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ABSTRACT
Some animals, such as the bombardier beetles (Coleoptera: Carabidae: Brachinini),
have evolved chemical defences against predators. When attacked, bombardier beetles
can discharge noxious chemicals at temperatures of approximately 100 ◦C from
the tip of their abdomens, ‘‘bombing’’ their attackers. Although many studies to
date have investigated how bombardier beetles discharge defensive chemicals against
predators, relatively little research has examined how predators modify their attacks on
bombardier beetles to avoid being bombed. In this study, I observed the black-spotted
pond frog Pelophylax nigromaculatus (Anura: Ranidae) attacking the bombardier beetle
Pheropsophus jessoensis under laboratory conditions. In Japan, Pe. nigromaculatus is
a generalist predator in grasslands where the bombardier beetle frequently occurs.
Almost all the frogs (92.9%) observed rejected live bombardier beetles; 67.9% stopped
their attacks once their tongues touched the beetles, and 25.0% spat out the beetles
immediately after taking the beetles into their mouths. No beetle bombed a frog before
being taken into a frog’s mouth. All beetles taken into mouths bombed the frogs. Only
7.1% of the frogs swallowed live bombardier beetles after being bombed in the mouth.
When dead beetles were provided instead, 85.7% of the frogs rejected the dead beetles,
71.4% stopped their attacks after their tongues touched the beetles, and 14.3% spat out
the beetles. Only 14.3% of the frogs swallowed the dead beetles. The results suggest that
the frogs tended to stop their predatory attack before receiving a bombing response
from the beetles. Therefore, bombing was not essential for the beetles to successfully
defend against the frogs. Using its tongue, Pe. nigromaculatus may be able to rapidly
detect a deterrent chemical or physical characteristics of its potential prey Ph. jessoensis
and thus avoid injury by stopping its predatory attack before the beetle bombs it.

Subjects Animal Behavior, Ecology, Entomology, Evolutionary Studies, Zoology
Keywords Carabidae, Chemical defence, Predator, Prey

INTRODUCTION
Physical and chemical defences have evolved in many organisms to protect against natural
enemies (Edmunds, 1974; Eisner, Eisner & Siegler, 2005). For example, some plant and
animal species have developed physical deterrents such as thorns and spines (Edmunds,
1974; Cooper & Owen-Smith, 1986; Eisner, 2003; Sugiura & Yamazaki, 2014; Sugiura,
2016; Ito, Taniguchi & Billen, 2016), while other species produce defensive chemicals,
including toxic substances, to prevent themselves from being eaten (Eisner, 2003; Eisner,
Eisner & Siegler, 2005; Derby, 2007; Mithöfer & Boland, 2012). Organisms whose defence

How to cite this article Sugiura S. 2018. Anti-predator defences of a bombardier beetle: is bombing essential for successful escape from
frogs? PeerJ 6:e5942 http://doi.org/10.7717/peerj.5942

https://peerj.com
mailto:ssugiura@people.kobe-u.ac.jp
mailto:ssugiura@people.kobe-u.ac.jp
mailto:sugiura.shinji@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.5942
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.5942


mechanisms can cause severe injury to their natural enemies have also evolved warning
signals, such as conspicuous body colouration or particular sounds (Lev-Yadun, 2001;
Ruxton, Sherratt & Speed, 2004; Inbar & Lev-Yadun, 2005; Bonacci et al., 2008; Lev-Yadun,
2009; Bura, Kawahara & Yack, 2016; Sugiura & Takanashi, 2018). In response, predators
have evolved specific abilities to avoid such well-defended prey by recognising warning
colouration or detecting chemical signals (Edmunds, 1974; Endler, 1991; Ruxton, Sherratt
& Speed, 2004; Skelhorn & Rowe, 2006; Williams et al., 2010).

Adult bombardier beetles (Coleoptera: Carabidae: Brachinini) bomb, i.e., discharge
noxious chemicals from the tip of their abdomens at temperatures of approximately
100 ◦C, when they are disturbed or attacked (Aneshansley et al., 1969; Dean, 1979; Eisner,
2003; Eisner, Eisner & Siegler, 2005; Arndt et al., 2015). Such ejection of hot chemicals
is only known in the coleopteran family Carabidae. Previous studies have investigated
how bombardier beetles successfully defend against predators (Eisner, 1958; Eisner &
Meinwald, 1966; Eisner & Dean, 1976; Dean, 1980a; Eisner, Eisner & Aneshansley, 2005;
Eisner et al., 2006). Bombardier beetles can aim their abdominal discharge in virtually any
direction, spraying various parts of their own bodies (e.g., legs and dorsal surface) with
the toxic chemicals (Eisner & Aneshansley, 1999). Dean (1980b) reported that predators
displayed intense responses to the unheated chemical discharges of bombardier beetles
in experiments. This suggests that the cooled chemicals coating the beetles’ body surfaces
function as the primary defence against predators. Successful defencemediated by chemicals
on the body surfaces of beetles may reduce the costs of spraying (bombing). Further
research is needed to clarify the relative importance of chemical toxicity and heat for
overall successful anti-predatory defence.

Frogs and toads are important predators of carabid beetles (Larochelle, 1974a; Larochelle,
1974b). However, bombardier beetles have rarely been found in the gut contents and
faeces of frogs and toads (Larochelle, 1974a; Larochelle, 1974b; Sarashina, Yoshihisa &
Yoshida, 2011; except Mori, 2008), suggesting that bombing prevents toads and frogs
from swallowing and ingesting beetles (Eisner & Meinwald, 1966; Dean, 1980a; Eisner,
2003; Sugiura & Sato, 2018). Still, only a few studies have investigated the factors that
cause anuran predators to stop preying on bombardier beetles (Dean, 1980b). Elucidating
these ecological factors would contribute to a better understanding of the evolution of
anti-predatory defences in insects.

This study aims to investigate the responses of the black-spotted pond frog Pelophylax
nigromaculatus (Hallowell) (Anura: Ranidae) to the defensive behaviour of the bombardier
beetle Pheropsophus jessoensis (Morawitz). Pheropsophus jessoensis is a bombardier beetle
found in East Asia (Ueno, Kurosawa & Sato, 1985; Jung et al., 2012); the beetle is a common
inhabitant of farmlands, grasslands, and forest edges in Japan (Habu & Sadanaga, 1965;
Ueno, Kurosawa & Sato, 1985; Yahiro et al., 1992; Ishitani & Yano, 1994; Fujisawa, Lee &
Ishii, 2012; Ohwaki, Kaneko & Ikeda, 2015; Sugiura & Sato, 2018). Adult Ph. jessoensis eject
toxic chemicals (1,4-benzoquinone and 2-methyl-1,4-benzoquinone) at a temperature
of approximately 100 ◦C from their rear ends in response to predator attacks (Video
S1; Kanehisa & Murase, 1977; Kanehisa, 1996). Pelophylax nigromaculatus is a true frog
inhabiting wetlands and farmlands of East Asia (Liu et al., 2010; Tsuji et al., 2011;Komaki et
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al., 2015), being one of themost abundant frog species of traditional agricultural landscapes
including farmlands, grasslands, and forest edges (Hirai, 2002; Honma, Oku & Nishida,
2006;Tsuji et al., 2011;Matsuhashi & Okuyama, 2015). Using its tongue,Pe. nigromaculatus
readily catches and swallows smaller prey (Video S2; Honma, Oku & Nishida, 2006).
Pelophylax nigromaculatus is a generalist predator that has been reported to prey on
carabid beetles (Maeda & Matsui, 1999; Hirai & Matsui, 1999; Sano & Shinohara, 2012;
Sarashina, Yoshihisa & Yoshida, 2011). As Ph. jessoensis and Pe. nigromaculatus co-occur in
the same grassland habitats, this frog species is a potential predator of adult Ph. jessoensis.
In early June 2016, I offered an adult Ph. jessoensis to an adult Pe. nigromaculatus under
laboratory conditions. The frog attacked the beetle, but stopped the attack immediately
after its tongue touched the beetle. No bombing sounds were heard, suggesting that the
frog ceased its attack before the beetle bombed. Therefore, I hypothesised that bombing is
not essential when Ph. jessoensis seeks to avoid being swallowed by Pe. nigromaculatus. To
test this hypothesis, I observed Pe. nigromaculatus attacking Ph. jessoensis under laboratory
conditions using a digital video camera. Acceptance or rejection of prey was carefully
investigated using slow-motion videos. Furthermore, both dead and live beetles were used
to test whether bombing is essential for successful defence against predatory attacks by Pe.
nigromaculatus. Finally, I discuss the importance of primary and secondary defences in
terms of overall anti-predation defence.

MATERIALS AND METHODS
Sampling
Approximately 100 adult Ph. jessoensis were collected from grasslands and forest edges
in Kato-shi (34◦54′N, 135◦02′E, 120 m above sea level), Hyogo Prefecture, central Japan,
from May to August in 2016, 2017, and 2018 (cf. Sugiura & Sato, 2018). Body weight
was measured to the nearest 0.1 mg using an electronic balance (PA64JP, Ohaus, Tokyo,
Japan). Study individuals were maintained separately in plastic cases (diameter: 85 mm;
height: 25 mm) with wet tissue paper in the laboratory at 25 ◦C. Dead larvae of Spodoptera
litura (Fabricius) (Lepidoptera: Noctuidae) were provided as food (Sugiura & Sato, 2018).
Beetles were not used repeatedly in different feeding experiments. All experiments were
conducted 22.6 ± 4.0 (means ± standard errors; range: 4–69) days after the beetles were
collected.

Approximately 100 individuals of Pe. nigromaculatus were collected from wetlands
and forest edges in Takarazuka-shi (34◦53′N, 135◦17′E, 230 m above sea level), Sanda-shi
(34◦57′N, 135◦11′E, 180m above sea level), and Sayo-cho (35◦02′N, 134◦20′E, 180m above
sea level), Hyogo Prefecture, central Japan, from May to August in 2016, 2017, and 2018.
The distances between these sites and the sampling site of Ph. jessoensis ranged from 15.6 to
65.4 km. Although Pe. nigromaculatus has recently been classified as near threatened (NT)
in the Japanese Red Data List (Ministry of the Environment of Japan, 2017), this species
was abundant at the collection sites. Both juveniles and adults were collected. Body weight
was measured to the closest 0.01 g using an electronic balance (EK-120A, A&D, Tokyo).
Small and large frogs were maintained separately in small (120 × 85 × 130 mm, length ×
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width × height) and large plastic cages (120 × 185 × 130 mm, length × width × height),
respectively, in the laboratory at 25 ◦C. Live larvae of S. litura, Tenebrio molitor Linnaeus
(Coleoptera: Tenebrionidae), and Zophobas atratus Fabricius (Coleoptera: Tenebrionidae)
were provided as food. Frogs were starved for 24 h before the feeding experiments to
standardise their hunger level (cf. Honma, Oku & Nishida, 2006). As with the beetles,
individual frogs were not used repeatedly. The experiments were conducted 18.6 ± 2.5
(means ± standard errors; range: 4–66) days after the frogs were collected. The frogs were
released after the experiments were completed.

Feeding experiments
Feeding experiments were all conducted at 25 ◦C. To start, a frog was placed in a transparent
plastic container (120 × 85 × 130 mm, length × width × height). Then, a transparent
glass petri dish (45 mm in diameter, 15 mm in height) containing a live bombardier beetle
was placed outside the plastic container where the frog could see it. Frogs that did not try
to attack the beetle (34.1%) were not used for the feeding experiments. However, frogs
that ignored Ph. jessoensis did not respond to other prey (i.e., T. molitor larvae). If a frog
displayed attacking behaviour (i.e., opening the mouth and shooting out the tongue to
capture prey; Video S2), a live beetle was then placed in the container with the frog. The
resulting behaviours were recorded on video using a digital camera (iPhone 6 plus, Apple)
at 240 frames per second. If the frog did not swallow the beetle, palatable prey (a T.molitor
larva) was offered to the frog several minutes after beetle rejection to determine whether the
frog was hungry. If a frog swallowed the bombardier beetle, I observed whether it vomited
the beetle within 330 min of swallowing it (cf. Sugiura & Sato, 2018). Vomited beetles were
checked to see whether they were still alive. Frogs that did not vomit after swallowing were
considered to have digested the beetle. Frog faeces were examined after the experiment to
confirm whether the beetles were digested. In total, 28 frogs and 28 live bombardier beetles
were used in the experiments. The means± standard errors of the frog and live beetle body
weights were 10.23 ± 1.39 g (n= 28) and 213.0 ± 10.0 mg (n= 28), respectively.

A second set of frogs were presented with dead adult beetles to test whether the bombing
response is essential for deterring a predatory attack. Pelophylax nigromaculatus usually
does not attackmotionless prey. However, in a pilot test, an individual of Pe. nigromaculatus
attacked and ingested a dead caterpillar (S. litura) when forceps were used to move the
caterpillar within the frog’s field of view. For this experiment, the bombardier beetles were
killed in a freezer at −15 ◦C. First, a dead beetle was placed in the plastic container (120
× 85 × 130 mm, length × width × height) within the frog’s field of view. If the frog
did not initially respond to the beetle, forceps were used to move the dead beetle within
the frog’s field of view again. Frogs that did not attack the dead beetles (29.2%) were not
used in these experiments; frogs that ignored Ph. jessoensis did not respond to other prey
(i.e., T.molitor larvae). The predatory behaviours of the frogs were recorded using the same
digital video camera. Frogs that did not swallow dead beetles were offered T.molitor larvae
several minutes after beetle rejection to check whether they were hungry. Twenty-eight
frogs and 28 dead beetles were used in this experiment. The means ± standard errors of
the frog and dead beetle body weights were 8.65 ± 1.25 g (n= 28) and 214.8 ± 7.6 mg
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(n= 28), respectively. The mean body weight of frogs that attacked dead beetles did not
differ significantly from the mean body weight of frogs that attacked live beetles (t -test,
t = 0.84, P = 0.40). The mean body weight of dead beetles did not differ significantly from
the mean body weight of live beetles (t -test, t =−0.14, P = 0.89)

Videos of frogs responding to live and dead beetles were played back using QuickTime
Player version 10.4 (Apple, Inc.). Frog responses to the bombardier beetles were grouped
into four categories (cf. Ito, Taniguchi & Billen, 2016; Matsubara & Sugiura, 2017; Sugiura
& Sato, 2018): (1) frogs that touched the beetles with their tongues but did not take
the beetles into their mouths; (2) frogs that spat out the beetles after taking them into
the mouth; (3) frogs that swallowed beetles but vomited them later; and (4) frogs that
swallowed and digested the beetles. I also assessed whether frogs that rejected beetles (1–2)
resumed their attacks within 10 s.

All experiments were performed in accordance with the Kobe University Animal
Experimentation Regulations (Kobe University Animal Care and Use Committee, 27–01,
30–01). No frogs were seriously injured or killed during the feeding experiments. My study
also complies with the current laws of Japan.

Data analysis
Generalised linear models (GLMs) featuring binomial error distributions and logit links
(i.e., logistic regressions) were used to identify factors that contributed to frogs’ successful
swallowing and digestion of the bombardier beetles. The success or failure (1/0) of frogs’
swallowing and digesting beetles was used as the response variable. Frog weight, beetle
weight, the frog weight × beetle weight interaction, and beetle condition (live or dead)
were treated as fixed factors. When the residual deviance was larger (overdispersion) or
smaller (underdispersion) than the residual degrees of freedom, a quasi-binomial error
distribution was used rather than a binomial error distribution. Furthermore, fixed factors
were subjected to likelihood ratio testing when marginal significance was evident. Thus,
the significance of models with and without the factors of interest were compared using the
GLMs. All analyseswere performedusingR version 3.3.2 (R Development Core Team, 2016).

RESULTS
In the experiment using live adult bombardier beetles (n= 28), 26 frogs (92.9%) rejected
the beetles without swallowing them (Fig. 1); 19 frogs (67.9%) stopped attacking the beetles
immediately after touching the beetles with their tongues (Fig. 2; Video S3), and seven
frogs (25.0%) spat out the beetles after taking the beetles into their mouths (Fig. 3; Video
S4). No beetle bombed a frog before being taken into the frog’s mouth. All beetles that
were taken into frog mouths bombed (Video S4). Only two frogs (7.1%) were observed
to swallow the bombardier beetles (Table 1) after being bombed in the mouth; one of
the frogs successfully digested the beetle, but the other frog vomited the beetle 18 min
after swallowing it (Table 1). The vomited beetle was still alive. Of the frogs that took the
beetles into their mouths, 88.9% (n= 8/9) initially stopped attacking the beetles when
their tongues first touched the beetles, but resumed their predatory attack soon thereafter
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Figure 1 Behavioural responses of the black-spotted pond frog Pelophylax nigromaculatus to live and
dead adult individuals of the bombardier beetle Pheropsophus jessoensis. ‘Stop attack’: the frogs stopped
their attacks after their tongues touched the beetles. ‘Spit out’: the frogs spat out the beetles immediately
after taking the beetles into their mouths. ‘Swallow’: the frogs successfully swallowed the beetles. ‘Bomb-
ing’: the beetles could be heard bombing. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.5942/fig-1

(Fig. 3; Video S4). Frogs that did not swallow beetles consumed other prey (i.e., T. molitor
larvae) soon thereafter.

When dead beetles were used (n= 28), 24 frogs (85.7%) rejected the dead beetles without
swallowing them (Fig. 1); 20 frogs (71.4%) stopped attacking the beetles after their tongues
touched the dead beetles (Video S5), and four frogs (14.3%) spat out the beetles after taking
the beetles into their mouths (Fig. 1). Only four frogs (14.3%) swallowed the dead beetles.
Similar to the experiment using live beetles, 87.5% of the frogs that took beetles into their
mouths (n= 7/8) were initially deterred when their tongues first touched the beetles, but
continued with their predatory behaviour soon afterwards. The frogs that did not swallow
beetles ate other prey (i.e., T. molitor larvae) soon thereafter.

The proportion of dead beetles swallowed by frogs (14.3%) was higher than that of live
beetles (7.1%). However, the GLM results indicated that the frog swallowing rates of live
and dead beetles did not significantly differ (Table 1). Whether beetles were swallowed or
not was associated with beetle size, but not frog size (Table 1). Beetles were more likely to
be swallowed as beetle size decreased (Fig. 4A). The interaction of frog and beetle weight
was not significant (Fig. 4A).

The proportion of dead beetles digested by frogs (14.3%) was higher than the proportion
of live beetles swallowed (3.6%). The GLMs indicated that the difference between the
digestion rates of live and dead beetles was significant (Table 2). Beetle size affected the
digestion rate (Table 2, Fig. 4B).
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Figure 2 Temporal sequence of the frog Pelophylax nigromaculatus rejecting a live adult Pheropso-
phus jessoensiswithout taking the beetle into its mouth. (A) 0 ms. (B) 100 ms. (C) 175 ms. (D) 325 ms.
(E) 1,100 ms. The frog stopped the attack immediately after its tongue touched the beetle. No bombing
sounds were heard (see Video S3). Credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.5942/fig-2
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Figure 3 Temporal sequence of the frog Pelophylax nigromaculatus spitting out a live adult Pheropso-
phus jessoensis after taking the beetle into its mouth. (A) 0 ms. (B) 100 ms. (C) 250 ms. (D) 350 ms. (E)
1,675 ms. (F) 1,800 ms. (G) 1,950 ms (H) 2,600 ms. Bombing by the beetle was audible just before the frog
spat out the beetle (1,675–1,800 ms; see Video S4). Credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.5942/fig-3
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Table 1 Results of a generalised linear model (GLM) testing potential factors influencing whether the frog Pelophylax nigromaculatus success-
fully swallowed the bombardier beetle Pheropsophus jessoensis in feeding experiments.

Response variable Explanatory variable
(fixed effect)

Coefficient
estimate

SE t value P value

Swallowing successa Intercept 7.601881 4.454207 1.707 0.094
Frog weight −0.420817 0.290774 −1.447 0.154
Beetle weight −0.060781 0.025084 −2.423 0.019
Frog weight× Beetle weight 0.002637 0.001457 1.81 0.076c

Beetle treatmentb 1.387536 0.855616 1.622 0.111

Notes.
aAs the residual deviance was smaller than the residual degrees of freedom, a quasi-binomial error distribution (rather than a binomial error distribution) was employed. Two
and four live and dead beetles, respectively, were swallowed.

bLive beetles were used as a reference.
cThe significance of this factor was checked using the likelihood ratio test (P = 0.063).

DISUSSION
Here, I found that Pe. nigromaculatus frequently rejected Ph. jessoensis without attempting
to swallow the beetles (Fig. 1). Around 70% of frogs stopped attacking both live and dead
beetles immediately after touching the beetles with their tongues. Although the high-speed
release of hot noxious chemicals (bombing) protected Ph. jessoensis from digestion by
the frog Pe. nigromaculatus (Figs. 1 and 3; Video S4), my findings support the hypothesis
that bombing is not essential for Ph. jessoensis to successfully evade being swallowed
by Pe. nigromaculatus (Figs. 1 and 3; Video S3). Which factors, then, stopped the frogs
from attacking? Three potential reasons can be considered: (1) the frogs recognised the
warning colouration of the beetles; (2) the body size of the beetles was too large for the
frog to accommodate; and (3) the frogs reflexively avoided the beetles after detecting toxic
substances or other deterrent characteristics on the beetles’ body surfaces.

The bombardier beetle Ph. jessoensis does have a striking yellow and black pattern
on its body that could serve as warning colouration (Fig. 1), although this has not been
empirically demonstrated. Anuran predators can avoid toxic prey by recognising certain
colours or other morphological characteristics and then ignoring those prey (Brower,
Brower & Westcott, 1960; Brower & Brower, 1962; Dean, 1980a; Taniguchi et al., 2005; Ito,
Taniguchi & Billen, 2016). In fact, 34.1 and 29.2% of frogs did not seek to attack live or
dead beetles, respectively, before the feeding experiments commenced, suggesting that Pe.
nigromaculatus may recognise the body pattern and shape of Ph. jessoensis and interpret
these as warning signals. However, frogs that ignored Ph. jessoensis did not respond to
other prey (i.e., T. molitor larvae). Therefore, the experimental conditions used may not
be appropriate for analysing foraging by certain frogs. Alternatively, the yellow-and-black
pattern of Ph. jessoensismay serve as disruptive camouflage; flightless Ph. jessoensis walk on
soil of forest edges, grasslands, and agricultural fields. Further work is needed to explore
the significance of Ph. jessoensis colour as a defensive trait.

GLM analysis indicated that beetle size was correlated with beetle-swallowing frequency
of frogs (Table 1). Pelophylax nigromaculatus has been reported to spit out large prey that
they were unable to swallow after taking the prey into their mouths (Honma, 2004;Honma,
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Swallowing failure (live beetle): n = 26
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Figure 4 Body size relationships between predator frogs (Pelophylax nigromaculatus) and prey beetles
(Pheropsophus jessoensis). (A) Success or failure of swallowing by frogs. (B) Success or failure of digestion
by frogs. Closed circles and triangles indicate the swallow (or digestion) success of live and dead beetles,
respectively. Open circles and triangles indicate the swallow (or digestion) failure of live and dead beetles,
respectively. Photo credit: Shinji Sugiura.

Full-size DOI: 10.7717/peerj.5942/fig-4

Oku & Nishida, 2006). However, 67.9% of the frogs in the experiment with live beetles and
71.4% of the frogs in the experiment with dead beetles stopped their predatory attacks
before taking the beetles into their mouths (Figs. 1 and 2; Video S3, Video S5). Thus, my
results do not provide strong evidence that the frogs could not ingest large beetles. Rather,
the amount of chemicals on the beetle body surface may increase with beetle size (see
below).
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Table 2 Results of a generalised linear model (GLM) testing potential factors influencing whether the frog Pelophylax nigromaculatus success-
fully digested the bombardier beetle Pheropsophus jessoensis in feeding experiments.

Response variable Explanatory variable
(fixed effect)

Coefficient
estimate

SE t value P value

Digestion successa Intercept 4.471889 4.45551 1.004 0.32
Frog weight −0.370908 0.30261 −1.226 0.226
Beetle weight −0.04681 0.023848 −1.963 0.055c

Frog weight× Beetle weight 0.002329 0.00146 1.596 0.117
Beetle treatmentb 2.011385 1.033049 1.947 0.057d

Notes.
aAs the residual deviance was smaller than the residual degrees of freedom, a quasi-binomial error distribution (rather than a binomial error distribution) was employed. One and
four live and dead beetles, respectively, were digested.

bLive beetles were used as a reference.
cThe significance of this factor was checked using the likelihood ratio test (P = 0.028).
dThe significance of this factor was checked using the likelihood ratio test (P = 0.029).

The rapid responses of the frog species Pe. nigromaculatus to bombardier beetles (Fig. 2)
could be considered a reflex action of the frogs’ tongues (cf. Kumai, 1981a; Kumai, 1981b;
Hirakawa, 1989). Frogs are known to use their tongues as a chemical detector (Dean,
1980b; Kumai, 1981a; Kumai, 1981b; Barlow, 1998) as well as a prey-catching tool (Noel
et al., 2017). For example, chemical or electrical stimulation of the tongue can generate
reflex responses in Pe. nigromaculatus (Kusano & Sato, 1957; Kumai, 1981a; Kumai, 1981b;
Suzuki & Nomura, 1985; Takeuchi, Satou & Ueda, 1986; Hirakawa, 1989). Because Pe.
nigromaculatus is a generalist predator that can attack a variety of arthropods within its
field of view (Hirai & Matsui, 1999; Honma, 2004; Honma, Oku & Nishida, 2006; Sano
& Shinohara, 2012; Sarashina, Yoshihisa & Yoshida, 2011), Pe. nigromaculatus may have
evolved specific responses to toxic prey to avoid being injured by trying to eat them. The
results of this study suggest that the tongues of Pe. nigromaculatus may be able to rapidly
detect toxic substances or other characteristics on the body surface of the bombardier
beetles, and the frogs subsequently avoid the beetles to prevent themselves from being
bombed and injured. Previous studies have focused on how frogs and toads use their
tongues to catch prey (Ewert, 1970; Nishikawa & Gans, 1996; Monroy & Nishikawa, 2010;
Noel et al., 2017). Few reports have explored how frogs and toads use their tongues to
detect toxins in/on potential prey (but see Dean, 1980b). Therefore, the tongue responses
that I describe in Pe. nigromaculatuswill likely be evident in other frogs such as the tree frog
Hyla japonica (Günther) (Taniguchi et al., 2005; Ito, Taniguchi & Billen, 2016; Matsubara
& Sugiura, 2017).

CONCLUSIONS
In one study, the chemicals produced by bombardier beetles’ bombing did not stimulate
the tongues of toads any less intensely than did the heat from the chemical reaction (Dean,
1980b). Other than this study, the relative importance of the toxic chemicals and heat
produced by bombing for the successful escape of bombardier beetles from predators has
been largely unexplored. My results support the hypothesis that bombing is not essential
when bombardier beetles defend themselves against frog attacks. Furthermore, my findings
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suggest that (cool) toxic chemicals on the beetles’ bodies alone may cause frogs to desist
from an attack; thus, chemicals on the body may serve as a primary defence and bombing
as a secondary defence. Successful defence by chemicals on the body would reduce the costs
associated with bombing, suggesting that beetles may have evolved to use chemicals on
the body surface as their primary defence. However, further experiments are required to
validate this hypothesis; for example, dead beetles with body surfaces cleaned of chemicals,
or palatable prey coated with toxic chemicals, should be offered to frogs.

Many prey animals exhibit multiple anti-predator defences (Edmunds, 1974). Predation
pressures imposed by different enemies may encourage prey to diversify defence strategies.
Further studies are needed.
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