombardier 

219 beetles can defend themselves effectively against predatory arthropods and anurans (Eisner, 

220 1958; Eisner & Meinwald, 1966; Eisner & Dean, 1976; Dean, 1980a; Esiner, 2003; Eisner et al., 

221 2006). Results from this study demonstrate the successful defence by the bombardier beetle Ph. 

222 jessoensis against the pond frog Pe. nigromaculatus (Fig. 1). Almost all individuals of Pe. 

223 nigromaculatus used in this study rejected individuals of Ph. jessoensis without attempting to 

224 swallow the beetles (Fig. 1). In contrast, two toad species, Bufo japonicus Temminck & Schlegel 

225 and B. torrenticola Matsui (Bufonidae), both with a much larger body size than Pe. 

226 nigromaculatus, were reported to easily swallow individuals of Ph. jessoensis, although 43% of 

227 the toads eventually vomited the beetles (Sugiura & Sato, 2018). Therefore, the success of the 
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228 defence mechanism of Ph. jessoensis depends on the predator species. 

229 When the frogs took live beetles into their mouths, bombing could be heard on video, 

230 followed in several cases by the frogs spitting out the beetles (Fig. 3; Video S4). However, no 

231 bombing was heard when the frogs stopped their predatory attack before taking live beetles into 

232 their mouths (Video S3). In addition, in the experiment using dead beetles, only 15.0% of the 

233 frogs swallowed the beetles (Fig. 1). The proportions of beetles swallowed and digested by the 

234 frogs were also not significantly different between live and dead beetles (Fig. 1). These results 

235 indicate that the high-speed release of hot and noxious chemicals, or bombing, was not essential 

236 for Ph. jessoensis to evade predation by Pe. nigromaculatus. Which factors, then, stopped the 

237 frogs from attacking? Three potential reasons can be considered: (1) the frogs recognised the 

238 warning colouration of the beetles; (2) the body size of the beetles was too large for the frog to 

239 accommodate; and (3) the frogs reflexively avoided the beetles after detecting toxic substances 

240 or other deterrent characteristics on the beetles’ body surfaces. 

241    The bombardier beetle Ph. jessoensis does have a striking yellow and black pattern on its 

242 body that could serve as warning colouration (Fig. 1), although this has not been empirically 

243 demonstrated. Anuran predators can avoid toxic prey by recognising certain colours or other 

244 morphological characteristics and then ignoring those prey (Brower, Brower & Westcott, 1960; 

245 Brower & Brower, 1962; Dean, 1980a; Taniguchi et al., 2005; Ito, Taniguchi & Billen, 2016). 

246 Therefore, Pe. nigromaculatus may recognise the body patterns and shape of Ph. jessoensis as 

247 warning signals before attacking it. However, the frogs that did not try to attack individuals of Ph. 

248 jessoensis were not used for the feeding experiments.

249    Small individuals of Pe. nigromaculatus have been reported to spit out large prey that they 

250 were unable to swallow after taking the prey into their mouths (Honma, 2004; Honma, Oku & 

251 Nishida, 2006). However, 65.4% of the frogs in the experiment with live beetles and 65.0% of 
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252 the frogs in the experiment with dead beetles stopped their predatory attack before taking the 

253 beetles into their mouths (Fig. 1, 2; Video 3, 5). Although the GLM analysis indicated that both 

254 frog size and beetle size were correlated with the frequency of beetles’ being swallowed by the 

255 frogs, the residual deviance was much smaller than the residual degrees of freedom 

256 (underdispersion), indicating that there was less variation in the data than expected (Tables 1). 

257 Thus, these results do not provide strong evidence that the frogs were deterred by the large body 

258 size of the beetles.

259    The rapid responses of the frogs’ tongues to contact with the bombardier beetles (Fig. 2) 

260 could be considered a reflex action (cf. Kumai, 1981). Frogs are known to use their tongues as a 

261 chemical detector (Dean, 1980b; Kumai, 1981; Barlow, 1998) as well as a prey-catching tool 

262 (Noel et al., 2017). For example, chemical or electrical stimulation of the tongue can generate 

263 reflex responses in Pe. nigromaculatus (Kumai, 1981; Takeuchi, Satou & Ueda, 1986). Because 

264 Pe. nigromaculatus is a generalist predator that can attack a variety of arthropods within its field 

265 of view (Hirai & Matsui, 1999; Honma, 2004; Honma, Oku & Nishida, 2006; Sano & Shinohara, 

266 2011; Sarashina, Yoshihisa & Yoshida, 2011), Pe. nigromaculatus may have evolved specific 

267 responses to toxic prey to avoid being injured by trying to eat them. The results of this study 

268 suggest that the tongues of Pe. nigromaculatus may be able to rapidly detect toxic substances or 

269 other characteristics on the body surface of the bombardier beetles, and the frogs subsequently 

270 avoid the beetles to prevent themselves from being bombed and injured. 

271

272 CONCLUSIONS

273

274 In one study, the chemicals produced by bombardier beetles’ bombing did not stimulate toads’ 

275 tongues less intensely than did the heat from the chemical reaction (Dean, 1980b). Other than 
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276 this study, the relative importance of the toxic chemicals and heat produced by bombing for the 

277 successful escape of bombardier beetles from predators has been largely unexplored. Results 

278 here suggest that the cooled toxic chemicals covering the beetles’ bodies alone could stop the 

279 frogs from attacking. Frogs may be able to detect toxic substances or other deterrent 

280 characteristics on unsuitable prey with their tongues, and thus reject the prey to avoid injury. 

281 Previous studies have been focused on how frogs and toads use their tongues to catch prey 

282 (Ewert, 1970; Nishikawa & Gans, 1996; Monroy & Nishikawa, 2010; Noel et al., 2017), but 

283 there is little research on how frogs and toads use their tongues to detect toxins in potential prey 

284 (but see Dean, 1980b). Further studies are needed to clarify the mechanisms of frogs’ 

285 recognising and avoiding toxic prey. 
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510 Figure legend

511

512 Figure 1  Behavioural responses of the black-spotted pond frog Pelophylax nigromaculatus to 

513 live and dead adult individuals of the bombardier beetle Pheropsophus jessoensis. ‘Stop attack’: 

514 the frogs stopped their attacks after their tongues touched the beetles. ‘Spit out’: the frogs spat 

515 out the beetles immediately after taking the beetles into their mouths. ‘Swallow’: the frogs 

516 successfully swallowed the dead beetles.

517

518 Figure 2  Temporal sequence of the frog Pelophylax nigromaculatus rejecting a live adult 

519 Pheropsophus jessoensis without taking the beetle into its mouth. The frog stopped the attack 

520 immediately after its tongue touched the beetle (see Video S3).

521

522 Figure 3  Temporal sequence of the frog Pelophylax nigromaculatus spitting out a live adult 

523 Pheropsophus jessoensis after taking the beetle into its mouth. Bombing by the beetle was 

524 audible just before the frog spat out the beetle (1675–1800 ms; see Video S4).

525

526

527
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528 Supplemental Information 

529

530 Video S1  An adult Pheropsophus jessoensis bombing. The beetle discharged toxic chemicals 

531 when its eggs were pinched with a pair of forceps. 

532

533 Video S2  The frog Pelophylax nigromaculatus preying on a carabid beetle. 

534

535 Video S3  The frog Pelophylax nigromaculatus rejecting a live Pheropsophus jessoensis. The 

536 frog stopped the attack immediately after its tongue touched the beetle.

537

538 Video S4  The frog Pelophylax nigromaculatus spitting out a live Pheropsophus jessoensis. The 

539 frog took the beetle into its mouth but immediately spat out the beetle.

540

541 Video S5  The frog Pelophylax nigromaculatus rejecting a dead Pheropsophus jessoensis. The 

542 frog stopped its attack immediately after its tongue touched the dead beetle.

543
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Table 1(on next page)

Table 1. Results of a generalised linear model (GLM) testing potential factors influencing

whether the frog Pelophylax nigromaculatus successfully swallowed the bombardier

beetle Pheropsophus jessoensis in feeding experiments.
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1

Table 1. Results of a generalised linear model (GLM) testing potential factors influencing whether the frog 

Pelophylax nigromaculatus successfully swallowed the bombardier beetle Pheropsophus jessoensis in feeding 

experiments. 

Response variable Explanatory variable (fixed effect) Coefficient estimate SE z value p value

Swallowing success1) Intercept 0.75455 2.33617 0.323 0.7467

Frog weight 0.17883 0.09121 1.961 0.0499

Beetle weight −0.03247 0.01613 −2.012 0.0442

　 Beetle treatment 2) 2.21476 1.40849 1.572 0.1159

2 1) The binomial error distribution was used. Residual deviance: 21.645 on 42 degrees of freedom

3 2) Live beetles were used as a reference.

4
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Table 2(on next page)

Table 2. Results of a generalised linear model (GLM) testing potential factors influencing

whether the frog Pelophylax nigromaculatus successfully digested the bombardier

beetle Pheropsophus jessoensis in feeding experiments.
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1

Table 2. Results of a generalised linear model (GLM) testing potential factors influencing whether the frog 

Pelophylax nigromaculatus successfully digested the bombardier beetle Pheropsophus jessoensis in feeding 

experiments. 

Response variable Explanatory variable (fixed effect) Coefficient estimate SE z value p value

Digestion success 1) Intercept −1.81388 2.689 −0.675 0.5

Frog weight 0.19522 0.09722 2.008 0.0446

Beetle weight −0.02403 0.01654 −1.453 0.1462

Beetle treatment 2) 2.94459 1.64319 1.792 0.0731

2 1) The binomial error distribution was used. Residual deviance: 18.786 on 42 degrees of freedom

3 2) Live beetles were used as a reference.
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Figure 1

Figure 1 Behavioural responses of the black-spotted pond frog Pelophylax

nigromaculatus to live and dead adult individuals of the bombardier beetle

Pheropsophus jessoensis.

‘Stop attack’: the frogs stopped their attacks after their tongues touched the beetles. ‘Spit

out’: the frogs spat out the beetles immediately after taking the beetles into their mouths.

‘Swallow’: the frogs successfully swallowed the dead beetles.
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Figure 2

Figure 2 Temporal sequence of the frog Pelophylax nigromaculatus rejecting a live adult

Pheropsophus jessoensis without taking the beetle into its mouth.

The frog stopped the attack immediately after its tongue touched the beetle (see Video S3).
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Figure 3

Figure 3 Temporal sequence of the frog Pelophylax nigromaculatus spitting out a live

adult Pheropsophus jessoensis after taking the beetle into its mouth.

Bombing by the beetle was audible just before the frog spat out the beetle (1675–1800 ms;

see Video S4).
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