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Background. Marfan syndrome (MFS) is an inherited connective tissue disorder affecting

the ocular, skeletal and cardiovascular systems. Previous studies of MFS have

demonstrated the association between genetic defects and clinical manifestations. Our

purpose was to investigate the role of novel genetic variants in determining MFS clinical

phenotypes. Methods. We sequenced the whole exome of 19 individuals derived from

three Han Chinese families. The sequencing data were analyzed by a standard pipeline.

Variants were further filtered against the public database and an in-house database. Then,

we performed pedigree analysis under different inheritance patterns according to

American College of Medical Genetics guidelines. Results were confirmed by Sanger

sequencing. Results. Two novel loss-of-function indels (c.5027_5028insTGTCCTCC,

p.D1677Vfs*8; c.5856delG, p.S1953Lfs*27) and one nonsense variant (c.8034C>A,

p.Y2678*) of FBN1 were identified in Family 1, Family 2 and Family 3, respectively. All

affected members carried pathogenic mutations, whereas other unaffected family

members or control individuals did not. These different kinds of LOF (loss of function)

variants of FBN1 were located in the cbEGF region and a conserved domain across species

and were not reported previously. Conclusions. Our study extended and strengthened

the vital role of FBN1 LOF mutations in the pathogenesis of MFS with autosomal dominant

inheritance pattern. We confirm that genetic testing by next-generation sequencing of

blood DNA can be fundamental in helping clinicians conduct mutation-based pre- and

postnatal screening, genetic diagnosis and clinical management for MFS.
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15 Abstract

16 Background. Marfan syndrome (MFS) is an inherited connective tissue disorder affecting the 

17 ocular, skeletal and cardiovascular systems. Previous studies of MFS have demonstrated the 

18 association between genetic defects and clinical manifestations. Our purpose was to investigate 

19 the role of novel genetic variants in determining MFS clinical phenotypes.

20 Methods. We sequenced the whole exome of 19 individuals derived from three Han Chinese 

21 families. The sequencing data were analyzed by a standard pipeline. Variants were further filtered 

22 against the public database and an in-house database. Then, we performed pedigree analysis under 

23 different inheritance patterns according to American College of Medical Genetics guidelines. 

24 Results were confirmed by Sanger sequencing.

25 Results. Two novel loss-of-function indels (c.5027_5028insTGTCCTCC, p.D1677Vfs*8; 

26 c.5856delG, p.S1953Lfs*27) and one nonsense variant (c.8034C>A, p.Y2678*) of FBN1 were 

27 identified in Family 1, Family 2 and Family 3, respectively. All affected members carried 

28 pathogenic mutations, whereas other unaffected family members or control individuals did not. 

29 These different kinds of LOF (loss of function) variants of FBN1 were located in the cbEGF region 

30 and a conserved domain across species and were not reported previously.

31 Conclusions. Our study extended and strengthened the vital role of FBN1 LOF mutations in the 

32 pathogenesis of MFS with autosomal dominant inheritance pattern. We confirm that genetic 

33 testing by next-generation sequencing of blood DNA can be fundamental in helping clinicians 

34 conduct mutation-based pre- and postnatal screening, genetic diagnosis and clinical management 

35 for MFS.

36

37
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38

39

40 Introduction

41 Marfan syndrome (MFS) is an inherited connective tissue disorder with autosomal dominant 

42 transmission. The clinical manifestations of MFS vary from individual to individual. More than 

43 30 different signs and symptoms are variably associated with Marfan syndrome. The most 

44 prominent of these affect the skeletal, cardiovascular, and ocular systems, but all fibrous 

45 connective tissue throughout the body can be affected (Pyeritz & McKusick 1979). Clinically, 

46 aortic dilatation and dissection are the most important and life-threatening manifestations of MFS 

47 (Biggin et al. 2004). The estimated prevalence is 1 in 5,000 individuals, without gender 

48 predilection (Sponseller et al. 1995; von Kodolitsch & Robinson 2007). An epidemiological study 

49 in Taiwan revealed that the overall prevalence of MFS in Chinese population was 10.2 (95% CI, 

50 9.8-10.7) per 100,000 individuals (Chiu et al. 2014). 

51 Mutations in FBN1 (OMIM #134797, encoding fibrillin-1) account for 70%-80% of MFS 

52 (Stheneur et al. 2009). In addition to FBN1, there are other candidate genes functionally related to 

53 MFS, such as TGFBR1, TGFBR2, ACTA2, SMAD3, MYH11 and MYLK. Habashi et al. showed 

54 that aortic aneurysm in a mouse model of MFS is associated with increased TGF-beta signaling 

55 (Habashi et al. 2006) and noncanonical (Smad-independent) TGF-beta signaling may be a 

56 prominent driver of aortic disease in Marfan syndrome mice (Holm et al. 2011). 

57 Traditionally, the discovery of pathogenic genes for MFS has depended on locus mapping using a 

58 candidate-gene strategy with family-based designs, while FBN1 mutations have not been detected 

59 in 10% of MFS patients from clinical diagnosis, implying that either atypical mutation types or 

60 other genes may cause MFS-like disease (Li et al. 2017). Most cases inherit MFS from their parents 
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61 in an autosomal dominant fashion (Wieczorek et al. 1996). Marfan syndrome may also be caused 

62 by dominant negative-typemutations and haploinsufficiency (Hilhorst-Hofstee et al. 2011; Judge 

63 et al. 2004; Judge & Dietz 2005). Therefore, more pathogenic genes or atypical mutations in 

64 specific populations remain to be identified. Here, we performed a family-based study using 

65 whole-exome sequencing (WES) in 19 individuals, who were derived from three Han Chinese 

66 MFS families. We identified three novel LOF mutations in FBN1 likely to cause MFS in these 

67 patients. Systematical evaluations and experimental replications were conducted to validate our 

68 findings.

69

70 Materials and Methods

71 Study Subjects

72 A total of 19 volunteers from three Han Chinese families were recruited from the First Affiliated 

73 Hospital of Nanjing Medical University between 2012 and 2016. The mean age of onset of cases 

74 was 24.6±6.8 years (Family 1: I-1 lost to follow-up). MFS was diagnosed through a medical 

75 record review, physical examination, and family history based on Ghent nosology: (i) Ectopia 

76 lentis; (ii) Systemic score ≥ 7; (iii) Aortic root Z-score ≥ 2, when there is history of Marfan 

77 syndrome in a primary relative (Loeys et al. 2010). The study was approved by the institutional 

78 ethical committee of Nanjing Medical University and complied with the principles of the 

79 declaration of Helsinki. Informed consent was obtained from all subjects.

80 Whole-exome sequencing

81 Genomic DNA was isolated from peripheral blood using the QIAamp™ DNA and Blood Mini 

82 kit (Qiagen™) according to the protocol. Total DNA concentration and quantity were assessed by 

83 measuring absorbance at 260 nm with NanoDrop 2000c Spectrophotometer (Thermo Scientific™). 
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84 WES library construction and sequencing were performed as below: 300ng genomic DNA was 

85 fragmented in a Covaris® M220 Focused-ultrasonicator™ to 100-500bp fragments followed by 

86 end repair, adding A-tailing, adaptor ligation, and 11 PCR cycles according to the manufacturer's 

87 protocols. After hybridization, exome enrichment was conducted with the Agilent XT SureSelect 

88 Human All Exon v5 Kit, which targets ~50 Mb of the human exonic regions. Five DNA libraries 

89 were multiplexed on every lane and 101 base paired-end sequencing was performed on Illumina 

90 HiSeq1500 (Illumina, Inc).

91

92 Quality control, mapping and variant calling

93 Raw sequencing reads were filtered to trim adapters and low quality reads using Trimmomatic-

94 0.3.2 under PE module (ILLUMINACLIP: adapter. fa: 2:30:10; LEADING: 3; TRAILING: 3; 

95 SLIDINGWINDOW: 4:15; MINLEN: 20). All the qualified reads were processed with an in-house 

96 bioinformatics pipeline, which followed the best practice steps suggested by Genome Analysis 

97 Toolkit (GATK v3.5) (DePristo et al. 2011). Briefly, we first aligned the clean sequence reads to 

98 the human reference genome (UCSC Genome Browser hg19) using Burrows-Wheeler Aligner 

99 (BWA-MEM v0.7.12 with default parameters) (Li & Durbin 2010). PCR duplicates were removed 

100 by Picard v1.141. After initial quality control (QC), all eligible sequences were determined for 

101 regional realignment and base quality recalibration with GATK v3.5. Then variations including 

102 single nucleotide variants (SNVs), insertions and deletions were called using GATK v3.5 

103 HaplotypeCaller module.

104

105 Gene Classification and Functional annotation

106 We used Annovar (2016Feb01) (Wang et al. 2010) for functional annotation with Online 
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107 Mendelian Inheritance in Man (OMIM), the Exome Aggregation Consortium (ExAC) Browser, 

108 MutationTaster2 and The Combined Annotation Dependent Depletion (CADD). Based on OMIM 

109 and MFS-related literature reported previously, genes were classified into three categories 

110 according to American College of Medical Genetics (ACMG) standards and guidelines (Richards 

111 et al. 2015): Category I: 8 MFS-causing genes reported directly; Category II: 125 MFS-related 

112 genes from GeneCards; Category III: Unknown genes not reported previously (Supplementary 

113 Table 1).

114

115 Manual review and replication using Sanger sequencing

116 All remaining mutations were manually inspected using the Integrated Genome Viewer (IGV 

117 2.3.80) (Thorvaldsdottir et al. 2013) before Sanger sequencing. PCR primers were designed for 

118 the target regions and were used to amplify these regions by PCR for Sanger sequencing. Primers 

119 are listed in the Supplementary Table 2. Mutations were validated according to the resulting data 

120 screened through Chromas 2.4.1 and Dnaman 6.0.

121

122 Results

123 One 18-year-old male (the proband, II-1, age of onset was 10) of Han Chinese ancestry from 

124 Family 1 was diagnosed with MFS. He presented with acute, anterior chest pain, on admission. 

125 His father (I-1) also had MFS (Fig. 1A). Computed Tomography (CT) revealed that the proband 

126 had an aortic aneurysm with dissection (type III), ascending aortic root dilatation with the diameter 

127 of 4.9 cm. Family 2 is a large three-generation family with five family members affected (I-2, I-5, 

128 I-6, II-1 and III-1) (Fig. 1B). The proband (II-1, age of onset was 30), a 31-year-old male, presented 

129 with elongated digits but no pectus excavatum. CT showed an aortic aneurysm with dissection 
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130 (type I). His mother (I-2), one aunt (I-5) and one uncle (I-6) all had MFS with aortic aneurysms. 

131 His mother underwent surgery for aortic dissection in 1993 and died in 2015. Family 3 spanned 

132 three generations with two family members affected (I-2 and II-2). The proband (II-2, age of onset 

133 was 27) was a 28-year-old male with a history of MFS. He had thoracic surgery for pectus 

134 excavatum at 2 years old. Although he had no clinical symptoms in the cardiovascular system, a 

135 CT scan showed ascending aortic dilatation, aortic regurgitation and mitral regurgitation. His 

136 mother (I-2) was also confirmed to have MFS (Fig. 1C). Although case I-3 presented elongation 

137 of fingers and mild pectus excavatum, there were not sufficient clinical features to perform the 

138 diagnosis (systemic score = 4 and aortic root Z-score < 2) (Table 1).

139 Quality summaries from sequencing of the 19 samples is summarized in Supplementary Table 

140 3. Each sample had an average of 69.46M raw reads, and over 99.60% of them were successfully 

141 mapped to the reference genome. The average of median insert size was 201 bp and percent of 

142 duplicate reads ranged from 1.44% to 8.11%. Totally 237,252 variants were kept for following 

143 evaluation. To identify qualified pathogenic mutations, stringent criteria according to ACMG 

144 guidelines were performed (Supplementary Fig. 1). First, we filtered these variants under the 

145 following criteria: (i) untranslated region, synonymous, intronic variants (except variants 

146 considered to be splicing variants and located at exon-intron junctions ranging from -5 to +5); (ii) 

147 variants with minor allele frequency (MAF) ≥ 1% based on 1000 Genomes (1KG) and ExAC 

148 databases; (iii) variants present in our in-house whole genome sequencing (WGS) database of 100 

149 non-Marfan controls. Then, we classified these rare genetic variants into three categories: a. MFS-

150 causing genes; b. MFS-related genes; c. Unknown genes. Then we assessed whether these variants 

151 were loss-of-function (nonsense, frameshift and essential splice-site variants). Three inheritance 

152 patterns were evaluated for the qualified mutations including autosomal dominant, autosomal 
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153 recessive and compound heterozygotes. Finally, we manually reviewed and selected variants in 

154 Category I and II genes for validation. After replication by Sanger sequencing, three LOF 

155 mutations in FBN1 were identified in three families respectively. For Family 1, the insertion 

156 (c.5027_5028insTGTCCTCC) was detected in both I-1 and II-1 individuals, which resulted in a 

157 frameshift (p.D1677Vfs*8). For Family 2, a heterozygous deletion (c.5856delG) in exon 48 

158 (NM_000138) was found in four patients (I-5, I-6, II-1 and III-1), also resulting in a frameshift 

159 (p.S1953Lfs*27). I-2 and II-2 individuals from family 3 were heterozygous for the nonsense 

160 variant (c.8034C>A), which gained an immediate stop codon (p.Y2678*). All mutations 

161 (c.5027_5028insTGTCCTCC, c.5856delG and c.8034C>A) identified in three families were 

162 predicted to be disease-causing using MutationTaster2 and CADD. In addition, all mutation sites 

163 were located in a highly conserved amino acid region (Calcium-binding EGF domain) across 

164 different species (Supplementary Fig. 2). A summary of these mutations is presented in Table 2. 

165 All healthy family members and 100 other non-MFS controls did not carry these FBN1 variants. 

166 It is worth noting that these mutations in FBN1 have not been reported previously, but the variant 

167 (c.5857dupT), near c.5856delG, was recorded by the Human Gene Mutation Database (HGMD).

168

169 Discussion

170 MFS is a systemic disorder of connective tissue with a high degree of clinical variability that 

171 involves skeletal, ocular, and cardiovascular systems (Dietz 1993). In our study, massively parallel 

172 sequencing was performed to identify genetic abnormalities in three MFS families, showing three 

173 rare functional variations in FBN1. 

174 Fibrillins are the major components of microfibrils in the extracellular matrix of elastic and non-

175 elastic tissues. Fibrillin-1 serves as a structural component of calcium-binding microfibrils and is 
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176 encoded by FBN1 gene. FBN1 is mapped to chromosome 15q21.1 and encodes a 2,871 amino acid 

177 protein. More than 1,800 different mutations have been identified in FBN1, most of which are 

178 associated with MFS, as seen in the UMD-FBN1 mutations database (Collod-Beroud et al. 1997; 

179 Collod et al. 1996) using a generic software called Universal Mutation Database (UMD) (Collod-

180 Beroud et al. 2003). Similar to this curated database, approximately 1,700 variants in FBN1 are 

181 associated with MFS according to the professional version of The Human Gene Mutation Database 

182 (HGMD), and these accounts for more than 90% of MFS cases. In our study, all affected 

183 individuals also carried FBN1 LOF mutations (c.5027_5028insTGTCCTCC, c.5856delG and 

184 c.8034C>A).

185  The mutated mRNAs in our study, although introducing premature termination codons (PTC), 

186 could in theory be stable. However, cellular recognition and degradation of mRNA that contains 

187 PTC via nonsense-mediated mRNA decay (NMD) is a process whereby potentially harmful effects 

188 of truncated proteins may be limited (Culbertson 1999; Frischmeyer & Dietz 1999). Accordingly 

189 to one study, in the majority of FBN1 PTC (premature termination codon) MFS cases, synthesis 

190 of normal-sized fibrillin protein was ∼50% of control levels, but much less matrix deposition 

191 occurred (Schrijver et al. 2002). They concluded that most PTC mutations have a major impact on 

192 the pathogenesis of type 1 fibrillinopathies but that it is not always through NMD. In our study, 

193 we found that two PTC mutations (p.S1953Lfs*27 and p.Y2678*) were quite near the mutations 

194 (p.Q1955X and p.I2681X) reported by Schrijver et al (Schrijver et al. 2002). In contrast, the 

195 relative amount of PTC-containing FBN1 transcripts in blood was found to be significantly higher 

196 than in affected fibroblasts with experimental inhibition of nonsense-mediated decay, while in 

197 fibroblasts without NMD inhibition, no mutant alleles could be detected at all (Magyar et al. 2009), 

198 implying that tissue-specific degradation of transcripts also plays an important role in MFS 
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199 pathogenesis.

200 Along these lines, Faivre et al. found that patients with an FBN1 PTC had a more severe skeletal 

201 and skin phenotype than did patients with an in-frame mutation. Mutations in exons 24-32 were 

202 also associated with a more severe and complete phenotype (Faivre et al. 2007). In our study, the 

203 LOF mutations were located in exon 41, 48 and 64, and patients did not have a complete MFS 

204 phenotype including ectopia lentis and skin striae. This expression of the MFS phenotype may also 

205 depend on the different ethnicity of our patient cohort from the above-cited studies. 

206 In family 2, a suspected case of a 4-year-old boy (patient III-1) who had longer finger and 

207 anterior chest deformity (pectus excavatum), was slightly taller than his peers. It was difficult to 

208 make a clinical diagnosis owing to his age and uncertain status according to the clinical criteria, 

209 but our WES-based screening helped ease his diagnosis by excluding the FBN1 mutation found in 

210 other affected members of his family. In family 3, we detected that clinically unaffected subject 

211 I-3 had a slight anterior chest deformity (pectus excavatum). Although she had this MFS-related 

212 symptom, she was clinically considered as a healthy individual, which was borne out by the result 

213 that she had no FBN1 or other pathogenic mutations. 

214 All family members above are followed up regularly to confirm their diagnoses. The 

215 identification of a causative gene variant by WES in those with an uncertain phenotype or complex 

216 subjects is of inestimable value for screening, clinical diagnosis and, ultimately, directing 

217 personalized patient care with development of specific small-molecule therapies.

218

219 Conclusions

220 In conclusion, our results may help further elucidate the genetic pathology of MFS, and these 

221 mutations could be included among probably pathogenic markers for pre- and postnatal screening 
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222 and genetic diagnosis for MFS.
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223 Web Resources

224 Qiagen™, https://www.qiagen.com

225 Agilent™, https://www.agilent.com

226 Trimmomatic-0.3.2, http://www.usadellab.org/cms/index.php?page=trimmomatic

227 Genome Analysis Toolkit (GATK v3.5), https://software.broadinstitute.org/gatk

228 Burrows–Wheeler Aligner, BWA v0.7.12, http://bio-bwa.sourceforge.net

229 Picard v1.141, http://picard.sourceforge.net

230 Annovar (2016Feb01), http://annovar.openbioinformatics.org

231 Mendelian Inheritance in Man (OMIM), http://www.omim.org

232 Exome Aggregation Consortium (ExAC) Browser, http://exac.broadinstitute.org

233 MutationTaster2, http://www.mutationtaster.org/

234 The Combined Annotation Dependent Depletion (CADD), http://cadd.gs.washington.edu

235 GeneCards, https://www.genecards.org/Search/Keyword?queryString=marfan%20syndrom

236 Integrated Genome Viewer (IGV 2.3.80), http://software.broadinstitute.org/software/igv/

237 Human Gene Mutation Database (HGMD), http://www.hgmd.cf.ac.uk

238 Universal Mutation Database (UMD), http://www.umd
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319

320

321 Abbreviations:

322 Figure 1. Pedigree and mutations in FBN1 for Marfan syndrome patients

323 1A: A FBN1 insertion mutation (M1) was identified in two subjects with MFS (I-1 and II-1) from 

324 Family 1; 1B: A FBN1 deletion mutation (M2) was identified in four subjects with MFS (I-5, I-6, 

325 II-1 and III-1) from Family 2; 1C: A FBN1 nonsense mutation (M3) was identified in two subjects 

326 with MFS (I-2 and II-2) from Family 3. 3 individuals in the pedigrees were not sequenced 

327 including Family 2: I-2, I-7 and Family 3: I-4. W indicates wildtype allele. Circles represent female 

328 participants and squares male participants. Black symbols indicate patients with Marfan syndrome. 

329 A slash through the symbol indicates that the family member is deceased. Arrows indicate the 

330 proband. 
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331 Supplementary Figure 1. Analytical pipeline for exome sequence filtration and 

332 prioritization

333 Abbreviations: MAF, minor allele frequency; UTR, untranslated region.

334

335 Supplementary Figure 2 The locations of mutations in FBN1 across different species

336 The positions of three LOF mutations in FBN1 are shown. The affected amino acid residues are 

337 conserved across multiple species.

338
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Table 1(on next page)

Clinical symptoms of all 19 members in three Marfan families

Facial features (3/5) = 1 (dolichocephaly, enophthalmos, downslanting palpebral fissures,

malar hypoplasia, retrognathia) ND = not detected NA = not available *Suspected case
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1 Table 1. Clinical symptoms of all 19 members in three Marfan families

Family 

ID

Member 

ID

Age of 

onset

Age

Wrist 

AND 

thumb 

sign

Pectus carinatum 

deformity(pectus 

excavatum or chest 

asymmetry)

Hindfoot 

deformity  

(plain pes 

planus)

Dural 

ectasia

Protrusio 

acetabuli

Pneumothorax

Reduced upper 

segment/lower 

segment ratio 

AND increased 

arm/height AND 

no severe 

scoliosis

Scoliosis or 

thoracolumbar 

kyphosis

Reduced 

elbow 

extension

Facial 

features

Skin 

striae 

(stretch 

marks) 

Myopia > 

3 

diopters

Mitral 

valve 

prolapse 

Systemic 

score

Aortic 

root Z-

score 

Case

Score 3 2(1) 2(1) 2 2 2 1 1 1 1 1 1 1

F1  I-1 25 46 √ √ × × × √ × × × × × × √ 8 ND 1

F1  I-2 43 × × × × × × × × × × × × × 0 ND 0

F1 II-1 10 21 √ √ × × × √ × × × × × × √ 8  ≥ 2 1

F2  I-1 66 × × × × × × × × × × × × × 0 ND 0

F2  I-3 60 × × × × × × × × × × × × × 0 ND 0

F2  I-4 63 × × × × × × × × × × × × × 0 ND 0

F2  I-5 30 65 × × √ × × × √ × √ √ × × √ 6 ND 1

F2  I-6 20 67 × × √ × × × √ × √ √ × × √ 6 ND 1
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F2 II-1 30 36 × × √ × × × √ × √ √ × × √ 6  ≥ 2 1

F2 II-2 30 × × × × × × × × × × × × × 0 ND 0

F2 II-3 50 × × × × × × × × × × × × × 0 ND 0

F2 III-1* 2 5 × √ × × × × × × × × × × × 1 ND 0*

F3  I-1 52 × × × × × × × × × × × × × 0 ND 0

F3  I-2 30 49 × √ √ × × × × × × × × × √ 5 ND 1

F3  I-3 46 √ √ × × × × × × × × × × × 4 <2 0

F3 II-2 27 29 × √ √ × × × × × × × × × √ 5  ≥ 2 1

F3 II-3 28 × × × × × × × × × × × × × 0 ND 0

F3 II-4 22 × × × × × × × × × × × × × 0 ND 0

F3 III-1 6 × × × × × × × × × × × × × 0 ND 0

2 Facial features (3/5) = 1 (dolichocephaly, enophthalmos, downslanting palpebral fissures, malar hypoplasia, retrognathia)

3 ND = not detected

4 NA = not available

5 *Suspected case
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Table 2(on next page)

FBN1 variants identified for affected individuals in three Marfan families
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1 Table 2. FBN1 variants identified for affected individuals in three Marfan families

Family ID F1 F2 F3

Chr. chr15 chr15 chr15

Position 48,756,133 48,737,634 48,707,750

Ref allele - G C

Alt allele TGTCCTCC - A

Gene FBN1
FBN1 FBN1

Mutation type insertion deletion nonsense

Exon 41/66 48/66 64/66

Codon change c.5027_5028insTGTCCTCC c.5856delG c.8034C>A

Amino acid change p.D1677Vfs*8 p.S1953Lfs*27 p.Y2678*

Affected individuals I-1/II-1 I-5/I-6/II-1/III-1 I-2/II-2

CADD Raw Score 9.18 7 16.63

PHRED scaled score † 35 33 56

2 †PHRED-like scaled C-scores = , the recommended deleterious threshold was > 15 for scaled C-scores- 10 * log10(
rank

total）

3
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Figure 1

Pedigree and mutations in FBN1 for Marfan syndrome patients

1A: A FBN1 insertion mutation (M1) was identified in two subjects with MFS (I-1 and II-1) from

Family 1; 1B: A FBN1 deletion mutation (M2) was identified in four subjects with MFS (I-5, I-6,

II-1 and III-1) from Family 2; 1C: A FBN1 nonsense mutation (M3) was identified in two

subjects with MFS (I-2 and II-2) from Family 3. 3 individuals in the pedigrees were not

sequenced including Family 2: I-2, I-7 and Family 3: I-4. W indicates wildtype allele. Circles

represent female participants and squares male participants. Black symbols indicate patients

with Marfan syndrome. A slash through the symbol indicates that the family member is

deceased. Arrows indicate the proband.
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