

Histological analysis of post-eruption tooth wear adaptations, and ontogenetic changes in tooth implantation in the acrodontan squamate *Pogona vitticeps* (#28010)

1

First submission

Editor guidance

Please submit by **9 Sep 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the [materials page](#).

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

8 Figure file(s)

1 Table file(s)

Structure your review

The review form is divided into 5 sections. Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context. Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed. Negative/inconclusive results accepted. *Meaningful* replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Speculation is welcome, but should be identified as such.
- Conclusions are well stated, linked to original research question & limited to supporting results.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Histological analysis of post-eruption tooth wear adaptations, and ontogenetic changes in tooth implantation in the acrodontan squamate *Pogona vitticeps*

Yara Haridy Corresp. 1, 2

¹ Department of Biology, University of Toronto Mississauga, mississauga, Ontario, Canada

² Leibniz-Institut für Evolutions und Biodiversitätsforschung an der Humboldt Universität zu Berlin, Museum für Naturkunde, Berlin, Germany

Corresponding Author: Yara Haridy
Email address: yara.haridy@mfn.berlin

Teeth have been a focus of research in both extinct and extant taxa alike; a significant portion of dental literature is concerned with dental patterning and replacement. Most non-mammalian vertebrates continuously replace their dentition but an anomalous group of squamates has forgone this process in only having one tooth generation; these squamates all have apically implanted teeth, a condition known as acrodonty. Acrodont dentition and various characteristics attributed to it, including a lack of replacement, have often been defined ambiguously. This study explores this type of implantation through histology in the ontogeny of the acrodont agamid *Pogona vitticeps*. The non-replacing teeth of this squamate provides an opportunity to study wear adaptations, maintenance of occlusion in a non-mammalian system, and most importantly post-eruption changes in the tooth bone interface. In this study the post-eruption changes combined with dental wear likely gives the appearance of acrodont implantation.

1 **Histological analysis of post-eruption tooth wear adaptations, and ontogenetic changes in**
2 **tooth implantation in the acrodontan squamate *Pogona vitticeps***

3 Yara Haridy^{1,2}

4 ¹ Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road,
5 Mississauga, Ontario, L5L 1C6, Canada

6 ² Museum für Naturkunde, Leibniz-Institut für Evolutions und Biodiversitätsforschung an der
7 Humboldt Universität zu Berlin, Invalidenstrasse 43, 10115 Berlin, Germany

8

9 Corresponding Author:

10 Yara Haridy¹

11 Email address: yara.haridy@mfn.berlin

12

13

14

15

16

17

18

19

20

21

22 **Abstract.** Teeth have been a focus of research in both extinct and extant taxa alike; a significant
23 portion of dental literature is concerned with dental patterning and replacement. Most non-
24 mammalian vertebrates continuously replace their dentition but an anomalous group of
25 squamates has forgone this process in only having one tooth generation; these squamates all have
26 apically implanted teeth, a condition known as acrodonty. Acrodont dentition and various
27 characteristics attributed to it, including a lack of replacement, have often been defined
28 ambiguously. This study explores this type of implantation through histology in the ontogeny of
29 the acrodont agamid *Pogona vitticeps*. The non-replacing teeth of this squamate provides an
30 opportunity to study wear adaptations, maintenance of occlusion in a non-mammalian system,
31 and most importantly post-eruption changes in the tooth bone interface. In this study the post-
32 eruption changes combined with dental wear likely gives the appearance of acrodont
33 implantation.

34

35 **Introduction**

36 Reptilian dentition has been extensively studied in both extinct and extant taxa, and for
37 the vast majority of these taxa, there is constant replacement of teeth, a condition known as
38 polyphyodonty. However, in a subset of reptiles, there has been an evolutionary cessation of
39 replacement, a condition known as monophyodonty. Among lepidosaurian reptiles, this
40 suppression of replacement is limited to Sphenodontidae (Rhynchocephalia), Chamaeleonidae,
41 and Agamidae, with the latter two being grouped within the clade Acrodonta (Squamata) (Pyron
42 et al., 2013). This squamate group is aptly named for the acrodont style implantation of the
43 dentition, and all acrodontians have apically implanted teeth making up the majority of their
44 dentulous surface (Jenkins et al., 2017). This is in contrast to the condition found in most
45 squamates and other reptiles (e.g., Zaher and Rippel, 1999; Delgado et al., 2003a; LeBlanc and
46 Reisz, 2015) in which the tooth is implanted to the lingual surface of the jaw bone, a condition
47 known as pleurodonty that is exemplified in taxa like *Iguana iguana* (Throckmorton, 1976;
48 Montanucci, 2008; Kline and Cullum, 2017). The most studied form of implantation among
49 tetrapods is thecodonty, where the tooth is implanted in a deep socket; this form of implantation
50 is found in all mammals and also occurs within crocodilians and in many extinct archosaurs (e.g.,
51 Brown et al., 2015; García and Zurriaguz, 2016). Tooth implantation should not be conflated

52 with tooth attachment, which refers to the tissue that attaches the tooth to the dentulous bone;
53 this study is primarily concerned with implantation, and how ontogenetic change can influence
54 the appearance of implantation categories.

55 Acrodonty in Reptilia is largely associated with a lack of tooth replacement (e.g., Zaher
56 and Rippel, 1999; Smirina and Ananjeva, 2007), an association that often alludes to causality but
57 that is never stated outright. At first glance it seems understandable that acrodont implantation
58 and monophyodonty be associated as most acrodont squamates have both acrodont and
59 pleurodont dentition. In individuals with both pleurodont and acrodont dentition, the pleurodont
60 teeth are replaced by a new generation of teeth, yet the acrodont teeth are not (Cooper et al.
61 1970), which seems to have cemented the idea that acrodonty somehow inherently disrupts or
62 inhibits replacement. While extant acrodont squamates are monophyodont, it is important to note
63 that acrodonty is also found in some extinct reptiles (Simões et al., 2015; Hardy et al., 2018) and
64 in non-reptile vertebrates such as piranhas (Shellis and Berkovitz, 1976), all of which replace
65 their dentition. The supposed function of constant replacement is to avoid excessive wear
66 (Throckmorton, 1979; Benton, 1984; Erickson, 1996); accordingly, higher rates of replacement
67 are often seen in herbivorous taxa, as their fibrous diet and frequency of mastication requires a
68 constant renewal of their dentition. In extreme instances, there are examples of starvation in
69 herbivorous mammals that lack continuous replacement and that have worn their dentition to
70 such a degree such that it is no longer functional (Spencer, 2005). Therefore the lack of
71 replacement in acrodont squamates raises the question: if acrodontians that lack tooth
72 replacement are relatively long-lived (Zari, 1999; Smirina and Ananjeva, 2017), how are they
73 able to maintain a viable occlusal surface during later stages of life? Monophyodonty also poses
74 two mechanical dilemmas: (1) how do acrodontians adapt to dental wear at a tissue level, and (2)
75 how do the mandibular and maxillary teeth stay in occlusion through ontogeny without
76 replacement or a ligamentous attachment? The former of the two questions has been partially
77 addressed through histology of the acrodontians *Uromastyx aegyptia* (Throckmorton, 1979) and
78 *Chamaeleo calyptratus* (Buchtová et al., 2013; Dosedělová et al., 2016a), and members of
79 acrodontan Uromastycinae and Chamaeleoninae (Pyron et al., 2013). These studies found that
80 these acrodontians have a peculiar way to combat wear – they secondarily infill the teeth with
81 bone and/or dentine and remodel the underlying jaw bone into more compact bone. There are
82 six other groups within Acrodonta that presumably also lack replacement and have

83 undocumented wear adaptations (Pyron et al., 2013). This study tests if the agamid *Pogona*
84 *vitticeps* (the central bearded dragon), conforms at a tissue lever to the wear adaptation patterns
85 of other acrodontians previously documented in literature.

86 To better understand the relationship between acrodonty, monophyodonty, and wear
87 adaptations, the implantation mode itself should be more thoroughly examined, particularly
88 when it comes to acrodonty as it is the least studied form of implantation. Acrodont implantation
89 has been ambiguously defined at best, with various authors describing the mode of implantation
90 as: (1) apically placed teeth (Edmund, 1960) (2) teeth ankylosed to the margin of the jaw
91 (Motani, 1997) (3) teeth fused to the edge of the jaw bone via undefined tissues (Peyer, 1968).
92 Most definitions used acrodontian squamates or rhynchocephalians as representative groups for
93 acrodont implantation, with acrodonty used as a phylogenetic character (e.g., Zaher and Rieppel,
94 1999), to ground truth the use of acrodontians as acrodont representatives the natural question
95 becomes: are the acrodont teeth of acrodontians really acrodont? It has been previously proposed
96 that ichthyosaurs and alligators can change implantation types through ontogeny by growth in
97 the jaw ramus and additional ossification on the lingual side (Motani, 1997), the alligators go
98 from pleurodont to thecodont, and the ichthyosaurs become subthecodont from their juvenile
99 state of pleurodonty.

100 This study explores the ontogenetic change in the teeth of *Pogona vitticeps*, with a focus
101 on comparisons of wear adaptations of this member of Agamidinae to those previously described
102 in Uromastycinae and Chamaeleoninae. This study aims to explain: (1) Do tissue level wear
103 adaptations documented in other acrodontians extend to *P. vitticeps*? (2) How do monophyodont
104 reptiles that lack a ligamentous attachment maintain occlusion through ontogeny? (3) Are the
105 teeth of these reptiles truly acrodont, and does acrodonty limit tooth replacement as indicated by
106 literature? This is the first study to document the change in implantation types through ontogeny
107 due to osteological remodeling of the dentary and the tooth body, with evidence of a change
108 from pleurodont implantation to acrodont implantation in a modern squamate. This has
109 implications on how we view implantation categories as they are likely to be more
110 ontogenetically variable than previously thought.

111 **Materials and Methods**

112 In this study, the genus *Pogona* was represented by the central bearded dragon (*P.*
113 *vitticeps*). Thirty-seven specimens (S. Figure1) of *P. vitticeps* from the Royal Ontario Museum
114 (ROM) recent osteology collection were externally examined, and all measurements were taken
115 by K. Seymour prior to skele~~l~~ling. All the *Pogona vitticeps* specimens were photographed
116 using a Canon EOS40D prior to sectioning. To access normally inaccessible anatomical features
117 of the lower jaw and its dentition, 5 specimens were sectioned in both coronal and longitudinal
118 planes. *Pogona vitticeps* was sectioned at two ontogenetic stages, a juvenile stage (ROM R8234,
119 ROM R8510), and an adult stage (ROM R8507, ROM R8189, ROM R9422). The illustrations
120 and diagrams found in the figures were made using Adobe Photoshop CS6 and Adobe Illustrator
121 CS6.

122 **Histology**

123 All thin sections were made following the ROM histology protocol and were executed in
124 the ROM vertebrate paleontology thin sectioning facility. Specimens were embedded in AP
125 Castolite acrylic resin, vacuumed, and left to cure for a minimum of 24 hours. All specimens
126 were cut using a Buhler Isomet 1000 wafer saw at a low speed of 275rpm. The specimens were
127 mounted on plexiglass slides using Scotch-Weld SF-100 cyanoacrylate. The slides were then
128 mounted on the Hillquist grinding cup and ground down using the grinding cup until optical
129 clarity was achieved; subsequently the specimen was manually ground using progressively finer
130 grit suspensions on glass plates, beginning with a 600-grit silicon carbide powder and working
131 down to a 1-micron aluminum oxide powder. All slides were imaged using a Nikon DS-Fi1
132 camera mounted to a Nikon AZ 100 microscope fitted with crossed-polarizing and lambda filters
133 and an oblique illumination slider and NIS-Elements software registered to R. R. Reisz of the
134 University of Toronto Mississauga.

135 **Results**136 **External anatomy**

137 The external morphology of both the mandible and dentition is noticeably different
138 between the juvenile and adult specimens of *Pogona vitticeps* (Figs. 1A, B). Several specimens

139 that represented a relatively complete ontogenetic sequence were examined; for the sake of
140 brevity, two representative specimens, an adult (ROM R8507) and a juvenile (ROM R8234),
141 were chosen for external description. The juvenile specimen (ROM R8234) has fewer tooth
142 positions (16 tooth positions) on the dentary; however, some smaller individuals were found to
143 have as few as 10 teeth (S1. Fig.). There are external mandibular features of ROM R8234 that
144 identify it as juvenile: (1) the symphysis is poorly ossified, (2) the mandible is less robust in bone
145 density, which is externally apparent as a character of bone opacity, and in dorsoventral width,
146 and (3) the mandible is relatively short, with the dentulous region making up more than half the
147 total length. The wear facets on the labial surface of the dentary are not as well developed in the
148 juvenile specimen as those seen in the adults. This specimen of *P. vitticeps* is found to have two
149 teeth implanted in a pleurodont fashion; these occupy the first two tooth positions on the rostral
150 end of the mandible (Fig. 1B). The pleurodont teeth are conical and taper to a point; this
151 represents the most common condition among many, but not all agamids (Cooper et al. 1970).
152 Posterior to the pleurodont dentition, the remaining tooth row has been described in literature to
153 be acrodont and is the focus of this study(Cooper et al., 1970). The acrodont teeth in *P. vitticeps*
154 are triangular and mediolaterally compressed and lack the multi-cuspid morphology that other
155 acrodontians (S.Figure 1), like chameleons and *Uromastyx* display. Compared to the older
156 anterior teeth, the teeth are larger in size posteriorly correlating with age, with the youngest teeth
157 added posteriorly being largest. It appears that the newest tooth is not ankylosed to the jaw bone
158 prior to the development of the next tooth in the series. Instead, the newest tooth appears be
159 attached to the jaw only by soft tissue, a desiccated fibrous tissue separates it from the bone in
160 skeletonized material, (Fig. 2); this is readily recognizable by external observation, as the last
161 two teeth are not oriented at an angle that is congruent with the rest of the dentition (Fig. 1A).
162 This was also observed in several other juvenile specimens in which it is observed only in the
163 posteriormost teeth. Lastly, the newest and last tooth position is growing directly against, and
164 partially resorbing (Fig. 1A), the coronoid process, which does not allow sufficient space for the
165 next more posterior tooth position.

166 As with the juveniles, several adult individuals were examined, and a representative
167 specimen chosen. Several changes correlated with size and thus presumably with ontogeny can
168 be recognized in the adult specimen of *Pogona vitticeps* (ROM R8507) including an increase in
169 the number of tooth positions. The specimen chosen for sectioning has 17 tooth positions,

170 although other specimens have been found to have as many as 19 tooth positions; in most
171 specimens a definite tooth count was difficult to ascertain via examination of the external
172 morphology due to extensive wear but was later verified in thin section. Wear on the adult
173 mandible is evident on both the acrodont dentition and the jaw bone. Interestingly, the anterior
174 pleurodont dentition was mostly unworn in the adult specimen or worn to a minimal degree on
175 other adult specimens examined; this is similar to the condition seen in *Agama agama*, which has
176 been documented to replace its anterior pleurodont dentition (Cooper et al. 1970). However, the
177 anterior acrodont teeth are all but worn away, making it difficult to differentiate it from the jaw
178 bone; to circumvent this problem, tooth counts were made under a microscope and later
179 confirmed in thin section when possible. The wear observed on the anterior acrodont dentition
180 was extensive – often there were only traces of the tooth left – which is similar to the dental wear
181 seen in *Uromastyx*, a taxon can become functionally edentulous in adulthood (Throckmorton,
182 1979).

183 The evidence of extensive wear is not only seen on the teeth but is also found on the
184 mandible itself in the form of wear facets, which are only present on the labial side of the dentary
185 where the maxillary dentition occludes, interdigitating between dentary tooth positions. Wear
186 facets have been characteristically found in acrodont squamates as far back as the Cretaceous
187 (Simões et al., 2015), which are formed due to the maxillary dentition wearing down on the
188 dentary bone during mastication and passive occlusion. These wear facets are present along the
189 posterior two-thirds of the tooth row but are most developed in the posterior region of the
190 dentary of adult specimens of *P. vitticeps*. However, in adult individuals of other acrodontians,
191 like chameleons (Dosedělová et al., 2016a), the wear facets are found along the entire tooth row.
192 Lastly, it is important to mention that the jaw ontogenetically increases posteriorly in length and
193 dorsoventrally in width, with the articular increasing in robustness, and the coronoid process
194 moving posteriorly relative to the tooth row. This ontogenetic change effectively creates more
195 space for the posterior addition of teeth to the dentary, a feature that is frequently seen in
196 lepidosaurs (Berkovitz and Shellis, 2017).

197 Histology

198 *Juvenile tissue histology*

199 Longitudinal and coronal sections of the mandible of the juvenile specimen (ROM
200 R8234) were examined (Fig. 2&3). The mandibular ramus in the juvenile specimen is not as
201 well ossified as in the adult (ROM R8507) and has a medial curvature anteriorly; this made
202 obtaining sections of the anterior and posterior dentition within the same sectioning plane
203 difficult. Furthermore, the focus of this study is the non-replacing acrodont dentition, and
204 therefor, the anterior pleurodont dentition were not included in this study. In longitudinal section,
205 only the dentine is exposed with no other dental tissues (e.g., cementum, enamel) being visible.
206 In longitudinal section, the implantation relationship of the teeth to the jawbone is not easily
207 discernable. However, this plane of section allows for visualization of the incremental maturation
208 of dentition. The most anterior teeth are the oldest, a characterization based on the thickness of
209 dentine, whilst the most posterior teeth are the youngest and have the least amount of dentine
210 infilling. In longitudinal section, the interaction between the individual tooth and its neighboring
211 teeth can be seen in this plane (Fig. 2B-D); there is distinct tissue that attaches the teeth to each
212 other as well as to the jaw bone. This tissue is tentatively identified as alveolar bone (*sensu*
213 LeBlanc and Reisz, 2015) based on the position and presumed function of the tissue rather than
214 on its histological appearance, which does not completely conform to alveolar bone description
215 in literature. The alveolar bone in this specimen has a woven appearance that is less organized
216 than the bone that makes up the dentary. However, it lacks the extensive trabecular or ‘spongy’
217 appearance that is found in other squamates, such as snakes (Budney, 2004; Budney et al., 2006).
218 This tissue attaches the teeth to each other, as well as to the jaw bone proper, a function that has
219 been attributed to ‘bone of attachment’ (Ananjeva and Smirina, 2007), better known as alveolar
220 bone (Budney et al., 2006; Caldwell, 2007; LeBlanc and Reisz, 2013, 2015; LeBlanc et al.,
221 2016a). The alveolar bone in *P. vitticeps* is also not distinguished from the jaw bone by a
222 reversal line; this is possibly an effect of the plane of section or due to a lack of resorption prior
223 to attachment (Fig. 2). It is important to note that not all the teeth in the juvenile specimen are
224 fully ankylosed to the dentary (Fig. 3); however, each tooth seems to ossify to the adjacent
225 dentition, which occurs prior to full ankylosis and which mirrors what has been documented in
226 *Chamaeleo calyptratus* (Buchtová et al., 2013; Dosedělová et al., 2016a). This observation is
227 based on the youngest tooth (Fig.3), which has yet to ankylose to the dentary, which is attached
228 to the neighboring teeth.

229 In coronal section, all of the common dental tissues are identifiable, with dentine
230 comprising the bulk of the tooth identified by its characteristic radiating dentinal tubules. The
231 enamel is best visualized in cross-polarized light and is unworn in the youngest teeth (Fig.3B).
232 Because of the mediolateral compression of the tooth, the coronal plane of section is the best
233 plane in which to examine the enamel as it transects the labial and lingual surfaces of the tooth
234 this. The enamel is fairly thick, which has also been reported in *Uromastyx* (Throckmorton,
235 1979). Due to the lack of wear in the juvenile specimen, the enamel is of equal thickness on the
236 lingual and labial sides of the tooth crown (Fig.3B). On the lingual side of the tooth, the tapering
237 edge of the enamel leads down to a layer of acellular cementum, meeting at the cementoenamel
238 junction, which defines the boundary between the anatomical crown and root of the tooth. It is
239 likely that the cementum cannot be visualized on the labial side because the alveolar bone has
240 grown to meet the cementum, effectively ankylosing the tooth while obstructing the cementum,
241 or possibly because of resorption of the cementum in this process, although the latter has not
242 been previously documented.

243 In the coronal section of the juvenile specimen of *P. vitticeps*, it is evident that both the
244 shape of the dentition and the manner in which the tooth is implanted are more congruent with
245 the pleurodont condition, as the lingual side of the tooth is markedly greater in length than that of
246 the labial side (Fig. 3A, C). Although both ends of the tooth are ankylosed to the jaw, it is clear
247 that there is more contact with the jaw bone and more attachment tissues on the labial side, a
248 character of pleurodont implantation. Apart from the obvious labial bias of attachment, alveolar
249 bone can be seen at the base of the tooth, being more woven than the rest of the jaw bone yet
250 apparently lacking the more porous structure that is usually associated with alveolar bone. In
251 coronal section (Fig. 3B), the reversal line defining the boundary between the new alveolar bone
252 and the preexisting jaw bone is visible in cross-polarized light. The labial side of the tooth (Fig.
253 3C) is shorter and is attached to the jaw bone with more attachment tissue than that present at
254 lingual side; furthermore, the labial side appears to be actively remodeled by osteoblasts and
255 osteoclasts (Fig. 3D). The osteoclast on the labial side of the tooth is identified on the basis of its
256 large size, general shape and the resorption bay that is created in the dentine (Witten and
257 Huysseune, 2009). The high density of bone cell lacunae directly posterior to the osteoclast are
258 identified as osteocytes, which were osteoblasts, indicating that the labial side of the tooth is
259 being resorbed and that bone is being deposited in its place. It is also important to note that the

260 strut like structure of the cancellous bone likely give the mandible form and function prior to full
261 ossification and maturity.

262 Lastly, a coronal section through the coronoid process (Fig. 3E), shows the presence of a
263 developing tooth. Its identification as a developing tooth is based on its general shape, as well as
264 the presence of thick enamel relative to the amount of dentine. The presence of more enamel
265 than dentine denotes an early stage of tooth development, as dentine is deposited by odontoblasts
266 later in development (Erickson, 1996; LeBlanc et al., 2016b). The presence of this developing
267 tooth was serendipitously discovered by sectioning the specimen since there were no external
268 indicators that this tooth was buried within the bone of the coronoid process. This new tooth is
269 developing within the coronoid process and is visibly resorbing the bone tissues of both the
270 coronoid and the dentary, effectively making space for itself prior to attachment.

271 *Adult tissue histology*

272 In the longitudinal and coronal sections of the mandible of the adult specimen (ROM
273 R8057), lamellar bone makes up the main body of the dentary (Fig. 3). In coronal section, it can
274 be seen that the large trabeculae seen in the juvenile have been incrementally infilled by lamellar
275 bone, giving the mandible an osteological density that was not present in early ontogeny (Fig 3).
276 As previously reported in agamids (Ananjeva and Smirina, 2007), the bone tissue is not highly
277 vascularized nor actively remodeled, particularly in dentary bone. This is in line with the
278 findings in the adult jaw, where no reversal lines or large areas of remodeling are found. No
279 primary or secondary osteons can be identified in the longitudinal sections. However, in one of
280 the coronal sections, a single osteon could be identified ventral to the tooth implantation site
281 (Fig. 5A). In longitudinal section (Fig. 4C), posterior to the most worn dentition, the wear facets
282 become a marked feature of the dentary's labial surface. The pervasiveness and the depth of the
283 wear facets should not be considered informative in thin section, as the variation of depth is a
284 false impression, and is due to the sectioning plane in combination with the curvature of the
285 dentary. The wear facets form pseudo-pedicels for the tooth remnants; these should not be
286 confused for the 'bony pedicles' that have been identified developmentally in chameleons
287 (Buchtová et al., 2013). These pseudo-pedicels are formed by the wear facets, as the maxillary
288 teeth wear away lamellar bone between the functional dentition on the jaw, leaving the

289 remaining tooth caps on secondarily formed pedicels of lamellar bone (Fig. 4C-D). This gives
290 the tooth implantation region its distinctly acrodont appearance.

291 The teeth in the adult specimen, ^{acrodont} ~~specifically concerning the acrodont teeth~~, are markedly
292 different than those described in the juvenile (Fig. 5). The unequal shape and implantation of the
293 teeth reported in the juvenile is not recognized in the adult, which has acrodont implantation with
294 no lingual bias (Fig 5B). The anterior pleurodont dentition is shown to maintain its vasculature,
295 which is associated with an open pulp cavity; this is typical of pleurodont dentition among
296 squamates. Perhaps the most interesting feature of the longitudinal sections is seen in the worn
297 acrodont teeth directly posterior to the pleurodont pair (Fig. 4). The teeth are worn to such an
298 extent that often no dentine or enamel is detectable (Fig. 4B), even in thin section. However, the
299 vasculature is maintained and denotes tooth positions, and the pulp cavity remains open and
300 vascularized throughout the functional life of the tooth. Thus, the teeth appear to remain viable
301 into adulthood (Fig. 4E), which is in contrast to the condition reported in *Chameleo* (Dosedělová
302 et al., 2016a) and in *Uromastyx* (Throckmorton, 1979). ~~The vasculature is best seen in Figures 4~~
303 ~~and 5.~~

304 Considering the high degree of post-ankylosis changes to the tooth-bone interface, it is
305 important to characterize the tissues involved. In the adult specimen (Fig. 5B), the tissues ~~are distinct~~
306 between the tooth and the platform of lamellar bone ~~are particularly interesting when viewed in~~
~~cross polarized light, as they are clearly distinct from both the tooth and the lamellar bone that~~
~~makes up the jaw.~~ The presence of these tissues alone provides evidence of remodeling. In this
307 case, ‘remodeling’ is used in the broad sense rather than to refer strictly to bone remodeling. For
308 example, in this agamid, the dentine that was once present in the lingual side of the tooth of the
309 juvenile has been resorbed and is no longer present, or it is present in a greatly reduced extent in
310 the adult. In both instances, it has been replaced by woven bone. The woven bone can be seen at
311 the base of the teeth in longitudinal section (Fig. 2). However, the true extent of remodeling and
312 change in tooth morphology is best seen in cross-polarized light in coronal section as this plane
313 allows for the best direct comparison to the juvenile teeth in figure 4. Positioned between the
314 dentine and the organized lamellar bone of the jaw is a layer of bone with disorganized fibers
315 previously referred to as woven bone. The lack of organization in this bone indicates the
316 occurrence of relatively fast deposition and is unlikely to be the original alveolar bone that was
317
318

319 identified in the juvenile specimen. The woven appearance under cross-polarized light identifies
320 this as woven bone. In conjunction with its position relative to the teeth, it is tentatively
321 identified here as a remodeling zone (*sensu* Budney, 2004) (Fig. 4C, 5B). In coronal section (Fig.
322 5B) the remodeling zone is clearly identifiable in cross-polarized light, and the distribution of
323 dental tissues and bone is markedly different than that previously described in the juvenile
324 specimen. In the adult specimen, the anterior acrodont dentition was either completely worn
325 away, or all that remained was a dentine fragment (Fig. 4). The most posterior dentition retained
326 more comparatively more dentine and often with a lingual bias (Fig. 5A), but this was only
327 discernable in thin section. The anterior acrodont teeth in the adult had no evidence of enamel,
328 while the posterior most teeth were the only ones that maintained some enamel, although it is
329 only present on the lingual side. Within the pulp cavity of the adult, there often remains evidence
330 of vasculature (Fig. 4) although it is greatly reduced to the center of the tooth. The overall shape
331 of the tooth is markedly different to that reported in the juvenile, and the external appearance is
332 acrodont like that described in literature (e.g., Budney, 2004).

333 Discussion

334 Tooth replacement has been a topic of great interest in recent years in groups ranging
335 from fish to mammals and across broad time scales. There have been several studies
336 documenting the presence of replacement patterns in relation to dental development (e.g.,
337 Westergaard and Ferguson, 1990; Richman and Handrigan, 2011; LeBlanc and Reisz, 2015).
338 However, there has been relatively little work on the anomalous squamates that completely cease
339 tooth replacement, the acrodontians. The clade Acrodonta (Cope, 1864) is aptly named for the
340 form of tooth implantation known as acrodonty that this group possesses, namely where the teeth
341 are attached to the apex of the jaw. Grouping based on tooth implantation has divided squamates
342 between acrodontians and pleurodontans (Cope, 1864; Budney, 2004), the latter of which attach
343 their dentition to the lingual margin of the jaw (pleurodont implantation). The classic categories
344 of acrodonty, pleurodonty, and thecodonty have been used as descriptors, as well as phylogenetic
345 characters (Zaher and Rippel, 1999), and continue to be pervasive in even the latest literature
346 (Jenkins et al., 2017) but have been called into question by Estes et al. (1988) who suggested
347 these categories are artificial and are not likely representative of natural groupings.

348 True teeth in most non-mammalian vertebrates are well known for their extensive
349 replacement patterns through their life (Zaher and Rieppel, 1999; Delgado et al., 2003b; LeBlanc
350 and Reisz, 2015; LeBlanc et al., 2016b); therefore any condition that deviates from
351 polyphyodonty is unusual and worthy of study. An important example of non-polyphyodont
352 dentition is seen in mammals, in which there are only two generations of dentition, the deciduous
353 teeth and the permanent teeth. Some mammals such as shrews have even forgone the deciduous
354 phase by resorbing the dentition prior to eruption, functionally giving them one tooth generation
355 (Järvinen et al., 2009). Other than mammals, most fish (but see ratfish, e.g., Huber et al., 2008),
356 amphibians, reptiles and non-mammalian synapsids have continuous tooth replacement through
357 life, making acrodontian squamates an anomaly amongst toothed vertebrates. The lack of
358 replacement comes with a set of challenges, two of which are addressed here. The first challenge
359 is how does an organism grow the jaw whilst having permanently ankylosed dentition and whilst
360 maintaining occlusion with the maxillary dentition? The second challenge is how to maintain a
361 single set of functional teeth through the lifetime of an animal, which essentially is a problem of
362 combating or adapting to wear. These two obstacles are also faced by mammals, which have one
363 primary set of teeth throughout most of their life. In mammals, the issue of maintaining
364 occlusion appears to be solved by maintaining a ligamentous tooth attachment, which allows for
365 the teeth to remain mobile as the mandible grows and remodels (Lumsden and Osborn, 1977;
366 LeBlanc and Reisz, 2013). The issue of wear is at least partially addressed by having much
367 thicker prismatic enamel than that found in most reptiles (Dauphin and Williams, 2008; Kieser et
368 al., 2009). However, the question remains how reptiles that permanently ankylose their dentition
369 to the jaw and those with reptilian enamel adapt to growth and wear.

370 *Wear adaptations*

371 This study found that the unworn teeth on the mandible of the juvenile agamid *P.*
372 *vitticeps* have a uniform layer of enamel on both the lingual and labial sides, and the enamel is
373 relatively thick in comparison to polyphyodont reptiles such as crocodilians. The thick enamel
374 also seems to occur in two other acrodontians, *Uromastyx* enamel has been documented as
375 'thickened' (Cooper and Poole, 1973; Throckmorton, 1979), and chameleons' enamel appears
376 thick in recent studies but is not explicitly commented on (Buchtová et al., 2013; Dosedělová et
377 al., 2016b). Furthermore, *Uromastyx*, a herbivorous acrodontian, has been reported to have

378 thickened prismatic enamel (Throckmorton, 1979), similar to mammalian enamel. This shows
379 that thickening of the enamel is a convergent adaption against wear in both squamates and in
380 mammals.

381 Enamel thickening is not the only adaptation that acrodontians appear to have evolved in
382 order to combat wear. Previous studies of chameleons and *Uromastyx* have shown that their pulp
383 cavities were infilled with ‘mineralized tissue’ (Dosedělová et al., 2016b) or ‘bone’
384 (Throckmorton, 1979). The likely purpose of this infilling is to prevent the pulp cavity from
385 being exposed as the external surface of the tooth is worn away; both aforementioned studies
386 also reported the disappearance or significant restriction of vasculature that initially supplied the
387 dentition in early ontogeny. Dosedělová et al. (2016a) also showed increased mineralization in
388 the bone underlying the tooth-bone junction in chameleons, and Throckmorton (1979) found that
389 in *Uromastyx*, the bone below the teeth had become more compact in appearance rather than
390 cancellous. These findings are quite comparable with one another, even though *Uromastyx* and
391 chameleons are on two disparate branches of Acrodonta (Pyron et al., 2013). ~~These results then~~
392 ~~beg the question: is this (?) pattern more widespread across acrodontians?~~

393 This study found comparable results in *Pogona vitticeps*. The pulp cavity is also greatly
394 diminished through ontogeny (Fig. 2B) but is not completely ‘obliterated,’ as seen in *Uromastyx*.
395 The infilling of the pulp cavity in *P. vitticeps* is done through a combination of dentine, and the ~~woven~~
396 bone. The progressive infilling of dentine is a normal development for teeth, as odontoblasts
397 continue to sequentially deposit dentine post- eruption. What is abnormal is the bone growing
398 into the pulp cavity and the resorption of the dentine root. In some of the sampled sections of *P.*
399 *vitticeps*, the teeth fail to show the extent of bone infilling reported in *Uromastyx*, as the matrix
400 that infills the pulp cavity does not seem to have any of the cellular spaces reported in
401 *Uromastyx*. However, in other sections of the same individuals, the teeth experience a lot of
402 remodeling and infilling, often with bone growing over the dentition. This is identified as ‘bone’
403 rather than ‘mineralized material’ as mentioned by (Dosedělová et al. 2016b) based on the
404 amount of osteocyte lacunae present as well as the presence of osteons. Together the bone and
405 dentine restrict the pulp cavity to such an extent that the tooth can then be worn away without the
406 risk of exposing the vulnerable vasculature and nerves that are within the pulp cavity.
407 Furthermore, the bone making up the dentary is not vascularized and sequentially also becomes

408 more infilled with bone, making compact bone through ontogeny; this allows for the jaw to be
409 worn in the form of distinct wear facets.

410 The amount of wear on the adult dentition of *Pogona vitticeps* changes the external
411 morphology significantly. This is common in ungulate mammals (Fortelius and Solounias, 2000)
412 and in herbivorous fossil reptiles (e.g., Reisz, 2006) but has not been reported in other
413 squamates. The dentine and enamel on the labial side of the mandible are worn in the older
414 specimens of *P. vitticeps*, which is compatible with the findings in *Uromastyx* (Throckmorton,
415 1979), where depending on the tooth position, the enamel and dentine were either completely
416 worn away or were worn to such a degree that the lingual side of the tooth retained a much
417 thicker layer of these two tissues. This pattern is likely caused by the combination of extensive
418 wear from feeding and passive occlusion with the maxillary dentition, as well as the complete
419 lack of tooth replacement. Interestingly, the vasculature that leads to the pulp cavities is still
420 present in the adult specimens of *Pogona vitticeps* indicating that even the most worn teeth
421 probably remained viable through the heavy wear process and likely closed the pulp cavity
422 progressively until they were worn away. This phenomena has also been observed in hadrosaurs,
423 which progressively infill their dentition with dentine as it nears the occlusal surface in their
424 dental batteries and then wear away the entire tooth (LeBlanc et al., 2016b; Bramble et al.,
425 2017).

426 *Maintaining occlusion*

427 Continuous growth of the mandible throughout ontogeny is concurrent with the increased
428 size of the skull. In most polyphyodont taxa, this is not problematic, as constant tooth
429 replacement adjusts for increase in tooth size as well as possible migration (e.g., Haridy et al.
430 2018); even in mammals, after the ~~animal acquire~~^{acquisition of} their permanent set of dentition, a maintained
431 ligamentous attachment of teeth allows for migration and remodeling. However, for acrodont
432 squamates that have ankylosed monophyodont dentition, this becomes problematic – the
433 question becomes how occlusion is maintained as the jaw grows. Through examination of 37
434 specimens and histological sections, this study of *P. vitticeps* has shown that the growth of the
435 jaw and the initiation of additional tooth development are decoupled processes. This is evident in
436 the juvenile specimen in which the dentition is growing into the coronoid process (Fig. 3E, F),

437 where the youngest un-erupted tooth is resorbing the ventral portion of the coronoid process in
438 order to continue developing. This indicates that in the early stages of ontogeny, tooth
439 development likely happens at a rate faster than dentary growth. This is reinforced by comparing
440 the juvenile specimen (103mm SV length), which has 16 tooth positions, with the adult, which is
441 more than twice as long (222 mm SV length), only has 17 tooth positions. This supports the
442 hypothesis that attaining the maximum number of teeth occurs relatively early in ontogeny, well
443 before attaining maximum adult size, ~~indicating that~~^I tooth development slows and likely stops
444 early in ontogeny, while the various jaw elements continue to grow. The mandible of *P. vitticeps*
445 undergoes many changes through ontogeny, but there is little distortion of the tooth row during
446 growth. This is likely achieved by appositional bone growth of the jaw, with deposition of
447 parallel-fibered bone both internally and externally to achieve the increase in internal
448 ossification, width and length that is seen in the adult and without remodeling or migration of the
449 ankylosed dentition. Through the histological results of this study, which show little bone
450 remodeling, and external observation of 37 specimens (S1), it is hypothesized that occlusion is
451 maintained through the allometric growth of the various portions of the jaw elements. The
452 dentary and its corresponding dentition are the first to reach adult size, while the other jaw
453 elements continue to grow through ontogeny, gradually increasing in robustness but not
454 interfering with occlusion.

455 *Acrodont implantation as a result of ontogenetic remodeling*

456 Acrodont implantation is defined ambiguously in literature. The mode of implantation
457 has been defined as attachment to the 'edge' of a jaw (Peyer, 1968), as teeth ankylosed to the
458 'apex' of the jaw by cement (Edmund 1969), or as the fusion of dentition to the 'margin' of the
459 jaw (Motani, 1997). Eventually, the lack of replacement also became a character of acrodont
460 tooth implantation (Zaher and Rippel, 1999), as the condition is present in acrodont squamates.
461 Implantation categories are pervasive in literature and are often used as phylogenetic characters,
462 but these definitions are problematic and tend to imply an evolutionary progression of tooth
463 implantation from simple to more complex (Budney et al., 2006). In reality, the traditional
464 categories of acrodonty, pleurodonty, and thecodonty are, at best, descriptive terms (Estes and
465 Charles, 1988) (Fig. 6A). *Pogona vitticeps* and likely other agamids change implantation
466 categories through ontogeny, and therefore, they are a good representation as to why implantation

467 categories should only be used descriptively. The teeth in the juvenile *P. vitticeps* are unequal in
468 shape, with the lingual side being much longer than that of the labial side (Fig. 3), and
469 attachment mostly occurring on the labial side, which are characteristics of pleurodont
470 implantation. Traditionally in literature, the anatomy present in adult individuals of various taxa
471 is described; this likely explains why acrodont squamates got their namesake since in their adult
472 stage, the teeth do appear acrodont. This study reveals how implantation may appear to be
473 acrodont in adulthood through a combination of factors (Fig 7); (1) the gradual infilling of teeth
474 with dentine that allows for progressive wear (2) resorption of the dentine by odontoclasts
475 (Fig3C,D; Fig 6-2), (3) growth on the dentary that infills part of the pulp cavity with woven bone
476 and that reduces the trabecular structure of the dentary bone, (4) the continued remodeling of the
477 dentary which removes traces of buried dentine and the previous pleurodont dentition. Tooth
478 wear then further changes the ~~tooth~~^{crown} morphology (5-7) the maxillary dentition occludes with the
479 mandibular dentition wearing away the labial side of the mandibular dentition and wearing away
480 part of the dentary creating wear facets. This progression model shows how teeth that were
481 originally pleurodont in implantation (Fig 6-1) can appear acrodont (Fig 6-7) and have an
482 entirely different morphology due to a combination of dentine infilling, bone remodeling, and
483 tooth wear. It is difficult to ascertain if these secondary remodeling steps would occur in any
484 pleurodont squamate taxa but are suppressed by tooth replacement, or if these are secondarily
485 acquired adaptations in monophyodont taxa to combat wear. Therefor, at least in the agamid *P.*
486 *vitticeps*, the dentition changes from pleurodont to acrodont in appearance through ontogeny.
487 This indicates that we should not use implantation categories as phylogenetic characters if the
488 ontogenetic stage of the specimen is unknown, as is the case in many fossil taxa.

489 Conclusion

490 The dentition of acrodontians has recently been an area of interest in the context of dental
491 development and implantation, as this group is known for its mode of implantation and
492 monophyodonty. The latter is an anomalous occurrence among tetrapods, as intermittent to
493 continuous replacement of teeth is the primitive condition for toothed vertebrates, including most
494 extant fish, amphibians, and amniotes. This lack of replacement has become associated with
495 acrodonty, resulting in monophyodonty becoming a formal characteristic of acrodont
496 implantation in squamates, and previous authors have implied that acrodont implantation is the

497 cause of monophyodonty. However, this study shows that modern acrodont reptiles do not
498 initially have acrodont implantation early in ontogeny, and there is a distinct ontogenetic change
499 in the morphology and implantation of dentition of the agamid *Pogona vitticeps*. The youngest
500 teeth in juvenile specimens are pleurodont in implantation, with a greater lingual contribution of
501 tooth tissues and an attachment biased towards the labial side. These tissues are secondarily
502 remodeled through a step-wise process of: (1) resorption of dentine, (2) deposition of bone and
503 dentine, (3) wear of the tooth surface, and (4) wear of the jaw bone proper, effectively changing
504 the morphology. These processes give *P. vitticeps* the appearance of acrodont dentition in
505 adulthood. This is an important distinction to make as it signifies that this acrodont squamate,
506 and likely other acrodont reptiles, do not develop acrodont teeth, but rather develop pleurodont
507 teeth like the vast majority of squamates, making their teeth inherently pleurodont, and
508 secondarily acrodont. Therefor, the wear adaptations, remodeling, and dental wear ~~all~~ come
509 together to give the appearance of an acrodont mode of implantation. The wear adaptations
510 documented in this study likely evolved due to the lack of replacement. ^{Importantly} ~~Essentially~~ the
511 monophyodont condition causes the acrodont condition, rather than acrodonty causing
512 monophyodonty, as has been implied in literature.

513 This raises the question as to how we should code acrodont dentition in squamate
514 phylogenies; is it true acrodonty if this implantation mode is only achieved through secondary
515 remodeling of the teeth and dentary? Finally, another important consideration, and a direction of
516 future studies, is that if all acrodontians share these ontogenetic changes and wear adaptations,
517 then what is the significance of the convergence seen between acrodontian squamates and the
518 other rhynchocephalian *Sphenodon*, which is also reported to have acrodont dentition?

519 Acknowledgments

520 Incredible thanks go to Robert R. Reisz and Aaron H. Leblanc who brought this issue to
521 light and encouraged the development of this study. I would like to thank Diane Scott for
522 photographs and SEM images and beaded dragon husbandry advice. Thanks to Bryan Gee for his
523 everlasting patience and editing of this manuscript into presentable form. I would like to thank
524 Kevin Seymour of the Royal Ontario museum (ROM) for assistance in locating appropriate
525 specimens for this study and to thank David Evans for allowing the use of the ROM histology

526 laboratory and reading early versions of this manuscript. Lastly, I would like to acknowledge
527 Osiris the bearded dragon whose presence in the lab was essential to the direction of this study.

528 **References**

529 Ananjeva, N., and E. Smirina. 2007. Growth layers in bones and acrodont teeth of the agamid
530 lizard *Laudakia stoliczkanai* (Blanford, 1875) (Agamidae, Sauria). *Amphibia-Reptilia*
531 28:193–204.

532 Berkovitz BK, Shellis RP. The teeth of non-mammalian vertebrates. Academic Press; 2016 Oct
533 14.

534 Bramble, K., A. R. H. LeBlanc, D. O. Lamoureux, M. Wosik, and P. J. Currie. 2017.
535 Histological evidence for a dynamic dental battery in hadrosaurid dinosaurs. *Scientific
536 Reports* 7:15787.

537 Brown, C. M., C. S. Vanburen, D. W. Larson, K. S. Brink, N. E. Campione, M. J. Vavrek, and
538 D. C. Evans. 2015. Tooth counts through growth in diapsid reptiles: Implications for
539 interpreting individual and size-related variation in the fossil record. *Journal of Anatomy*
540 226:322–333.

541 Buchtová, M., O. Zahradníček, S. Balková, and A. S. Tucker. 2013. Odontogenesis in the Veiled
542 Chameleon (*Chamaeleo calyptratus*). *Archives of Oral Biology* 58:118–133.

543 Budney, L. 2004. A survey of tooth attachment histology in squamata: The evaluation of tooth
544 attachment classification and characters. University of Alcala pp.

545 Budney, L. A., M. W. Caldwell, and A. Albino. 2006. Tooth socket histology in the Cretaceous
546 snake *Dinilysia*, with a review of amniote dental attachment tissues. *Journal of Vertebrate
547 Paleontology* 26:138–145.

548 Caldwell, M. W. 2007. Ontogeny, anatomy and attachment of the dentition in mosasaurs
549 (Mosasauridae: Squamata). *Zoological Journal of the Linnean Society* 149:687–700.

550 Cooper JS, Poole DF. The dentition and dental tissues of the agamid lizard, *Uromastyx*. *Journal
551 of Zoology*. 1973 Jan;169(1):85-100.

552 Cope, E. D. 1864. On the characters of the higher groups of Reptilia Squamata: and especially of
553 the *Diploglossa*. *Academy of Natural Sciences* 16:224–231.

554 Dauphin, Y., and C. T. Williams. 2008. Chemical composition of enamel and dentine in modern
555 reptile teeth. *Mineral Mag* 72:247–250.

556 Delgado, S., T. Davit-Beal, and J. Y. Sire. 2003a. Dentition and tooth replacement pattern in
557 Chalcides (Squamata; Scincidae). *Journal of Morphology* 256:146–159.

558 Dosedělová, H., K. Štěpánková, T. Zikmund, H. Lesot, J. Kaiser, K. Novotný, J. Štembírek, Z.
559 Knotek, O. Zahradníček, and M. Buchtová. 2016a. Age-related changes in the tooth–bone
560 interface area of acrodont dentition in the chameleon. *Journal of Anatomy* 229:356–368.

561 Erickson, G. M. 1996. Incremental lines of von Ebner in dinosaurs and the assessment of tooth
562 replacement rates using growth line counts. *Proceedings of the National Academy of
563 Sciences of the United States of America* 93:14623–14627.

564 Estes, R., and C. Charles. 1988. Phylogenetic Relationships of the Lizard Families: Essays
565 Commemorating Charles L. Camp, illustrate. (Gregory K. Pregill (ed.)). Stanford University
566 Press, 631 pp.

567 Fortelius M, Solounias N. Functional characterization of ungulate molars using the abrasion-
568 attrition wear gradient: a new method for reconstructing paleodiets. *American Museum
569 Novitates*. 2000 Oct:1-36.

570 García, R. A., and V. Zurriaguz. 2016. Histology of teeth and tooth attachment in titanosaurs
571 (Dinosauria; Sauropoda). *Cretaceous Research* 57:248–256.

572 Hardy, Y., A. R. H. LeBlanc, and R. R. Reisz. 2018. The Permian reptile *Opisthodontosaurus
573 carrolli*: a model for acrodont tooth replacement and dental ontogeny. *Journal of Anatomy*
574 232:371–382.

575 Huber, D. R., M. N. Dean, and A. P. Summers. 2008. Hard prey, soft jaws and the ontogeny of
576 feeding mechanics in the spotted ratfish *Hydrolagus colliei*. *Journal of The Royal Society
577 Interface* 5:941–953.

578 Hugall, A. F., R. Foster, M. Hutchinson, and M. S. Y. Lee. 2008. Phylogeny of Australasian
579 agamid lizards based on nuclear and mitochondrial genes: implications for morphological
580 evolution and biogeography. 343–358.

581 Järvinen, E., M. Tummers, and I. Thesleff. 2009. The role of the dental lamina in mammalian
582 tooth replacement. *Journal of Experimental Zoology Part B: Molecular and Developmental
583 Evolution* 312:281–291.

584 Jenkins, K. M., M. E. H. Jones, T. Zikmund, A. Boyde, and J. D. Daza. 2017. A review of tooth
585 implantation among rhynchocephalians (Lepidosauria). *Journal of Herpetology* 51:300–306.

586 Kieser, J. A., T. Tkatchenko, M. C. Dean, M. E. H. Jones, W. Duncan, and N. J. Nelson. 2009.

587 Microstructure of dental hard tissues and bone in the tuatara dentary, *Sphenodon punctatus*
588 (Diapsida: Lepidosauria: Rhynchocephalia). *Frontiers of Oral Biology* 13:80–85.

589 Kline, A. L. W., and D. Cullum. 2017. A long term study of the tooth replacement phenomenon
590 in the young green iguana, *Iguana iguana*. *Society for the Study of Amphibians and*
591 *Reptiles* 18:176–185.

592 LeBlanc, A. R. H., and R. R. Reisz. 2013. Periodontal ligament, cementum, and alveolar bone in
593 the oldest herbivorous tetrapods, and their evolutionary significance. *PLoS ONE* 8.

594 LeBlanc, A. R. H., and R. R. Reisz. 2015. Patterns of tooth development and replacement in
595 captorhinid reptiles: a comparative approach for understanding the origin of multiple tooth
596 rows. *Journal of Vertebrate Paleontology* 4634:e919928.

597 LeBlanc, A. R. H., R. R. Reisz, D. C. Evans, and A. M. Bailleul. 2016a. Ontogeny reveals
598 function and evolution of the hadrosaurid dinosaur dental battery. *BMC Evolutionary*
599 *Biology* 16:152.

600 LeBlanc, A. R. H., R. R. Reisz, K. S. Brink, and F. Abdala. 2016b. Mineralized periodontia in
601 extinct relatives of mammals shed light on the evolutionary history of mineral homeostasis
602 in periodontal tissue maintenance. *Journal of Clinical Periodontology* 43:323–332.

603 Lumsden, A. G. S., and J. W. Osborn. 1977. The evolution of chewing: A dentist's view of
604 palaeontology. *Journal of Dentistry* 5:269–287.

605 Montanucci, R. 2008. Comparative dentition in four iguanid lizards. *Herpetologica* 24:305–315.

606 Motani, R. 1997. Temporal and Spatial Distribution of Tooth Implantation in Ichthyosaurs; pp.
607 81–103 in Ancient marine reptiles. San Diego: Academic Press.

608 Pyron, R., F. T. Burbrink, and J. J. Wiens. 2013. A phylogeny and revised classification of
609 Squamata, including 4161 species of lizards and snakes. *BMC Evolutionary Biology* 13:93.

610 Reisz RR. Origin of dental occlusion in tetrapods: signal for terrestrial vertebrate evolution?.
611 *Journal of Experimental Zoology Part B: Molecular and Developmental Evolution*. 2006
612 May 15;306(3):261-77.

613 Richman, J. M., and G. R. Handrigan. 2011. Reptilian tooth development. *Genesis* 49:247–260.

614 Shellis, R. P., and B. K. B. Berkovitz. 1976. Observations on the dental anatomy of piranhas
615 (Characidae) with special reference to tooth structure. *Journal of Zoology* 180:69–84.

616 Simões, T. R., E. Wilner, M. W. Caldwell, L. C. Weinschütz, and A. W. A. Kellner. 2015. A
617 stem acrodontan lizard in the Cretaceous of Brazil revises early lizard evolution in
618 Gondwana. *Nature Communications* 6:8149.

619 Smirina, E., and N. Ananjeva. 2017. On the longevity, growth and reproductive characteristics of
620 Lichtenstein's Toadhead Agama, *Phrynocephalus interscapularis* Lichtenstein, 1856
621 (Agamidae, Sauria). *Amphibia-Reptilia* 38:31–39.

622 Smirina, E. M., and N. B. Ananjeva. 2007. Growth layers in bones and acrodont teeth of the
623 agamid lizard *Laudakia stoliczkanai* (Blanford, 1875) (Agamidae, Sauria). *Amphibia-*
624 *Reptilia* 28:193–204.

625 Spencer, M. A. 2005. Dental functional morphology: How teeth work. *American Journal of*
626 *Human Biology* 17:384–385.

627 Throckmorton, G. S. 1979. The effect of wear on the cheek teeth and associated dental tissues of
628 the lizard *Uromastix aegyptius* (Agamidae). *Journal of Morphology* 160:195–207.

629 Throckmorton, G. Y. S. 1976. Oral food processing in two herbivorous lizards, *Iguana iguana*
630 (Iguanidae) and *Uromastix aegyptius* (Agamidae). *Journal of Morphology* 148:363–390.

631 Westergaard, B., and M. W. J. Ferguson. 1990. Development of the dentition in *Alligator*
632 *mississippiensis*: Upper jaw dental and craniofacial development in embryos, hatchlings,
633 and young juveniles, with a comparison to lower jaw development. *American Journal of*
634 *Anatomy* 187:393–421.

635 Witten, P. E., and A. Huysseune. 2009. A comparative view on mechanisms and functions of
636 skeletal remodelling in teleost fish, with special emphasis on osteoclasts and their function.
637 *Biological Reviews* 84:315–346.

638 Zaher, H., and O. Rippel. 1999. Tooth implantation and replacement in Squamates, with special
639 reference to mosasaur lizards and snakes. *American Museum Novitates* 3271:1–19.

640 Zari, T. A. 1999. On the reproductive biology of the herbivorous spiny-tailed agamid *Uromastyx*
641 *philbyi* in Western Saudi Arabia. *Zoology in the Middle East* 19:123–130.

642 Zheng, Y., and J. J. Wiens. 2016. Combining phylogenomic and supermatrix approaches, and a
643 time-calibrated phylogeny for squamate reptiles (lizards and snakes) based on 52 genes and
644 4162 species. *Molecular Phylogenetics and Evolution* 94:537–547.

645

646 **Captions**

647 **FIGURE 1.** A comparative figure showing the external morphological differences in the
648 dentition and mandibles between juvenile and adult specimens of *Pogona vitticeps*; (A) Right
649 mandibular ramus of juvenile specimen ROM R8234; (B) Right mandibular ramus of adult
650 specimen ROM R8507; (C) superimposed outlines of mandibles of varying ontogenetic stages,
651 showing that most growth occurs in the posterior end of the mandible. **Abbreviations;** **ad**,
652 acrodont dentition; **cp**, coronoid process; **pd**, pleurodont dentition; **wf**, wear facets. Arrows
653 indicating un-ankylosed teeth. Scale bar= 1 cm.

654 **FIGURE 2.** Details of external morphology of the juvenile dentition of *Pogona vitticeps*. (A)
655 ROM R8234 in lingual view showing un-ankylosed dentition, the most posterior growing into
656 the coronoid; (B) ROM R8418 scanning electron microscope image of incomplete juvenile
657 mandible with; (C) closeup showing fibrous alveolar bone between the teeth; (D) closeup
658 showing the lingual contribution of dentine to the teeth; (E) closeup showing the youngest tooth
659 growing into and resorbing the coronoid. **Abbreviations;** **ab**, alveolar bone; **cr**, coronoid bone;
660 **de**, dentine. Arrows showing un-ankylosed teeth.

661 **FIGURE 3.** Longitudinal histological sections of the juvenile mandible of *Pogona vitticeps* with
662 a focus on the dentition. (A) External view of ROM R8234, box outlining the dentition cut; (B) a
663 section of the posteriormost seven tooth positions. (C) a section of the posterior seven tooth
664 positions in cross polarized light; (D) a schematic representation showing the distinct tissues as
665 well as the progressive ankylosis of the teeth. **Abbreviations;** **ab**, alveolar bone; **de**, dentine; **jb**,
666 jaw bone; **pc**, pulp cavity. Scale bar = 1000um

667 **FIGURE 4.** Coronal sections of juvenile mandible of *Pogona vitticeps* with a special focus on
668 tooth histology. (A) Coronal section of the jaw and tooth of a juvenile specimen of *P. vitticeps*
669 ROM R8510 showing minimal ossification of the jaw bone, and pleurodont tooth attachment;
670 (B) close up of a juvenile specimen's (ROM R8510) dentition, showing unworn morphology; (C)
671 coronal section of a juvenile specimen (ROM R8234) showing pleurodont implantation, and
672 remodeling; (D) closeup of the attachment site in ROM R8234, showing the labial side of the
673 dentition being resorbed by the osteoclast; (E) coronal section of the coronoid process in ROM
674 R8234 showing a tooth developing lingually inside the coronoid and dentary; (F) a close up of

675 the tooth in the jaw bone, showing the resorption of the jawbone around newly developing tooth.
676 **Abbreviations:** **ab**, alveolar bone; **ac**, acellular cementum; **cb**, cancellous bone; **cp**, coronoid
677 process **de**, dentine; **dt**, developing tooth; **lb**, lamellar bone; **en**, enamel; **ob**, osteoblast **oc**,
678 osteoclast; **rb**, resorption bay. All un-labeled scale bars = 1 mm.

679 **FIGURE 5.** Longitudinal sections of adult mandible of *Pogona vitticeps* with a focus on tooth
680 histology. (A) External view of specimen ROM R8507, box outlining the dentulous area
681 sectioned; (B) broad view showing the variation between the anterior and the posterior dentition;
682 (C) a closeup of the worn dentition showing wear facets and remodeling zones; (D) broad view
683 showing the variation between the anterior and the posterior dentition, showing the depth of wear
684 facets and arrangement of vasculature; (E) a close up of the anterior dentition with open pulp
685 cavities and associated vasculature. **Abbreviations:** **de**, dentine; **jb**, jaw bone; **pc**, pulp cavity;
686 **vc**, vascular canal; **wf**, wear facet. The arrows demarcate the extensive vasculature leading to
687 pulp cavities. Scale bar=1000um

688 **FIGURE 6:** Coronal sections of adult mandible of *Pogona vitticeps* with a focus on tooth
689 histology. (A) Coronal section of the jaw and tooth of an adult specimen of *P. vitticeps* ROM
690 R8507 showing the maintained vasculature and worn enamel on the labial side; (B) coronal
691 section of the jaw and tooth of an adult specimen of *P. vitticeps* ROM R8507 showing the
692 extensive remodeling of the tooth attachment site as well as the tooth. **Abbreviations:** **de**,
693 dentine; **lb**, lamellar bone; **en**, enamel; **vc**, vascular canals; **rz**, remodeling zone. Scale
694 bar=500um

695 **FIGURE 7:** Schematic explanation of implantation changes through ontogeny and tooth wear.
696 (A) three basic traditional implantation categories, without attachment tissue illustrated; (B)
697 pleurodont impanated tooth is attached via alveolar bone, yellow arrows show direction of
698 dentine deposition; (C) purple arrows show direction of dentine resorption by odontoclasts, blue
699 arrow shows direction of bone deposition by odontoblasts, trabecula in the dentary is reduced;
700 (D) blue arrow shows further bone deposition; (E) the tooth appears implanted at the apex of the
701 dentary; (F) Shows the position of maxillary tooth; (G) the enamel is worn on the labial side; (H)
702 with advanced wear, the enamel, dentine, and dentary bone are worn on the labial side.

703

704 **Supplementary**

705 **S. FIGURE 1.** Ontogenetic sequence of *P. vitticeps* mandibles that were used to make the growth
706 schematic in Figure 1C. (A) ROM R8234; (B) ROM R8150; (C) ROM R8227;(D) ROM R9422;
707 (E) ROM R8507; (F) ROM R8189. Scale bar = 1 cm.

708 **TABLE 1.** A table of all specimens of *P. vitticeps* examined for this study. In orange are specific
709 specimens either sectioned or figured.

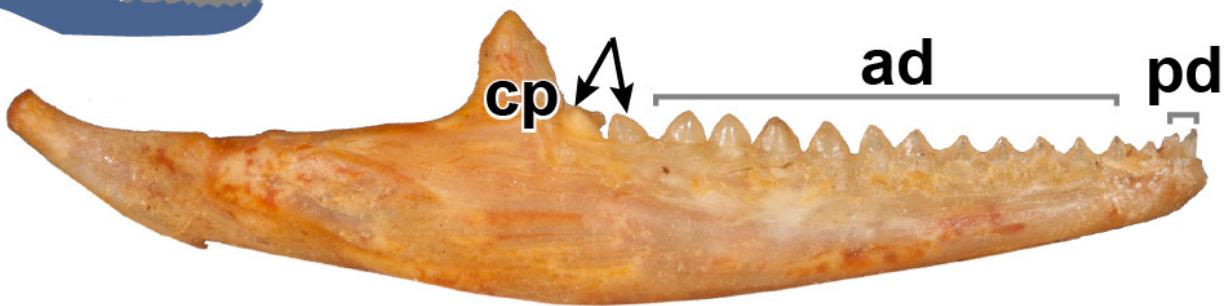
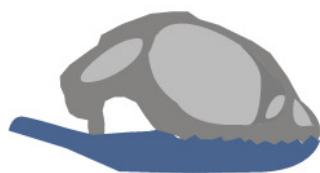
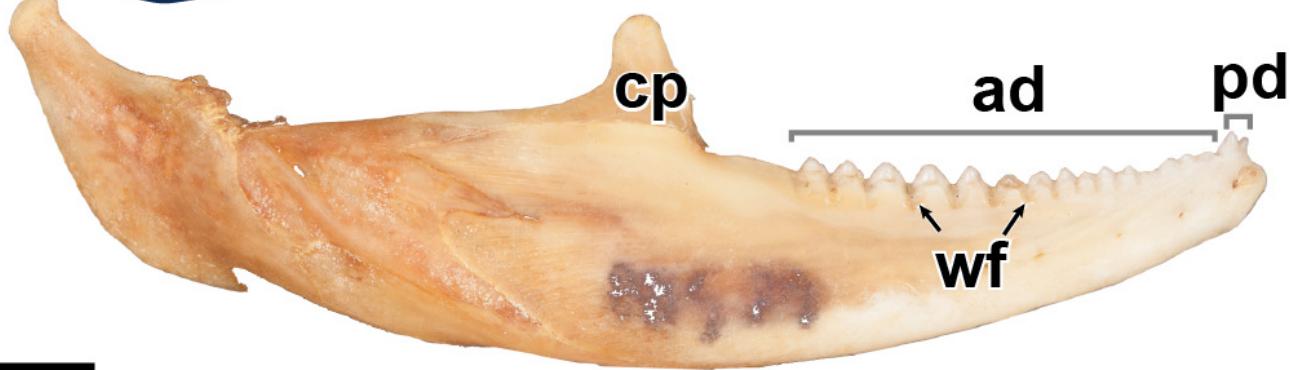
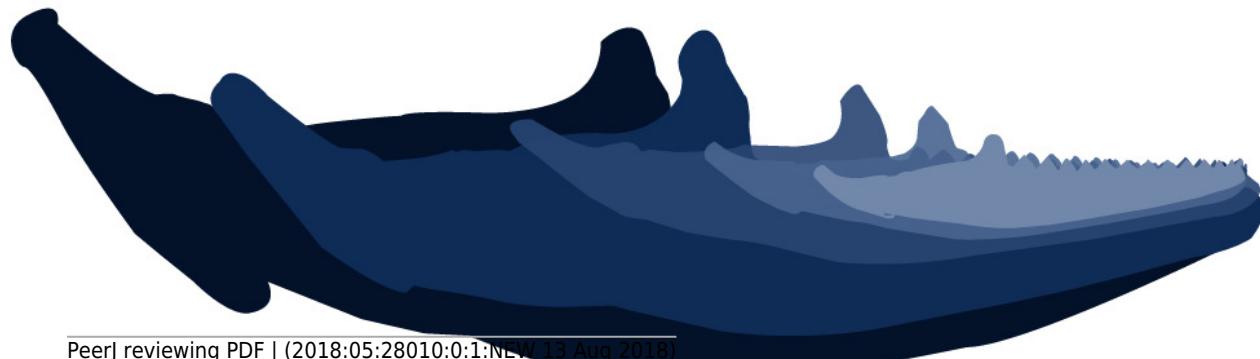




710

Figure 1

A comparative figure showing the external morphological differences in the dentition and mandibles between juvenile and adult specimens of *Pogona vitticeps*

(A) Right mandibular ramus of juvenile specimen ROM R8234; (B) Right mandibular ramus of adult specimen ROM R8507; (C) superimposed outlines of mandibles of varying ontogenetic stages, showing that most growth occurs in the posterior end of the mandible. **Abbreviations;** **ad**, acrodont dentition; **cp**, coronoid process; **pd**, pleurodont dentition; **wf**, wear facets. Arrows indicating un-ankylosed teeth. Scale bar= 1 cm. Photo credit: Diane Scott

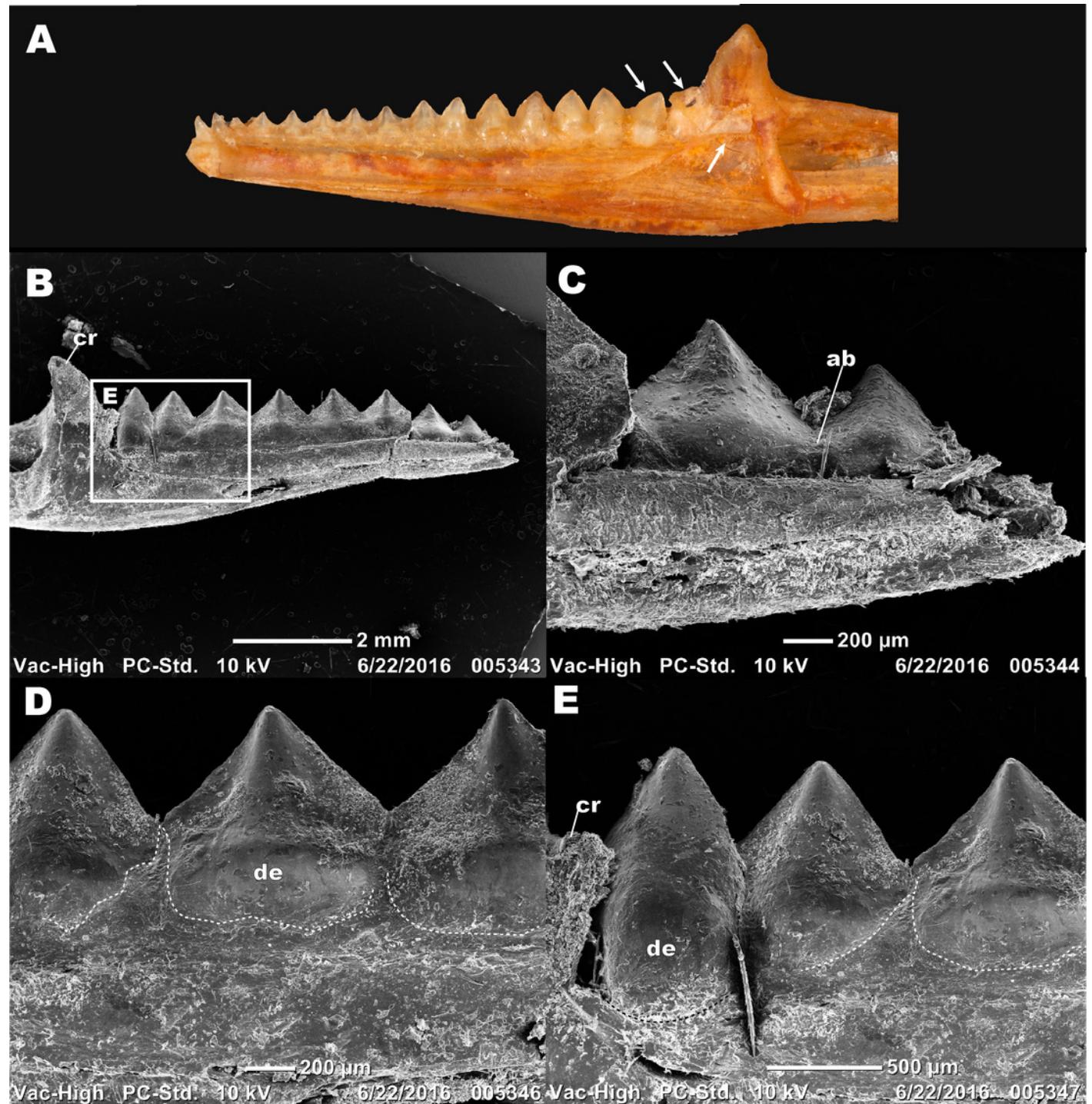

A**B****C**

Figure 2

Details of external morphology of the juvenile dentition of *Pogona vitticeps*.

(A) ROM R8234 in lingual view showing un-ankylosed dentition, the most posterior growing into the coronoid; (B) ROM R8418 scanning electron microscope image of incomplete juvenile mandible with; (C) closeup showing fibrous alveolar bone between the teeth; (D) closeup showing the lingual contribution of dentine to the teeth; (E) closeup showing the youngest tooth growing into and resorbing the coronoid. **Abbreviations:** **ab**, alveolar bone; **cr**, coronoid bone; **de**, dentine. Arrows showing un-ankylosed teeth. Image credit: Diane Scott

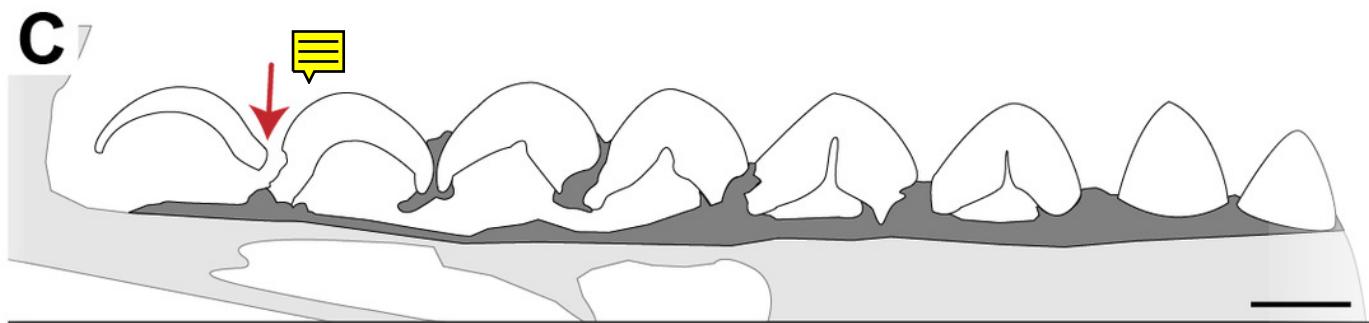
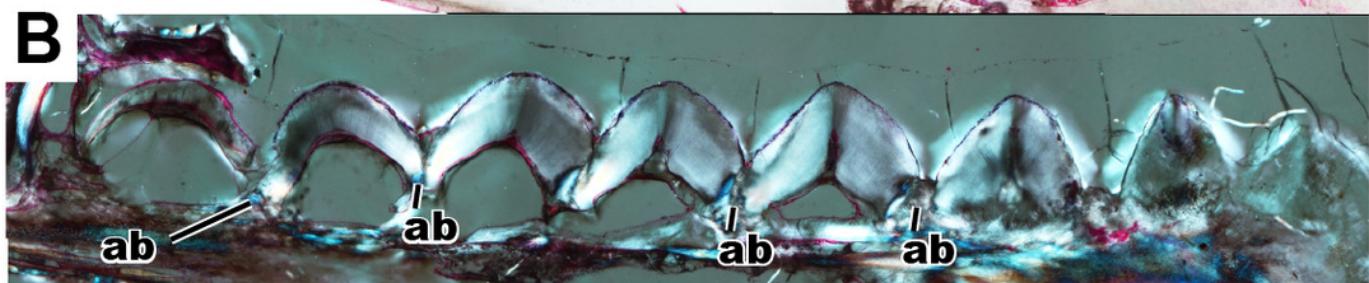
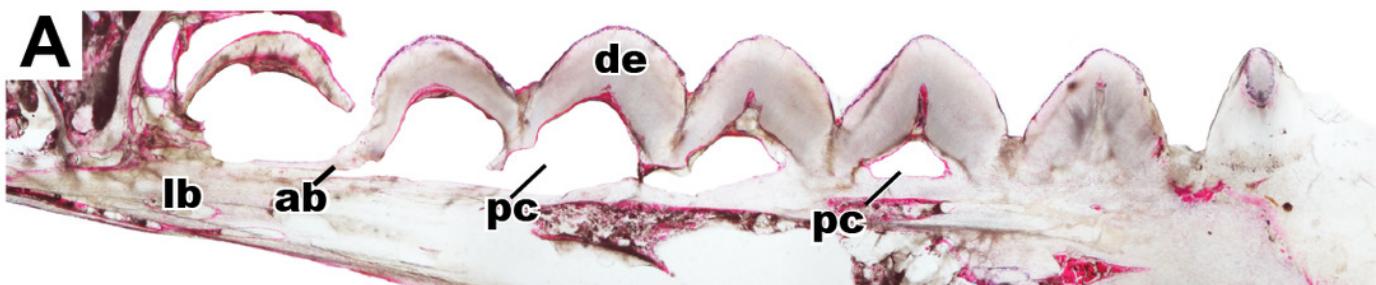
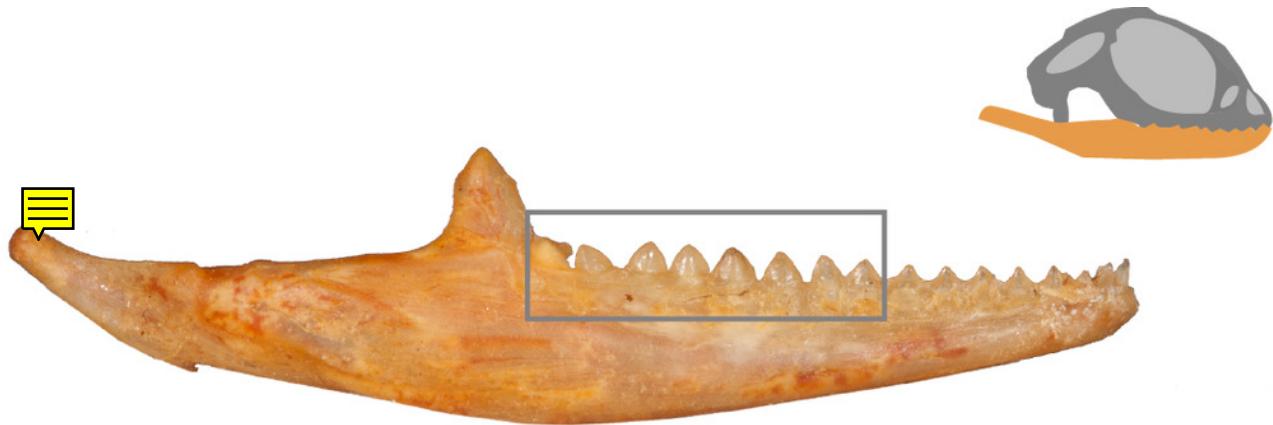





Figure 3

Longitudinal histological sections of the juvenile mandible of *Pogona vitticeps* with a focus on the dentition.

(A) External view of ROM R8234, box outlining the dentition cut; (B) a section of the posteriormost seven tooth positions. (C) a section of the posterior seven tooth positions in cross polarized light; (D) a schematic representation showing the distinct tissues as well as the progressive ankylosis of the teeth. **Abbreviations;** **ab**, alveolar bone; **de**, dentine; **jb**, jaw bone; **pc**, pulp cavity. Scale bar = 1000um

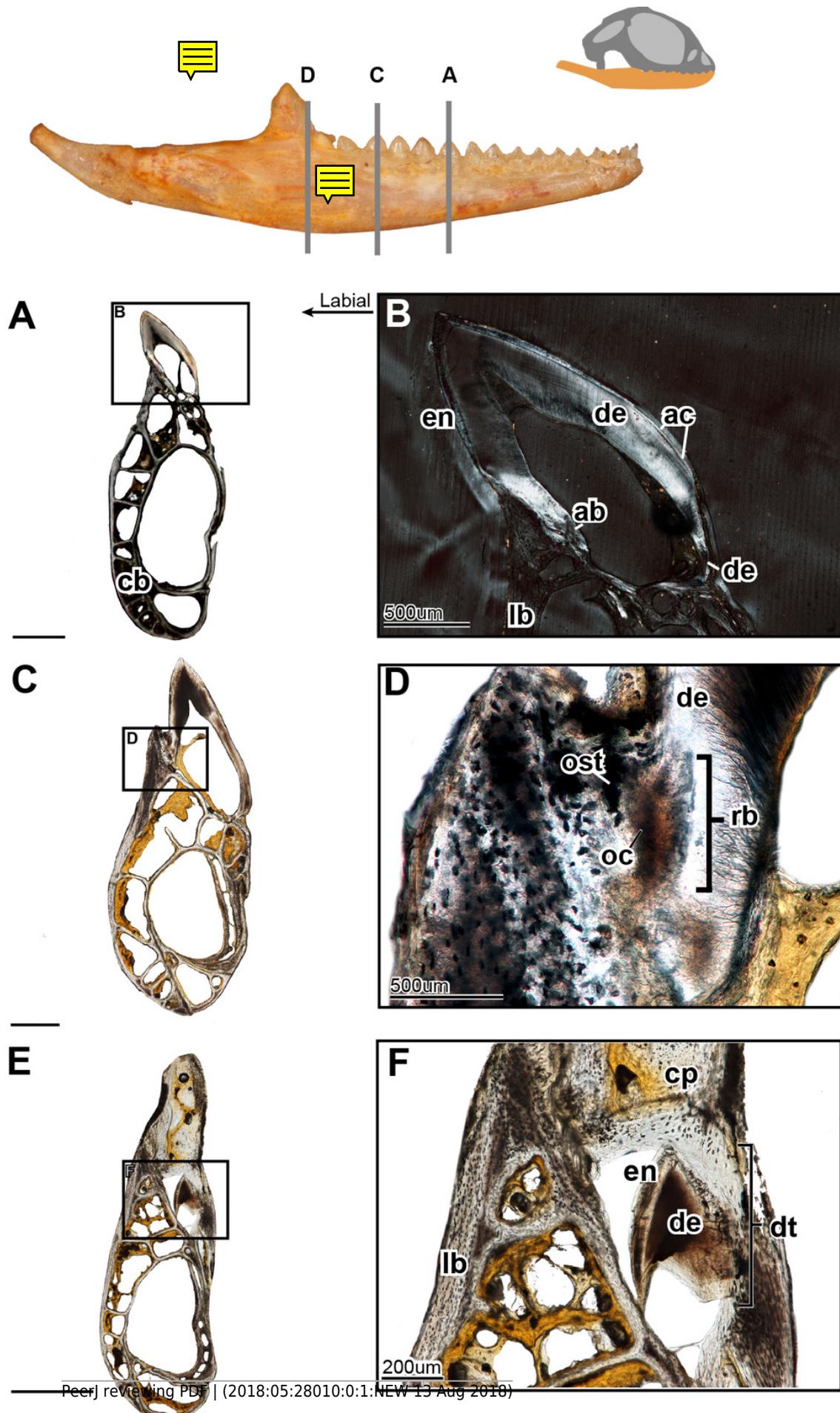

■ Lamellar bone ■ Alveolar bone □ Dentition

Figure 4

Coronal sections of juvenile mandible of *Pogona vitticeps* with a special focus on tooth histology.

(A) Coronal section of the jaw and tooth of a juvenile specimen of *P. vitticeps* ROM R8510 showing minimal ossification of the jaw bone, and pleurodont tooth attachment; (B) close up of a juvenile specimen's (ROM R8510) dentition, showing unworn morphology; (C) coronal section of a juvenile specimen (ROM R8234) showing pleurodont implantation, and remodeling; (D) closeup of the attachment site in ROM R8234, showing the labial side of the dentition being resorbed by the osteoclast; (E) coronal section of the coronoid process in ROM R8234 showing a tooth developing lingually inside the coronoid and dentary; (F) a close up of the tooth in the jaw bone, showing the resorption of the jawbone around newly developing tooth. **Abbreviations:** **ab**, alveolar bone; **ac**, acellular cementum; **cb**, cancellous bone; **cp**, coronoid process **de**, dentine; **dt**, developing tooth; **lb**, lamellar bone; **en**, enamel; **ob**, osteoblast **oc**, osteoclast; **rb**, resorption bay. All un-labeled scale bars = 1 mm.

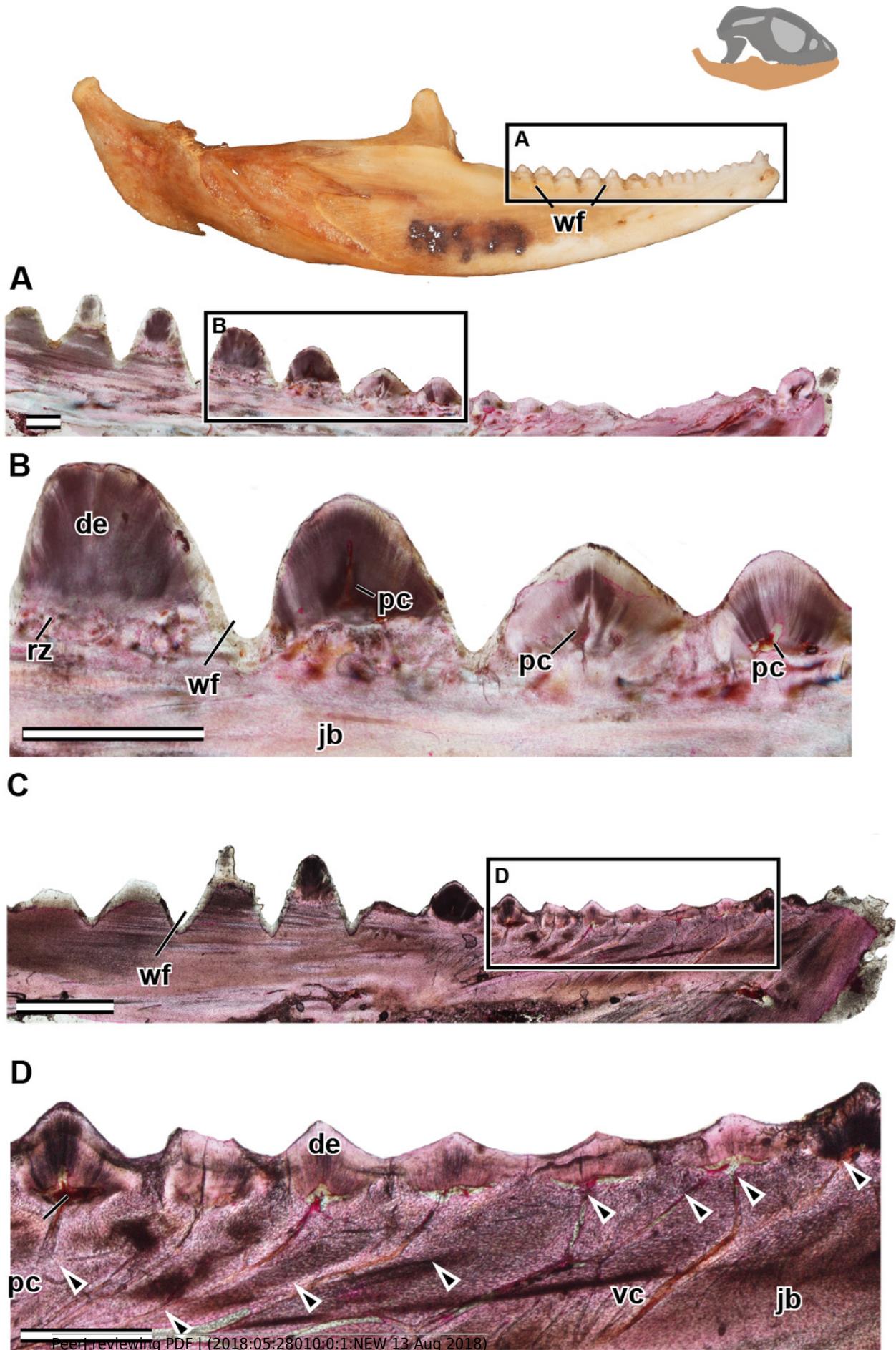


Figure 5

Longitudinal sections of adult mandible of *Pogona vitticeps* with a focus on tooth histology.

(A) External view of specimen ROM R8507, box outlining the dentulous area sectioned; (B) broad view showing the variation between the anterior and the posterior dentition; (C) a closeup of the worn dentition showing wear facets and remodeling zones; (D) broad view showing the variation between the anterior and the posterior dentition, showing the depth of wear facets and arrangement of vasculature; (E) a close up of the anterior dentition with open pulp cavities and associated vasculature. **Abbreviations:** **de**, dentine; **jb**, jaw bone; **pc**, pulp cavity; **vc**, vascular canal; **wf**, wear facet. The arrows demarcate the extensive vasculature leading to pulp cavities. Scale bar=1000um

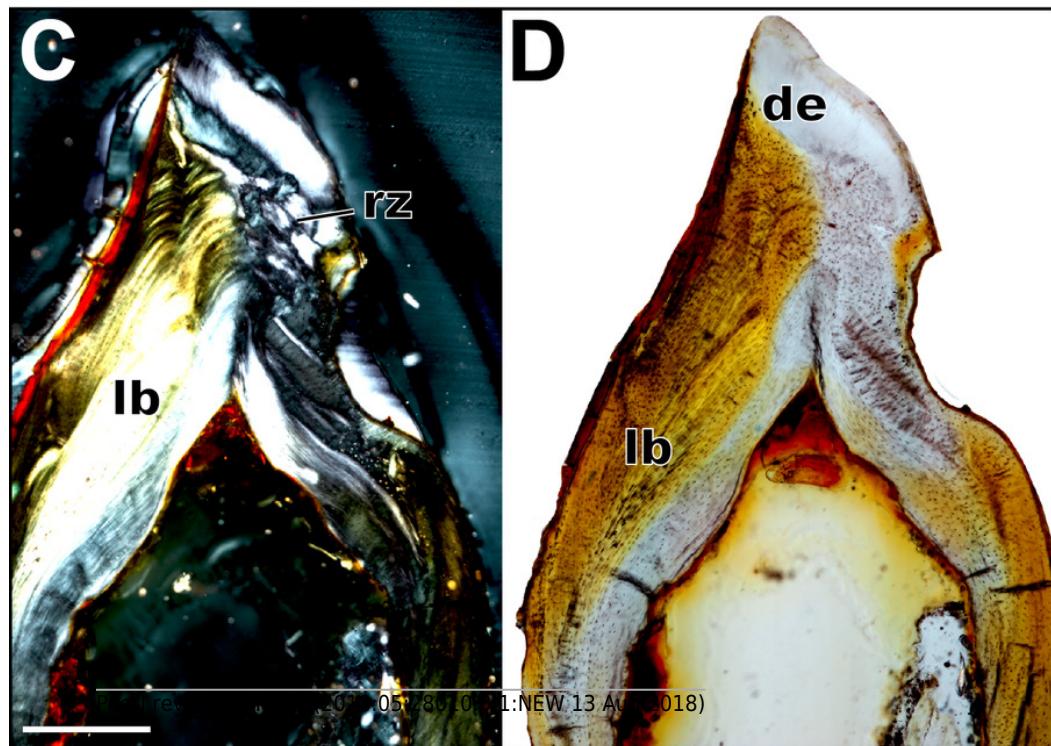
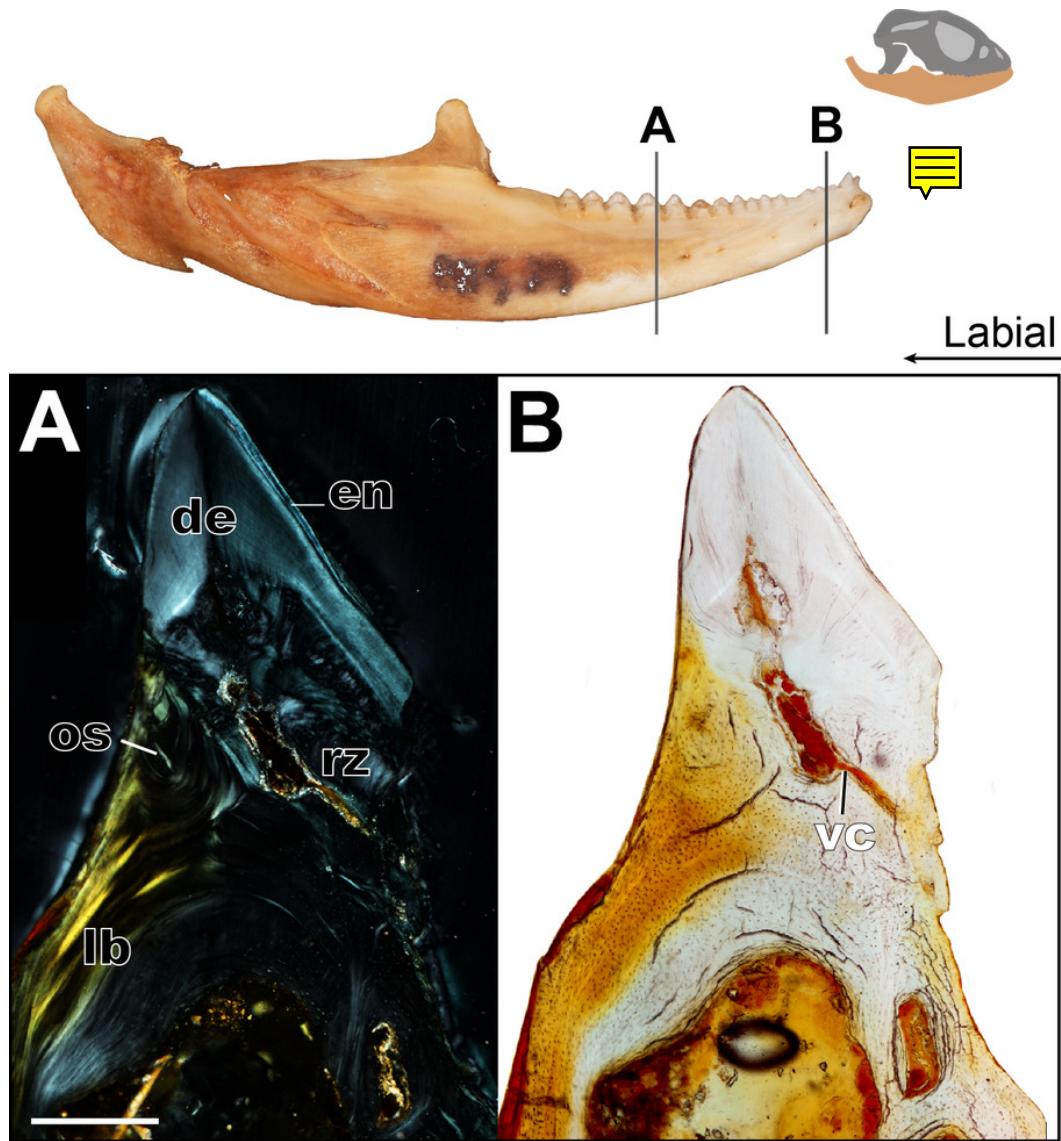



Figure 6

Coronal sections of adult mandible of *Pogona vitticeps* with a focus on tooth histology.

(A) Coronal section of the jaw and tooth of an adult specimen of *P. vitticeps* ROM R8507 showing the maintained vasculature and worn enamel on the labial side; (B) coronal section of the jaw and tooth of an adult specimen of *P. vitticeps* ROM R8507 showing the extensive remodeling of the tooth attachment site as well as the tooth. **Abbreviations:** **de**, dentine; **lb**, lamellar bone; **en**, enamel; **vc**, vascular canals; **rz**, remodeling zone. Scale bar=500um

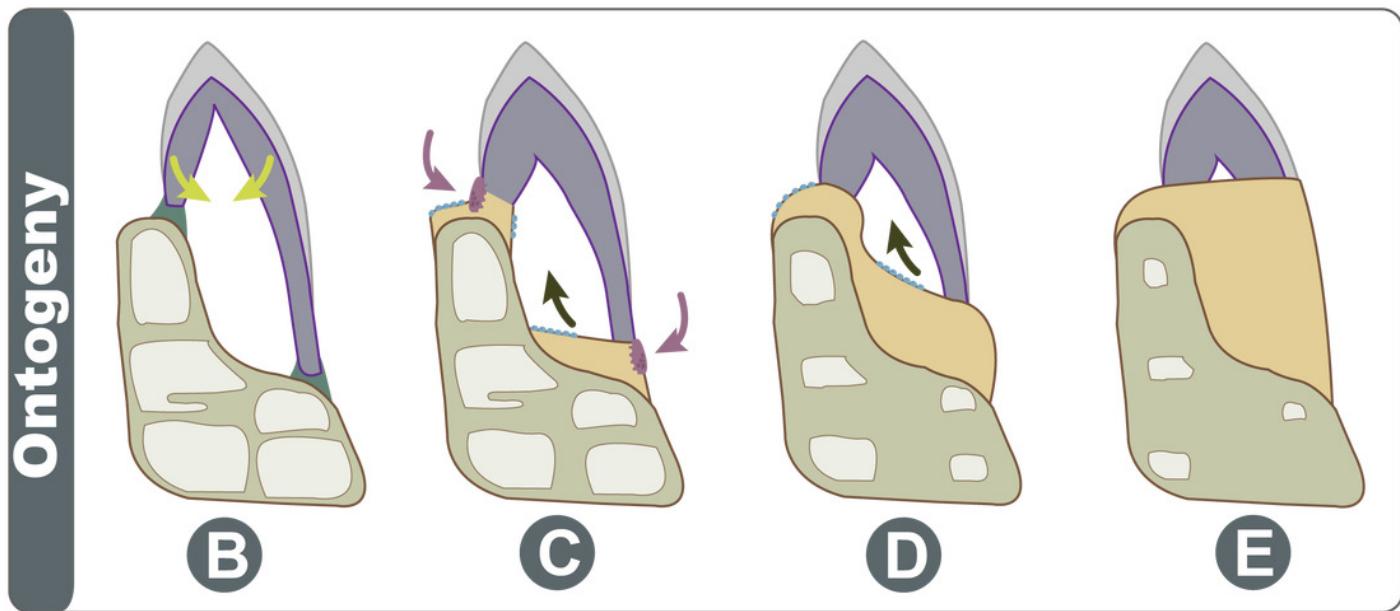
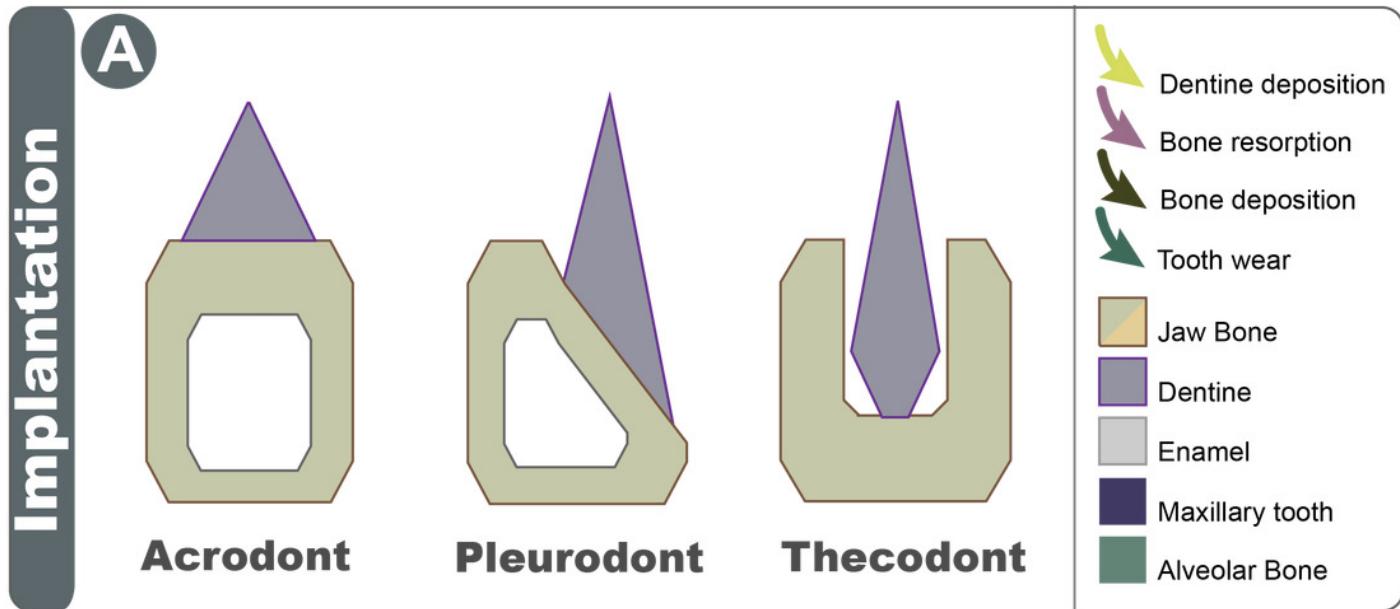




Figure 7

Schematic explanation of implantation changes through ontogeny and tooth wear.

(A) three basic traditional implantation categories, without attachment tissue illustrated; (B) pleurodont impanated tooth is attached via alveolar bone, yellow arrows show direction of dentine deposition; (C) purple arrows show direction of dentine resorption by odontoclasts, blue arrow shows direction of bone deposition by odontoblasts, **trabecula in the dentary is reduced**; (D) blue arrow shows further bone deposition; (E) the tooth appears implanted at the apex of the dentary; (F) Shows the position of maxillary tooth; (G) the enamel is worn on the labial side; (H) with advanced wear, the enamel, dentine, and dentary bone are worn on the labial side.

