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ABSTRACT
Multimodal imaging enables sensitive measures of the architecture and integrity
of the human brain, but the high-dimensional nature of advanced brain imaging
features poses inherent challenges for the analyses and interpretations. Multivariate
age prediction reduces the dimensionality to one biologically informative summary
measure with potential for assessing deviations from normal lifespan trajectories. A
number of studies documented remarkably accurate age prediction, but the differential
age trajectories and the cognitive sensitivity of distinct brain tissue classes have yet to
be adequately characterized. Exploring differential brain age models driven by tissue-
specific classifiers provides a hitherto unexplored opportunity to disentangle indepen-
dent sources of heterogeneity in brain biology. We trained machine-learning models to
estimate brain age using various combinations of FreeSurfer based morphometry and
diffusion tensor imaging based indices of white matter microstructure in 612 healthy
controls aged 18–87 years. To compare the tissue-specific brain ages and their cognitive
sensitivity, we applied each of the 11 models in an independent and cognitively well-
characterized sample (n= 265, 20–88 years). Correlations between true and estimated
age and mean absolute error (MAE) in our test sample were highest for the most
comprehensive brain morphometry (r = 0.83, CI:0.78–0.86, MAE = 6.76 years) and
white matter microstructure (r = 0.79, CI:0.74–0.83, MAE = 7.28 years) models,
confirming sensitivity and generalizability. The deviance from the chronological age
were sensitive to performance on several cognitive tests for various models, including
spatial Stroop and symbol coding, indicating poorer performance in individuals with
an over-estimated age. Tissue-specific brain age models provide sensitive measures of
brain integrity, with implications for the study of a range of brain disorders.
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INTRODUCTION
Increasing age is a major risk factor for cognitive decline and neurodegeneration, and
deviating lifespan trajectories in brain structure and function is a sensitive marker in several
commonneurological andmental disorders (Cole & Franke, 2017). Thematuring and aging
brain is highly heterogeneous in term of individual trajectories and in term of brain regions
and mechanisms involved (Fjell et al., 2013; Westlye et al., 2010b). Understanding the
individual determinants and heterogeneity of the developing and aging brain is imperative
for identifying persons at risk for various brain disorders, and for developing and applying
effective and targeted treatments.

Exploring different modalities acquired by magnetic resonance imaging (MRI) provides
a powerful tool to investigate age-related differences in both gray- and white-matter tissue
classes across brain regions. However, the richness and complexity of the information
provided by advanced imaging pipelines challenges its interpretation. Together, the
multifactorial age-related variability and the richness of imaging measures have motivated
the development of biologically informative summary measures based on brain imaging
data. Using machine learning to estimate the biological age of the brain based on
neuroimaging data is one such approach (Cole & Franke, 2017;Cole et al., 2018b;Kaufmann
et al., 2018). Deviation from the normative trajectory is a highly relevant biomarker for
the integrity of the brain in healthy and clinical populations (Marquand et al., 2016;
Wolfers et al., 2018). Brain age gap is a heritable trait showing regionally specific genetic
overlaps with major brain disorders, including schizophrenia and multiple sclerosis
(Kaufmann et al., 2018), and accumulating evidence supports increased brain age in
several clinical groups, including patients with schizophrenia (Kaufmann et al., 2018;
Schnack et al., 2016), Alzheimer’s disease (Amoroso et al., 2017; Kaufmann et al., 2018),
HIV (Cole et al., 2017; Kuhn et al., 2018), multiple sclerosis (Kaufmann et al., 2018), and
cardiovascular risk factors (Franke et al., 2013;Habes et al., 2016). Indeed, while individuals
with brains estimated as younger than their chronological age have been shown to be more
physically active (Steffener et al., 2016), augmented brain age has been associated with
poor health (Ronan et al., 2016), poor cognitive performance (Liem et al., 2017), early
neurodegenerative diseases (Gaser et al., 2013), and increased mortality (Cole et al., 2018a).
Less is known about the biological and regional heterogeneity, i.e., to which degree
different brain regions, systems or compartments show differential aging patterns and
sensitivity to cognitive performance. Brain gray and white matter compartments, which
can be assessed and quantified using T1-weighted imaging and diffusion tensor imaging
(DTI), respectively, comprise distinct tissue classes with largely differential biological and
environmental modifiers and age trajectories (Bennett et al., 2010; Cao et al., 2017; Fjell et
al., 2013; Salat et al., 2005; Storsve et al., 2014; Westlye et al., 2010a; Westlye et al., 2010b).
Therefore, allowing for differential brain age models for these distinct classes provides an
opportunity to disentangle independent sources of heterogeneity in brain aging.

Thus, to identify common and unique aging patterns with potentially differential
sensitivity to cognitive function, we aimed to test the complementary value of tissue-specific
prediction by comparing brain age estimated using different combinations of FreeSurfer
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based morphometric measures (regional cortical thickness, surface area and volume) and
white matter microstructure (DTI based fractional anisotropy and mean, radial and axial
diffusivity) across the brain. Based on previous studies on brain aging, we expected high
accuracy and generalizability of the age prediction models (Cole & Franke, 2017). Since
tissue specific brain age models capture biologically distinct information, we anticipated
that the different FreeSurfer based brain morphometry and white matter microstructure
models would only partly reflect common variance, and therefore provide complementary
information with differential sensitivity to cognitive performance. Given that brain age
predictions might be sensitive to the overall integrity of the brain (Liem et al., 2017), we
anticipated that adult individuals in the targeted age range who show and over-estimated
brain age would also show lower cognitive performance, in particular among the elderly,
and that the tissue-specific brain age models would show partly differential cognitive
sensitivity.

To ensure generalizability, we trained the models in a large publicly available training
set (n= 612, 18–87 years) and validated their performance using 10-fold cross-validation
before applying to an independent and well characterized test set (n= 265, 20–88 years).
We assessed the cognitive sensitivity using linear and non-linear models with performance
on a range of paper-and-pencil and computerized tests comprising different large-scale
cognitive domains (processing speed, executive functioning, working memory, attention,
and general intellectual abilities) and cognitive scores based on computational models
as dependent variables and age, sex and brain age gap (BAG, estimated brain age minus
chronological age) as independent variables. For transparency, we report results both at an
uncorrected level and corrected using false discovery rate (FDR) and Bonferroni methods
to control the error rate.

MATERIAL AND METHODS
Figure 1 displays a flowchart of the main analysis pipeline. Table 1 summarizes key
demographics. We included data from healthy volunteers from two independent
cohorts: (1) the Cambridge Centre for Ageing and Neuroscience (Cam-CAN) sample
(http://www.mrc-cbu.cam.ac.uk/datasets/camcan/; Shafto et al., 2014; Taylor et al., 2017)
and (2) StrokeMRI, which is an ongoing study on the determinants of stroke recovery,
brain health and successful aging (Dorum et al., 2016; Dorum et al., 2017). Figure 2 shows
the age distribution for each sample. The distribution of age (t =−2.09, p= 0.037) and
sex (χ2(1) = 10.92, p< 0.001) differed between samples.

Volunteers were recruited to Cam-CAN through a large-scale collaborative research
project funded by the Biotechnology and Biological Sciences Research Council (BBSRC,
grant number BB/H008217/1), the UK Medical Research Council and University of
Cambridge. For more information, see http://www.cam-can.org. Among the 650 datasets
made available, 17 were excluded based on missing or poor quality DTI data and 21 due to
poor T1-weighted data quality. Data from the remaining 612 individuals (age 18–87, mean
= 54.41, SD = 18.26, 314 females) were included.

Healthy individuals were recruited to StrokeMRI through advertisement in newspapers,
social media and word-of-mouth. All participants completed a comprehensive cognitive
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Figure 1 Flowchart of the main analysis pipeline.
Full-size DOI: 10.7717/peerj.5908/fig-1

assessment, multimodal MRI and blood sampling for clinical biochemical analysis,
various biomarkers and genotyping. MRI and cognitive assessments were performed
on two subsequent days. Exclusion criteria included history of stroke, dementia, or other
neurologic and psychiatric diseases, alcohol- and substance abuse, medications significantly
affecting the nervous system and counter indications for MRI. In addition, individuals
scoring lower than 25 on the Montreal Cognitive Assessment (MoCA; Nasreddine et al.,
2005) were assessed for inclusion based on their age, level of education and performance
on other cognitive tests. No participants were excluded based on a single low score.
A neuroradiologist reviewed all scans and 14 participants with clinically significant
abnormalities were excluded. Additional exclusion criteria included missing or incomplete
MRI or cognitive data (n= 2), or poor quality images (n= 20). The remaining 265
participants (age 20–88, mean = 56.95, SD = 14.84, 168 females) were included in further
analyses. The study was approved by the Regional Committee for Medical and Health
Research Ethics (South-East Norway, REK 2014/694), and conducted in accordance with
the Helsinki declaration. All subjects signed an informed consent prior to participating
and received a compensation for their participation.

Cognitive assessment in StrokeMRI
Cognitive performance was assessed with a set of neuropsychological and computerized
tests assumed to be sensitive to cognitive aging, including the MoCA, the vocabulary
and matrix subtests of the Wechsler Abbreviated Scale of Intelligence (WASI; Wechsler,
1999), the California Verbal Learning Test (CVLT-II; Delis et al., 2000), and the Delis-
Kaplan Executive Function System (D-KEFS) color word interference test (Stroop; Delis,
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Table 1 Demographics and cognitive information.

Cam-CAN StrokeMRI
Mean (SD)

Range (IQR) Main effect age
t (p)

Main effect sex
t (p)

Total N (% females) 612 (51.3%) 265 (63.4%)
Mean age (SD) 54.41 (18.26) 56.95 (14.84)
Age range 18–87 20–88
MoCA – 27.60 (1.72) 21–30 (2) −4.57 (<0.001)** −2.32 (0.021)
WASI words – 65.27 (6.60) 44–79 (10) 4.72 (<0.001)** 0.10 (0.920)
WASI matrix – 25.39 (5.64) 7–35 (6) −7.60 (<0.001)** −0.28 (0.776)
CVLT learning 1-5 – 48.92 (11.37) 17–73 (15.5) −5.05 (<0.001)** −5.26 (<0.001)
CVLT interference – 5.53 (2.15) 0–13 (3) −4.33 (<0.001)** −0.41 (0.681)
CVLT recall – 10.83 (3.42) 0–16 (5) −6.50 (<0.001)** 5.94 (<0.001)
CVLT delayed recall – 11.39 (3.44) 0–16 (5) −4.97 (<0.001)** −5.51 (<0.001)
CVLT recognition hit – 14.70 (1.50) 8–16 (2) −2.62 (0.0093)* −2.68 (0.008)
CVLT recognition errors – 3.79 (3.92) 0–18 (4) 5.22 (<0.001)** 4.18 (<0.001)
CVLT recog misses – 1.30 (1.49) 0–8 (2) 2.62 (0.0093)* 2.68 (0.008)
CVLT recog false alarm – 2.46 (3.48) 0–18 (3) 4.45 (<0.001)** 3.59 (0.0004)
CVLT recog correct rejection – 44.20 (3.92) 30–48 (4) −5.22 (<0.001)** −4.18 (<0.001)
CVLT d′ – 2.97 (0.72) 0.97–3.90 (1.11) −5.01 (<0.001)** −4.50 (<0.001)
STROOP 1 – 31.14 (5.66) 21–50 (7) 5.05 (<0.001)** 2.44 (0.015)
STROOP 2 – 22.12 (3.49) 14–35 (4) 2.89 (0.004)* 2.27 (0.024)
STROOP 3 – 55.86 (14.13) 10–108 (15) 7.55 (<0.001)** 2.97 (0.003)
STROOP 4 – 61.74 (14.85) 33–117 (19) 7.51 (<0.001)** 1.77 (0.078)
STROOP mean 1 and 2 – 26.54 (4.16) 18.5–42 (5) 4.47 (<0.001)** 2.47 (0.014)
STROOP 3 minus mean 1 and 2 – 81.94 (16.51) 34.5–145 (18.5) 7.31 (<0.001)** 3.02 (0.003)
STROOP 4 minus mean 1 and 2 – 87.64 (16.73) 53.5–142 (24) 7.52 (<0.001)** 1.85 (0.066)
CP—Right motor speed – 79.56 (23.34) 34–153 (32) −12.25 (<0.001)** −0.36 (0.716)
CP—Left motor speed – 81.36 (17.80) 39–131 (26) −12.07 (<0.001)** 0.20 (0.842)
CP—FAS Phonological flow – 54.70 (14.53) 14–95 (19.75) −0.61 (0.541) −2.58 (0.011)
CP—FAS Semantic flow – 51.00 (10.14) 27–81 (13) −2.93 (0.004)* −3.93 (<0.001)
CP—Visual WM forward ls – 4.23 (1.01) 2–7 (2) −5.31 (<0.001)** 0.29 (0.774)
CP—Visual WM forward ss – 5.45 (1.87) 1–10 (3) −6.59 (<0.001)** −0.25 (0.803)
CP—Visual WM backward ls – 3.80 (1.28) 0–8 (1) −4.60 (<0.001)** −1.85 (0.065)
CP—Visual WM backward ss – 4.56 (2.08) 0–12 (3) −5.48 (<0.001)** −1.02 (0.309)
CP—Visual WM ss – 9.96 (3.57) 1–21 (4) −7.04 (<0.001)** −0.95 (0.342)
CP—Spatial stroop congruent (ms) – 674.42 (132.77) 410–1159 (181) 8.52 (<0.001)** −1.03 (0.304)
CP—Spatial stroop incongruent (ms) – 929.52 (198.01) 462–1827 (269) 9.41 (<0.001)** −0.75 (0.451)
CP—Spatial stroop Errors – 2.17 (2.41) 0–11 (3) 0.73 (0.463) 1.59 (0.113)
CP—Spatial stroop numb of reps – 119.63 (16.64) 55–166 (22) −9.67 (<0.001)** 1.23 (0.219)
CP—Spatial stroop incong–cong (ms) – 252 (110) 20–678 (134.5) 5.73 (<0.001)** −0.68 (0.498)
CP—Spatspan ls – 5.37 (1.78) 1–10 (2) −9.12 (<0.001)** −4.88 (<0.001)
CP—Spatspan tot – 29.87 (12.43) 3–55 (18) −9.28 (<0.001)** −4.66 (<0.001)

(continued on next page)
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Table 1 (continued)

Cam-CAN StrokeMRI
Mean (SD)

Range (IQR) Main effect age
t (p)

Main effect sex
t (p)

CP—Coding corr – 54.50 (12.11) 24–88 (16) −16.69 (<0.001)** −2.46 (0.015)
CP—Coding error – 0.67 (0.99) 0–5 (1) −1.10 (0.271) 1.56 (0.121)
TVA—Short-term memory storage (K ) – 3.38 (0.77) 1.46–5.53 (1.09) −7.75 (<0.001)** −1.52 (0.129)
TVA—Processing speed (C) – 31.55 (14.07) 5.99–89.67 (14.75) −4.69 (<0.001)** 0.41 (0.6847)
TVA—Perceptual threshold (t 0) – 23.01 (14.05) 0–79.75 (17.59) 5.72 (<0.001)** −1.94 (0.053)
TVA—Error rate – 0.10 (0.06) 0.0035–0.3316 (0.0983) −1.35 (0.177) 0.67 (0.502)
Cluster 1 – – – −7.19 (<0.001)** −5.16 (<0.001)
Cluster 2 – – – −7.28 (<0.001)** 1.61 (0.110)
Cluster 3 – – – −2.01 (0.045)* −3.99 (<0.001)
Cluster 4 – – – −9.98 (<0.001)** 1.25 (0.212)
Cluster 5 – – – −6.86 (<0.001)** −2.56 (0.011)
Cluster 6 – – – −15.79 (<0.001)** −1.08 (0.282)
Cluster 7 – – – −6.50 (<0.001)** −0.77 (0.440)

Notes.
*Significant associations between cognitive measures with age after FDR correction.
**Significant associations between cognitive measures with age after Bonferroni correction.
IQR, interquartile range; MoCA, Montreal Cognitive Assessment; WASI, Wechsler Abbreviated Scale of Intelligence; CVLT, California Verbal Learning Test; STROOP,
Delis-Kaplan Executive Function System (D-KEFS) color word interference test; CP, CabPad; WM, working memory; TVA, Theory of Visual Attention; ls, longest serie; ss,
sum scores; tot, total.

Figure 2 Histogram of the age distribution for each sample.
Full-size DOI: 10.7717/peerj.5908/fig-2

Kaplan & Kramer, 2001). We included several computerized tests from the Cognitive
Assessment at Bedside for iPAD (CABPad; Willer et al., 2016), including motor speed,
verbal fluency (phonological and semantic), working memory, spatial Stroop (executive
control of attention), spatial attention span, and symbol digit coding tests. In addition, in
order to assess the specificity of cognitive associations using computation modeling, we
included three mathematically independent parameters based on the Theory of Visual
Attention (TVA; Bundesen, 1990; Bundesen & Habekost, 2008), including short-term
memory storage (K ), processing speed (C), perceptual threshold (t 0). These parameters
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based on computational modeling of response patterns have been shown to be sensitive to
age, brain structure and function in healthy individuals (Espeseth et al., 2014; Wiegand et
al., 2018) and a range of brain disorders (Habekost, 2015;Habekost & Starrfelt, 2009). Here,
we used a TVA-based modeling of a whole report (Sperling, 1960), in which six letters
were briefly presented for different exposure durations and the participant’s task was to
accurately report as many letters as possible. Task error rate was also assessed (i.e., number
of incorrect letters out of reported letters).

MRI acquisition
Cam-CAN participants were scanned on a 3T Siemens TIM Trio scanner with a 32-
channel head-coil at Medical Research Council (UK) Cognition and Brain Sciences Unit
(MRC-CBSU) in Cambridge, UK. DTI data was acquired using a twice—refocused spin
echo sequence with the following parameters a repetition time (TR) of 9,100 ms, echo
time (TE) of 104 ms, field of view (FOV) of 192 × 192 mm, voxel size: 2 mm3, 66 axial
slices using 30 directions with b= 1000 s/mm2, 30 directions with b= 2000 s/mm2, and 3
b= 0 images (Shafto et al., 2014). Only the b= [0,1000] were used in the current analysis.
High-resolution 3D T1-weighted data was acquired using a magnetization prepared rapid
gradient echo (MPRAGE) sequence with the following parameters: TR: 2,250 ms, TE: 2.99
ms, inversion time (TI): 900 ms, flip angle: 9◦, FOV of 256 × 240 × 192 mm; voxel size =
1 mm3 isotropic, GRAPPA acceleration factor of 2, scan time 4:32 min (Shafto et al., 2014).

StrokeMRI participants were scanned on a 3T GE 750 Discovery MRI scanner with
a 32-channel head coil at Oslo University Hospital. Paddings were used to reduce head
motion. DTI data were acquired using an echo planar imaging (EPI) sequence with the
following parameters: TR/TE/flip angle: 8,150 ms/83.1 ms/90◦, FOV: 256 × 256 mm, slice
thickness: 2 mm, in-plane resolution: 2 mm, 60 directions (b= 1000 s/mm2) and 5 b= 0
volumes, scan time: 8:58 min. In addition, 7 b= 0 volumes with reversed phase-encoding
direction were acquired. High-resolution T1-weighted data was acquired using a 3D
IR-prepared FSPGR (BRAVO) with the following parameters: TR: 8.16 ms, TE: 3.18 ms,
flip angle: 12◦, voxel size: 1× 1× 1 mm, FOV: 256× 256 mm, 188 sagittal slices, scan time:
4:43 min.

DTI processing and analysis
Diffusion MRI data from both samples were processed locally using the Oxford Center
for Functional Magnetic Resonance Imaging of the Brain (FMRIB) Software Library (FSL)
(http://www.fmrib.ox.ac.uk/fsl). To correct for geometrical distortions, motion and eddy
currents, data were preprocessed using topup (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/topup)
and eddy (https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/eddy) respectively (Andersson, Skare &
Ashburner, 2003; Smith et al., 2004). Topup uses information from the reversed phase-
encoded image, resulting in pairs of images (blip-up, blip-down) with distortions going in
opposite directions. From these image pairs the susceptibility-induced off-resonance field
was estimated and the two images were combined into a single corrected one (Andersson,
Skare & Ashburner, 2003; Smith et al., 2004). This step was performed on StrokeMRI data
only. Eddy detects and replaces slices affected by signal loss due to bulk motion during
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diffusion encoding, which is performed within an integrated framework along with
correction for susceptibility induced distortions, eddy currents and motion (Andersson &
Sotiropoulos, 2016). Although these processing steps have been shown to strongly increase
the temporal signal-to-noise ratio (tSNR) (Doan et al., 2017), we performed additional
visual inspection to identify and remove poor quality data, such as data that failed the
processing steps due to low quality.

Fractional anisotropy (FA), eigenvector, and eigenvalue maps were calculated using
dtifit in FSL. Mean diffusivity (MD) was defined as the mean of all three eigenvalues, radial
diffusivity (RD) as the mean of the second and third eigenvalue, and axial diffusivity (AD)
as the principal eigenvalue.

Voxelwise analysis of FA, MD, AD and RD were carried out using Tract-Based Spatial
Statistics (TBSS; Smith et al., 2006), part of FSL (Smith et al., 2004). First, all subjects’
FA data were aligned to a common space using the nonlinear registration tool FNIRT
(Andersson, Jenkinson & Smith, 2007a; Andersson, Jenkinson & Smith, 2007b). Next, the
mean FA image was created and thinned to create a mean FA skeleton, which represents
the centers of all tracts common to all participants. Each subject’s aligned FA data was
then projected onto this skeleton and the resulting data fed into voxelwise cross-subject
statistics. The same warping and skeletonization was repeated for MD, AD and RD. We
thresholded and binarized the mean FA skeleton at FA > 0.2. For each individual, we
calculated the mean skeleton FA, MD, AD and RD, as well as mean values within 23
regions of interest (ROIs) based on two probabilistic white matter atlases provided with
FSL, i.e., the CBM-DTI-81 white-matter labels atlas and the JHUwhite-matter tractography
atlas (Hua et al., 2008; Mori et al., 2005; Wakana et al., 2007), yielding a total of 96 DTI
features per individual.

T1 processing
T1-weighted images from both samples were processed using FreeSurfer 5.3 (http:
//surfer.nmr.mgh.harvard.edu; Dale, Fischl & Sereno, 1999) including brain extraction,
intensity normalization, automated tissue segmentation, generation of white and pial
surfaces (Dale, Fischl & Sereno, 1999). All reconstructions were visually assessed and edited
by trained research personnel where appropriate. The reconstructions that failed the
corrections were excluded from further analysis, such as data with excessive movement
artefacts. Cortical parcellation was performed using the Desikan–Killiany atlas (Desikan
et al., 2006; Fischl et al., 2004) and subcortical segmentation was performed based on a
probabilistic atlas (Fischl et al., 2002). In addition to global features (intracranial volume,
total surface area, whole-cortex mean thickness), mean thickness, total surface area, and
volume for each cortical ROI, as well as the volume of subcortical structures were computed
yielding a set of 251 FreeSurfer based features.

Age prediction
Eleven different models were trained to estimate age based on the feature sets described
above (one based on FreeSurfer T1 features, one based onWMDTI features, one including
all T1 and DTI features, in addition to eight models based on a smaller subset of features,
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including models based on FA, MD, AD, RD, sub-cortical volume, volume, area and
thickness to further explore the modality specificity of the estimations).

Due to systematic differences in brain features between scanners (Madan, 2017) as
well as non-linear effects of age, we regressed out main effects of scanner using linear
models including age, age squared, sex and scanner for each feature, and used the
fitted data in further analysis for brain age prediction. In addition, we regressed out
the estimated total intracranial volume from the area and volume features. Next, for
each model, we created a training data matrix by concatenating all the features for all
participants in the training sample (Cam-CAN), which were used as input to estimate
age. We used the xgboost framework in R (http://xgboost.readthedocs.io/en/latest/R-
package/xgboostPresentation.html), an efficient and scalable implementation of gradient
boosting machine learning techniques, to build the prediction models. The following
parameters were used: learning rate (eta) = 0.1, nround = 5,000, gamma = 1, max_depth
= 6, subsample = 0.5. To estimate the performance of our models, we used a 10-fold
cross-validation procedure within the training sample and repeated the cross-validation
step 1,000 times to provide a robust estimate of model predictive accuracy. Next, we tested
the performance of our trained models by predicting age in unseen healthy subjects in the
test sample (StrokeMRI).

For each feature set, we calculated the correlation between the predicted and the
chronological age as a measure of the model performance, in addition to the mean
absolute error (MAE, in years). For each individual, we calculated the discrepancy between
the estimated and the chronological age, i.e., the BAG, for each model. The MAE was
calculated from the BAG for each model. Since we were interested in the effect of BAG
independently of age, the effect of age was regressed out for each BAG using linear models.

Statistical analysis
Statistical analysis was performed using R (R Core Team, 2017). For cognitive data, we
used outlierTest from the car package (Fox & Weisberg, 2011) to identify the most extreme
observations based on a linear model, including age and sex. Twenty-five observations
were identified as outliers and treated as missing values based on a Bonferroni corrected
p< 0.05. To visualize the associations between the cognitive tests and to form cognitive
domain scores based on the correlation patterns, we performed hierarchical clustering
using the default setting of the heatmap.2 package in gplots (Warnes et al., 2016), which
uses hclust (Müllner, 2013) to form clusters based on the complete linkage method. Briefly,
this is a step-wise clustering process that merges the two nearest clusters until only one
single cluster remains, maximizing distance between individuals components between two
clusters.

For each cognitive measure and summary score based on the clusters formed form
the clustering step above, we used linear models to test for the effect of age and sex.
Since cognitive performance may show non-linear associations with age, we performed
an additional analysis including both age and age2 in the models. Then, for each test
showing a significant association with age, we tested whether adding BAG to the models
lead to an improved model fit. More specifically, we tested for differential associations with
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cognitive function by comparing the parameter estimates for the different BAG models
using Fisher z-transformation. To test the assumption that increased BAG is more relevant
for cognitive function among the elderly, we tested for age by BAG interactions on cognitive
performance. For transparency, we report both uncorrected p-values and p-values adjusted
using FDR (Benjamini & Hochberg, 1995; Wright, 1992) and Bonferroni correction using a
factor of 495 (11 brain gaps and 45 cognitive features).

RESULTS
Brain age prediction
Ten-fold cross-validation on the training sample (Cam-CAN) revealed high correlations
between chronological and predicted age for the DTI based white matter microstructure
(r = 0.87) and FreeSurfer basedmorphometric (r = 0.88)models. Likewise, the correlations
for FA (r = .76), MD (r = .80), AD (r = .83), RD (r = 78), sub-volume (r = .84), volume
(r = .80), area (r = .70) and thickness (r = .79) based models also confirmed reasonable
model performance.

Most models accurately predicted age in the independent test set (StrokeMRI). Figure 3A
shows a correlation matrix for the 11 BAGs. Figure 3B shows the correlations between
the chronological age and the predicted age in the test sample for each model with their
confidence intervals, ranging from (r = .86, CI:.82–.89, MAE = 6.14) for the combined
model to r = .58 (CI:.49–.65, MAE = 10.24) for the model based on area. Figure 3C is
described below. Figures 3D to 3F show the estimated age from the three models that
performed best among the 11 feature sets, i.e., the combined DTI and T1 feature models
(r = .86, CI:.82–.89, MAE = 6.14), the 251 FS T1 features (r = .83, CI:.78–.86, MAE =
6.76), and the 96 WM DTI features (r = .79, CI:.74–.83, MAE = 7.28).

Cognitive assessments and associations with BAGs in StrokeMRI
Figure 4 shows a correlationmatrix across all normalized cognitive scores with the variables
sorted according to the hierarchical clustering used in the main analysis. Several variables
were highly correlated, and the clustering solution generally suggested seven broad cognitive
domains including (Cluster 1) memory and learning (CVLT, attention span, MoCA),
(Cluster 2) visual processing speed (TVA processing speed and perceptual threshold),
(Cluster 3) verbal skills (phonological and semantic flow), (Cluster 4) attentional control
and speed (spatial Stroop), (Cluster 5) executive control and speed (color-word Stroop),
(Cluster 6) reasoning and psychomotor speed (matrix, symbol coding and motor speed,
short-term memory storage (TVA-parameter K )), and (Cluster 7) working memory.
Table 1 summarizes descriptive statistics and associations with age and sex for each of
the 49 cognitive scores, derived features and domain scores. Linear models revealed
45 significant associations with age after correcting for multiple comparisons, with the
strongest effect sizes for the symbol coding test, motor speed, spatial Stroop and spatial
attention span. Since non-linear models revealed significant associations with age2 only
with the color word Stroop 3 (inhibition) and its derived scores (See Table S1), the main
models presented here are linear in order to keep the model to its simplest form.
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Figure 3 Comparison between the 11 BAGmodels. (A) Heatmap of the correlation between different
BAGs. (B) Correlations between the chronological age and the predicted age in the test sample for each
model with their confidence intervals. (C) Mean and standard error of the 45 p-values (−log10(p)) for
the cognitive scores and composite scores for each row (i.e., BAGs), with a higher mean representing a
stronger global association across tests. (D) Correlation between the chronological age of each subjects
and the combined age, (E) the brain morphometry age, and (F) the white matter microstructure age.

Full-size DOI: 10.7717/peerj.5908/fig-3

Table 2 shows summary statistics for the associations between cognitive performance
and BAG using linear models, including age and sex as covariates. Figure 5 shows a heatmap
of the association between cognitive scores and brain age gaps for which the significant
associations have been marked with an asterisk. Table S1 and Fig. S1 shows the summary
statistics and the heatmap of the associations between cognitive performance and BAG
using non-linear models. Figure 3C shows the mean and standard error of the 45 p-values
(−log10(p)) for the cognitive scores and composite scores for each row (i.e., BAGs), with a
higher mean representing a stronger cumulative association across tests.

Figure 6 shows a scatter plot of the two strongest associations, which were found between
the most comprehensive model (all features combined) and spatial Stroop congruent trials
and number of responses, respectively, indicating poorer performance with higher BAG.
Fisher z-transformation revealed no statistically significant differences in the cognitive
associations between linear models using tissue-specific BAG. No significant interactions
were found between BAG and age on cognitive performance.

DISCUSSION
Brain aging is highly heterogeneous, and expanding our understanding of the biological
determinants of human aging is imperative for reducing the burden of age-related cognitive
decline and neurodegenerative disorders. An estimate of an individual’s deviation from
the expected lifespan trajectory in brain structure and function may provide a sensitive
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Figure 4 Hierarchical clustering of the cognitive features. Each cognitive score was normalized and
when required the scores were multiplied by−1 to ensure that positive scores represent good perfor-
mance. The higher panel shows the dendrogram resulting from the hierarchical clustering of the scores in
seven cognitive domains. Table S2 provides detailed overview of all abbreviations used.

Full-size DOI: 10.7717/peerj.5908/fig-4

measure of individual brain integrity and health, both in presumably healthy individuals
and in patients suffering from various brain disorders.

The biological heterogeneity of the brain strongly suggests that the concept of a single
brain age is too simple, and that tissue-specific brain age models may provide increased
sensitivity and specificity in relation to cognitive and mental functions. In line with this
view, our main findings demonstrate that different combinations of FreeSurfer based
brain morphometry and DTI based white matter microstructural indices can be used to
accurately predict the age of individuals, but that the shared variance from the different
models suggest that they reflect partly non-overlapping processes of brain aging. Further, the
results revealed partly differential sensitivity to cognitive performance; with the strongest
cumulative associations across cognitive tests for brain age gaps estimated using RD. Even
though our data provide no strong evidence of independent associations with cognitive
performance in the current sample of healthy individuals, tissue specific age prediction
models might better inform us about the individual determinants and heterogeneity of
the aging brain compared to models collapsing several brain compartments by potentially
capturing distinct measures of brain aging.
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Table 2 Cognitive associations with BAG—statistics.

Test Adj R2

no-BAG
BAG Main effect age

t (p)
Main effect sex
t (p)

Main effect BAG
t (p)

Adj R2

MoCA 0.0907 T1 −4.5596 (<0.001) −2.3145 (0.021) −0.124 (0.901) 0.0878
DTI −4.5599 (<0.001) −2.3155 (0.021) 1.5914 (0.113) 0.0966
Combined −4.5653 (<0.001) −2.3176 (0.021) −0.4626 (0.644) 0.0885

WASI words 0.0731 T1 4.7118 (<0.001) 0.1020 (0.919) −0.2169 (0.828) 0.0704
DTI 4.7056 (<0.001) 0.1121 (0.911) −0.8126 (0.417) 0.0727
Combined 4.7091 (<0.001) 0.1041 (0.917) −0.4827 (0.630) 0.0711

WASI matrix 0.1791 T1 −7.6061 (<0.001) −0.2785 (0.781) −0.9158 (0.361) 0.1793
DTI −7.6610 (<0.001) −0.2624 (0.793) −1.6546 (0.099) 0.1854
Combined −7.6128 (<0.001) −0.2726 (0.785) −1.1102 (0.268) 0.1806

CVLT learning 1-5 0.1810 T1 −5.0373 (<0.001) −5.2514 (<0.001) −0.2505 (0.802) 0.1750
DTI −5.0418 (<0.001) −5.2533 (<0.001) −0.3608 (0.719) 0.1753
Combined −5.0387 (<0.001) −5.2522 (<0.001) −0.2492 (0.803) 0.1750

CVLT interference 0.0664 T1 −4.3256 (<0.001) −0.4062 (0.685) −0.9588 (0.339) 0.0626
DTI −4.3218 (<0.001) −0.4104 (0.682) −0.2391 (0.811) 0.0594
Combined −4.3202 (<0.001) −0.4101 (0.682) −0.1875 (0.851) 0.0594

CVLT recall 0.2438 T1 −6.4897 (<0.001) −5.9257 (<0.001) −0.4868 (0.627) 0.2397
DTI −6.4885 (<0.001) −5.9257 (<0.001) −0.1245 (0.901) 0.2391
Combined −6.5080 (<0.001) −5.9373 (<0.001) −1.1114 (0.268) 0.2427

CVLT delayed recall 0.1850 T1 −4.9636 (<0.001) −5.4973 (<0.001) 0.1421 (0.887) 0.1808
DTI −4.9611 (<0.001) −5.4969 (<0.001) 0.224 (0.823) 0.1809
Combined −4.9655 (<0.001) −5.4954 (<0.001) −0.3038 (0.762) 0.1810

CVLT recognition hits 0.0494 T1 −2.6125 (0.010) −2.6822 (0.008) −0.8586 (0.391) 0.0486
DTI −2.6144 (0.010) −2.6786 (0.008) 0.0946 (0.925) 0.0459
Combined −2.6212 (0.009) −2.6854 (0.008) −1.0724 (0.285) 0.0501

CVLT recognition errors 0.1526 T1 5.2227 (<0.001) 4.1850 (<0.001) −0.8471 (0.398) 0.1528
DTI 5.2115 (<0.001) 4.1755 (<0.001) −0.5651 (0.573) 0.1514
Combined 5.2139 (<0.001) 4.1740 (<0.001) −0.2537 (0.800) 0.1506

CVLT recog misses 0.0494 T1 2.6125 (0.010) 2.6822 (0.008) 0.8586 (0.391) 0.0486
DTI 2.6144 (0.010) 2.6786 (0.008) −0.0946 (0.925) 0.0459
Combined 2.6212 (0.009) 2.6854 (0.008) 1.0724 (0.285) 0.0501

CVLT recog false alarm 0.1150 T1 4.4519 (<0.001) 3.5827 (<0.001) −0.776 (0.439) 0.1146
DTI 4.4378 (<0.001) 3.5803 (<0.001) −0.5207 (0.603) 0.1134
Combined 4.4418 (<0.001) 3.5788 (<0.001) −0.3488 (0.728) 0.1129

CVLT recog correct rejection 0.1526 T1 −5.2227 (<0.001) −4.1850 (<0.001) 0.8471 (0.398) 0.1528
DTI −5.2115 (<0.001) −4.1755 (<0.001) 0.5651 (0.573) 0.1514
Combined −5.2139 (<0.001) −4.1740 (<0.001) 0.2537 (0.800) 0.1506

CVLT d’ 0.1566 T1 −5.0074 (<0.001) −4.4914 (<0.001) 0.3628 (0.717) 0.1536
DTI −5.0021 (<0.001) −4.4969 (<0.001) 0.8538 (0.394) 0.1556
Combined −5.0038 (<0.001) −4.4902 (<0.001) 0.1699 (0.865) 0.1533

STROOP 1 0.1118 T1 5.1466 (<0.001) 2.4999 (0.013) 2.6939 (0.008) 0.1299
(continued on next page)
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Table 2 (continued)

Test Adj R2

no-BAG
BAG Main effect age

t (p)
Main effect sex
t (p)

Main effect BAG
t (p)

Adj R2

DTI 5.0968 (<0.001) 2.4769 (0.014) 1.6664 (0.097) 0.1147
Combined 5.2111 (<0.001) 2.5317 (0.012) 3.3767 (<0.001)* 0.1434

STROOP 2 0.0477 T1 2.8868 (0.004) 2.2619 (0.025) 0.1557 (0.876) 0.0433
DTI 2.8768 (0.004) 2.2489 (0.025) −0.4639 (0.643) 0.0440
Combined 2.8949 (0.004) 2.2713 (0.024) 0.4976 (0.619) 0.0442

STROOP 3 0.2104 T1 7.5930 (<0.001) 2.9898 (0.003) 1.5092 (0.133) 0.2109
DTI 7.6511 (<0.001) 3.0224 (0.003) 2.231 (0.027) 0.2190
Combined 7.6793 (<0.001) 3.0233 (0.003) 2.5768 (0.011) 0.2240

STROOP 4 0.1887 T1 7.5403 (<0.001) 1.7884 (0.075) 1.2397 (0.216) 0.1906
DTI 7.5847 (<0.001) 1.8121 (0.071) 1.7368 (0.084) 0.1953
Combined 7.6387 (<0.001) 1.8247 (0.069) 2.3662 (0.019) 0.2033

STROOP mean 1 and 2 0.0949 T1 4.5089 (<0.001) 2.5033 (0.013) 1.5875 (0.114) 0.0978
DTI 4.4750 (<0.001) 2.4760 (0.014) 0.3927 (0.695) 0.0894
Combined 4.5432 (<0.001) 2.5399 (0.012) 2.0254 (0.044) 0.1034

STROOP 3 minus mean 1 and 2 0.2051 T1 7.3383 (<0.001) 3.0427 (0.003) 1.1397 (0.256) 0.2021
DTI 7.3613 (<0.001) 3.0703 (0.002) 1.3546 (0.177) 0.2038
Combined 7.4197 (<0.001) 3.1063 (0.002) 2.1881 (0.030) 0.2130

STROOP 4 minus mean 1 and 2 0.1936 T1 7.5360 (<0.001) 1.8671 (0.063) 0.8763 (0.382) 0.1919
DTI 7.5297 (<0.001) 1.8697 (0.063) 0.6331 (0.527) 0.1907
Combined 7.6081 (<0.001) 1.9215 (0.056) 1.7531 (0.081) 0.1993

CP—Right motor speed 0.3695 T1 −12.2893 (<0.001) −0.3592 (0.720) −1.5504 (0.122) 0.3676
DTI −12.2318 (<0.001) −0.3612 (0.718) −0.3435 (0.732) 0.3620
Combined −12.3125 (<0.001) −0.3587 (0.720) −1.8139 (0.071) 0.3697

CP—Left motor speed 0.3630 T1 −12.1437 (<0.001) 0.2100 (0.834) −1.9945 (0.047) 0.3634
DTI −12.0669 (<0.001) 0.2081 (0.835) −0.8704 (0.385) 0.3555
Combined −12.2516 (<0.001) 0.2149 (0.830) −2.9047 (0.004) 0.3740

CP—FAS Semantic flow 0.0840 T1 −2.9562 (0.003) −3.9454 (<0.001) −2.0826 (0.038) 0.0960
DTI −2.9607 (0.003) −3.9388 (<0.001) −2.0997 (0.037) 0.0963
Combined −2.9513 (0.004) −3.9389 (<0.001) −1.8308 (0.068) 0.0926

CP—Visual WM forward ls 0.0936 T1 −5.3071 (<0.001) 0.2850 (0.776) −0.5838 (0.560) 0.0906
DTI −5.3392 (<0.001) 0.2963 (0.767) −1.7204 (0.087) 0.0999
Combined −5.3059 (<0.001) 0.2853 (0.776) −0.3127 (0.755) 0.0897

CP—Visual WM forward ss 0.1416 T1 −6.5795 (<0.001) −0.2502 (0.803) −0.2158 (0.829) 0.1375
DTI −6.6000 (<0.001) −0.2448 (0.807) −1.1695 (0.243) 0.1420
Combined −6.5786 (<0.001) −0.2496 (0.803) −0.02 (0.984) 0.1373

CP—Visual WM backward ls 0.0852 T1 −4.5941 (<0.001) −1.8511 (0.065) −0.1047 (0.917) 0.0820
DTI −4.6170 (<0.001) −1.8545 (0.065) −1.3334 (0.184) 0.0884
Combined −4.6051 (<0.001) −1.8550 (0.065) −0.8013 (0.424) 0.0843

CP—Visual WM backward ss 0.1022 T1 −5.4741 (<0.001) −1.0181 (0.310) −0.2721 (0.786) 0.1015
DTI −5.4971 (<0.001) −1.0179 (0.310) −1.3043 (0.193) 0.1072
Combined −5.4898 (<0.001) −1.0215 (0.308) −1.0074 (0.315) 0.1048

(continued on next page)
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Table 2 (continued)

Test Adj R2

no-BAG
BAG Main effect age

t (p)
Main effect sex
t (p)

Main effect BAG
t (p)

Adj R2

CP—Visual WM ss 0.1607 T1 −7.0322 (<0.001) −0.9515 (0.342) −0.3013 (0.763) 0.1591
DTI −7.0622 (<0.001) −0.9511 (0.342) −1.3634 (0.174) 0.1649
Combined −7.0399 (<0.001) −0.9528 (0.342) −0.6665 (0.506) 0.1603

CP—Spatial stroop congruent 0.2288 T1 8.6156 (<0.001) −1.0080 (0.314) 2.1921 (0.029) 0.2288
DTI 8.6687 (<0.001) −1.0021 (0.317) 2.6995 (0.007) 0.2362
Combined 8.8278 (<0.001) −0.9828 (0.327) 3.9007 (<0.001)** 0.2588

CP—Spatial stroop incongruent 0.2548 T1 9.5489 (<0.001) −0.7429 (0.458) 2.6569 (0.008) 0.2700
DTI 9.5931 (<0.001) −0.7587 (0.449) 2.8817 (0.004) 0.2735
Combined 9.7197 (<0.001) −0.7378 (0.461) 3.8071 (<0.001)** 0.2903

CP—Spatial stroop numb of reps 0.2731 T1 −9.7755 (<0.001) 1.2211 (0.223) −2.2212 (0.027) 0.2753
DTI −9.8507 (<0.001) 1.2328 (0.219) −2.9614 (0.003) 0.2859
Combined −9.9891 (<0.001) 1.2198 (0.224) −3.8816 (<0.001)** 0.3027

CP—Spatial stroop incong–cong 0.1012 T1 5.7663 (<0.001) −0.6595 (0.510) 1.5611 (0.120) 0.1134
DTI 5.7466 (<0.001) −0.6678 (0.505) 0.9705 (0.333) 0.1081
Combined 5.7568 (<0.001) −0.6584 (0.511) 1.2056 (0.229) 0.1099

CP—Spatspan ls 0.3055 T1 −9.1038 (<0.001) −4.8656 (<0.001) −0.032 (0.975) 0.3009
DTI −9.1746 (<0.001) −4.9104 (<0.001) −1.5749 (0.117) 0.3077
Combined −9.1043 (<0.001) −4.8663 (<0.001) −0.075 (0.940) 0.3009

CP—Spatspan total 0.3057 T1 −9.2664 (<0.001) −4.6439 (<0.001) 0.1074 (0.915) 0.3024
DTI −9.3260 (<0.001) −4.6815 (<0.001) −1.3773 (0.170) 0.3076
Combined −9.2686 (<0.001) −4.6461 (<0.001) −0.0612 (0.951) 0.3024

CP—Coding corr 0.5387 T1 −16.7647 (<0.001) −2.5004 (0.013) −1.6149 (0.108) 0.5352
DTI −17.0893 (<0.001) −2.5467 (0.012) −3.3998 (<0.001)* 0.5510
Combined −17.0071 (<0.001) −2.5604 (0.011) −3.0056 (0.003) 0.5467

TVA—Short-term memory storage (K ) 0.2013 T1 −7.7691 (<0.001) −1.5196 (0.130) −1.1179 (0.265) 0.1981
DTI −7.8117 (<0.001) −1.5383 (0.125) −2.0302 (0.043) 0.2070
Combined −7.7525 (<0.001) −1.5195 (0.130) −0.9537 (0.341) 0.1970

TVA—Perceptual threshold (t 0) 0.0764 T1 5.7303 (<0.001) −1.9470 (0.053) 0.9617 (0.337) 0.1141
DTI 5.7333 (<0.001) −1.9444 (0.053) 1.1066 (0.270) 0.1152
Combined 5.7523 (<0.001) −1.9587 (0.051) 1.8346 (0.068) 0.1226

TVA—Processing speed (C) 0.1304 T1 −4.6692 (<0.001) 0.3969 (0.692) 0.8093 (0.419) 0.0723
DTI −4.6800 (<0.001) 0.4053 (0.686) 0.1402 (0.889) 0.0699
Combined −4.6827 (<0.001) 0.3944 (0.694) 0.8916 (0.374) 0.0728

Cluster 1 0.2470 T1 −7.1741 (<0.001) −5.1567 (<0.001) −0.1927 (0.847) 0.2440
DTI −7.1623 (<0.001) −5.1410 (<0.001) 0.3683 (0.713) 0.2443
Combined −7.1805 (<0.001) −5.1641 (<0.001) −0.3879 (0.699) 0.2443

Cluster 2 0.1720 T1 −7.2680 (<0.001) 1.6030 (0.110) −0.1013 (0.919) 0.1687
DTI −7.2785 (<0.001) 1.6062 (0.110) −0.6549 (0.513) 0.1701
Combined −7.2740 (<0.001) 1.6104 (0.109) −0.6382 (0.524) 0.1700

Cluster 3 0.0698 T1 −2.0177 (0.045) −3.9824 (<0.001) −0.8103 (0.419) 0.0686
DTI −2.0337 (0.043) −3.9969 (<0.001) −1.84 (0.067) 0.0783
Combined −2.0185 (0.045) −3.9877 (<0.001) −0.9765 (0.330) 0.0697

(continued on next page)
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Table 2 (continued)

Test Adj R2

no-BAG
BAG Main effect age

t (p)
Main effect sex
t (p)

Main effect BAG
t (p)

Adj R2

Cluster 4 0.2783 T1 −10.1319 (<0.001) 1.2314 (0.219) −2.5436 (0.012) 0.2937
DTI −10.1479 (<0.001) 1.2377 (0.217) −2.5207 (0.012) 0.2933
Combined −10.3013 (<0.001) 1.2196 (0.224) −3.6163 (<0.001)* 0.3113

Cluster 5 0.1772 T1 −6.8872 (<0.001) −2.5902 (0.010) −1.1084 (0.269) 0.1779
DTI −6.8667 (<0.001) −2.5805 (0.010) −0.5825 (0.561) 0.1750
Combined −6.9577 (<0.001) −2.6481 (0.009) −1.9103 (0.057) 0.1858

Cluster 6 0.5092 T1 −15.9345 (<0.001) −1.1148 (0.266) −1.8971 (0.059) 0.5145
DTI −15.9719 (<0.001) −1.1080 (0.269) −2.0875 (0.038) 0.5160
Combined −16.0156 (<0.001) −1.1196 (0.264) −2.459 (0.015) 0.5193

Cluster 7 0.1399 T1 −6.4852 (<0.001) −0.7736 (0.440) −0.3433 (0.732) 0.1369
DTI −6.5210 (<0.001) −0.7689 (0.443) −1.6007 (0.111) 0.1452
Combined −6.4926 (<0.001) −0.7759 (0.439) −0.63 (0.529) 0.1379

Notes.
*FDR significant.
**Bonferroni significant.
MoCA, Montreal Cognitive Assessment; WASI, Wechsler Abbreviated Scale of Intelligence; CVLT, California Verbal Learning Test; STROOP, Delis-Kaplan Executive Func-
tion System (D-KEFS) color word interference test; CP, Cognitive Assessment at Bedside for iPAD (CabPAD); WM, working memory; TVA, Theory of Visual Attention; ls,
longest serie; ss, sum scores; tot, total.

Brain age prediction
For the age prediction models, our results demonstrated that the 11 different combinations
of FreeSurfer based morphometric measures (regional cortical thickness, surface area and
volume) and white matter microstructure features (diffusion tensor imaging (DTI) based
fractional anisotropy and mean, radial and axial diffusivity) across the brain age models
accurately predicted the age of an individual with a mean absolute error between 6.14 and
10.23 years. Brain morphometry and white matter microstructure models had a MAE of
6.76 and 7.28 respectively, which correspond with previous publications (Cole et al., 2016;
Han et al., 2014; Valizadeh et al., 2017). In general, combining features and modalities
increased the performance, and the highest performing model included a combination
of both brain morphometry and white matter microstructure (mean absolute error of
6.14 years). Moreover, the correlations between the different brain age gaps suggested a
relatively low level of shared variance (mean correlation = 0.51, SD = 0.13). Together
these findings support the notion that tissue specific brain age models capture biologically
distinct information. This is in line with the characteristic lifespan patterns of global linear
decreases in gray matter volume and the nonlinear trajectories of total white matter volume
and DTI based metrics of white matter microstructure (Cox et al., 2016; Fjell et al., 2013;
Ge et al., 2002; Liu et al., 2017; Raz et al., 2010; Westlye et al., 2010b), highlighting that the
different compartments carry unique biological information and that combining different
modalities lead to a better estimation of the age of individuals (Cherubini et al., 2016; Liem
et al., 2017;Madan & Kensinger, 2018).

Cognitive associations
We performed a comprehensive cognitive assessment of the test sample, confirming
previous evidence of substantial age-related differences in cognitive performance across
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Figure 5 Heatmap of the association between cognitive scores and brain age gaps. The color scale de-
picts the minus log of the p-values (−log10(p)) for each association. The association marked with a small
star represents significant associations after FDR correction, and the one marked with a big star shows sig-
nificant associations after Bonferroni correction. Table S2 provides detailed overview of all abbreviations
used.

Full-size DOI: 10.7717/peerj.5908/fig-5

Figure 6 Scatter plots of the 2 strongest associations between cognitive measures and BAG. (A) Asso-
ciation between Spatial stroop congruent reaction time and BAG. (B) Association between Spatial stroop
number of responses and BAG. The color gradient represents the age where lighter color is assigned to
older individuals, and darker color to younger individuals. All associations indicate worse performance
with higher brain age gap.

Full-size DOI: 10.7717/peerj.5908/fig-6
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a range of tests and domains. Hierarchical clustering of the cognitive features indicated a
characteristic pattern of covariance, largely reflecting broad cognitive domains, including
memory and learning, visual processing speed, verbal skills, attentional and executive
control, reasoning and psychomotor speed, and working memory. Ninety percent of the
included cognitive features showed age-differences, with the largest effect sizes observed
for speed-based measures, such as symbol coding test, which measures mental and visuo-
motor speed (Willer et al., 2016). This is in line with the well-established literature on
age-related decline in information processing speed in healthy aging (Bennett et al., 2010;
Craik & Salthouse, 2008; Harada, Natelson Love & Triebel, 2013). Importantly, not only
tasks measuring reaction time, but also various TVA measures based on computational
modeling, such as short-term memory storage (K ), processing speed (C), and perceptual
threshold (t 0) showed strong associations with age, in line with previous studies (Espeseth et
al., 2014;Habekost, 2015;Habekost et al., 2013;McAvinue et al., 2012;Wiegand et al., 2018).

Based on the assumption that brain age captures variance related to the integrity of the
brain, we anticipated that adults with an over-estimated age would show lower cognitive
performance, and that the tissue-specific brain age models would show partly differential
sensitivity. To test these hypotheses, we used linear models to explore the associations
between cognitive performance and BAG, with age and sex as covariates, and directly
compared the parameter estimates from the different brain age models. We found a
significant association between performance on several tests and BAG beyond the age
associations, indicating lower performance in individuals with higher BAG. Briefly, one
significant association was found for WM DTI, five for combined BAG, two for the sub-
volume, one for the RD and one for the MD BAG. The strongest associations were found
with the spatial Stroop congruent trials, and number of responses. These findings support
that the deviance between the estimated age and the chronological age captures relevant
biological information regarding the cognitive performance of an individual. Whereas we
found no significantly different associations between brain age models, the association
with symbol digit coding test was only seen for WM DTI BAG, while associations with
Stroop 3 and 4 were observed only for sub-volume BAG, suggesting some specificity that
should be investigated in future studies including larger samples and a broader spectrum
of mental health, cognitive and brain phenotypes, both across healthy and clinical samples.
We speculate that the contributions of the different modalities in predicting age and the
associations with both cognitive performance, but also age-related illnesses vary across
the age-span, as it does during maturational age (Brown et al., 2012). Thus, future studies
might benefit from investigating modality specific brain-age estimation using specific age
range, including children and adolescents.

Limitations
The present findings do not come without limitations. First, although reducing the
dimensionality of complex brain imaging data to a biologically informative brain age is
a powerful method to assess deviations from normal lifespan trajectories in brain health,
findings from this data reduction method are limited in specificity. Here, we attempted
to both reduce the complexity of the information while keeping some modality specificity
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measured by different MRI parameters. Finding a balance between specificity and precision
represents an interesting challenge for future studies. Moreover, causality and individual
level trajectories cannot be established based on cross-sectional data. Therefore, future
longitudinal studies are needed to inform us about the relevance of the differential
trajectories of the tissue-specific brain age prediction with implications for the study
of a range of brain disorders. Next, although the age distribution of the test sample is
irrelevant for the individual prediction accuracy, the relative overrepresentation of older
individuals in the test sample is a limitation when investigating interactions between BAG
and age. Thus, although the lack of brain by BAG interactions on cognitive function did
not support our hypothesis that increased BAG is more relevant for cognitive function
among the elderly, future studies including individuals across a broader age range and
range of function are needed to characterize the lifespan dynamics in the associations
between brain and behavior. More specifically, including children and adolescents would
be necessary to characterize the transition between development and aging, i.e., the point
of inflection from which the sign of the effects are assumed to change, an important
phase that requires further investigations. Moreover, although we covered a relatively
broad spectrum of structural brain features, the link between imaging based indices of
brain structure and brain function is elusive, and brain age models including other brain
imaging features, including functional measures, might provide a sensitive supplement to
the current models. Lastly, whereas the results showed some numerical differences in the
cognitive sensitivity of the different combinations of FreeSurfer based morphometry and
white matter microstructure models, these differences were not statistically significant, and
the hypothesis that tissue specific models provide increased specificity in terms of cognitive
associations remains to be further explored in future studies.

In conclusion, we have demonstrated that models based on different combinations of
brain morphometry and white matter microstructural indices provide partly differential
information about the aging brain, emphasizing the relevance of tissue-specific brain age
models in the study of brain and mental function in health and disease.
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