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We present PromoterPredict, a dynamic multiple regression approach to predict the

strength of Escherichia coli promoters binding the σ70 factor of RNA polymerase. σ70 

promoters are ubiquitously used in recombinant DNA technology, but characterizing their

strength is demanding in terms of both time and money. We parsed a comprehensive

database of bacterial promoters for the –35 and –10 hexamer regions of σ70-binding

promoters and used these sequences to construct the respective position weight matrices

(PWM). Next we used a well-characterized set of promoters to train a multivariate linear

regression model and learn the mapping between PWM scores of the –35 and –10

hexamers and the promoter strength. We found that the log of the promoter strength is

significantly linearly associated with a weighted sum of the –10 and –35 sequence profile

scores. We applied our model to 100 sets of 100 randomly generated promoter sequences

to generate a sampling distribution of mean strengths of random promoter sequences and

obtained a mean of 6E-4 ± 1E-7. Our model was further validated by cross-validation and

on independent datasets of characterized promoters. PromoterPredict accepts –10 and –35

hexamer sequences and returns the predicted promoter strength. It is capable of dynamic

learning from user-supplied data to refine the model construction and yield more robust

estimates of promoter strength. PromoterPredict is available as both a web service (

https://promoterpredict.com ) and standalone tool ( https://github.com/PromoterPredict ).

Our work presents an intuitive generalization applicable to modelling the strength of other

promoter classes.
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14 Abstract: We present PromoterPredict, a dynamic multiple regression approach to 

15 predict the strength of Escherichia coli promoters binding the σ70 factor of RNA 

16 polymerase. σ70  promoters are ubiquitously used in recombinant DNA technology, but 

17 characterizing their strength is demanding in terms of both time and money. We parsed 

18 a comprehensive database of bacterial promoters for the –35 and –10 hexamer regions 

19 of σ70-binding promoters and used these sequences to construct the respective position 

20 weight matrices (PWM). Next we used a well-characterized set of promoters to train a 

21 multivariate linear regression model and learn the mapping between PWM scores of the 

22 –35 and –10 hexamers and the promoter strength. We found that the log of the 

23 promoter strength is significantly linearly associated with a weighted sum of the –10 

24 and –35 sequence profile scores.  We applied our model to 100 sets of 100 randomly 

25 generated promoter sequences to generate a sampling distribution of mean strengths of 

26 random promoter sequences and obtained a mean of 6E-4 ± 1E-7. Our model was 

27 further validated by cross-validation and on independent datasets of characterized 

28 promoters. PromoterPredict accepts –10 and –35 hexamer sequences and returns the 

29 predicted promoter strength. It is capable of dynamic learning from user-supplied data 

30 to refine the model construction and yield more robust estimates of promoter strength. 

31 PromoterPredict is available as both a web service (https://promoterpredict.com) and 

32 standalone tool (https://github.com/PromoterPredict). Our work presents an intuitive 

33 generalization applicable to modelling the strength of other promoter classes. 
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34 INTRODUCTION

35

36 The primary E. coli promoter-specificity factor and the one widely used in recombinant 

37 DNA technology is the σ70 factor. Promoters recognized by σ70-containing RNA 

38 polymerase are called core promoters and share the following features: two conserved 

39 hexamer sequences, separated by a non-specific spacer of ideally 17 nucleotides. The two 

40 hexamers are located ~ 35 bp and ~10 bp upstream of the transcription start site, and 

41 are called the –35 and –10 sequences respectively (Maquat and Reznikoff, 1978; Bujard, 

42 1980; Paget and Helmann, 2003; Kadonaga, 2012). –35 and –10 sequences matching 

43 the consensi motifs (TTGACA and TATAAT, respectively) are known as canonical 

44 hexamers  (Galas, et al. 1985; Deuschle, et al. 1986; Stormo, 1990). It is known that the 

45 conserved hexamer regions are vital for recognizing and optimizing the interactions 

46 between DNA and the RNA polymerase (Hawley and McClure, 1983; Knaus and Bujard, 

47 1990; Hook-Barnard et al., 2006; Feklistov and Darst, 2011; Basu et al., 2014). 

48 Theory has yielded a linear relationship between the total promoter score and the 

49 natural log of promoter strength (Berg and von Hippel, 1987; Li and Zhang, 2014). 

50 Nucleotide occurence frequencies were first used by Weller and Recknagel (1994) in 

51 promoter strength prediction. Additivity in promoter-polymerase interaction has been 

52 affirmed by Stormo and colleagues (2002). Patterns in σ70 promoters have been 

53 quantified by Huerta and Collado-Vides (2003). Strength of E. coli σE RNA polymerase 

54 promoters  were studied by  Rhodius and Mutalik (2010). . The complexity of E. coli σ70 

55 promoter sequences has been treated from an information theoretic standpoint by 

56 Shultzaberger et al. (2007). More recently, an SVM model has been successfully applied 

57 to predicting the strength of a mutation library of E coli Trc promoter sequences (Meng, 

58 et al., 2017). One drawback with an SVM or ANN machine learning model is the 'black-

59 box' approach; i.e, the absence of any mechanistic insights that could be gleaned with 

60 respect to the relationship between promoter sequence and strength. Such an 

61 understanding could be vital in the prediction of promoter strengths in different 

62 contexts, as well as the forward design of promoters in finely-tuned genetic circuits (for 

63 e.g, see Endy, 2005; De Mey, et al. 2007; Salis, et al 2009; Li and Zhang, 2014). Many 

64 freely available resources predict the location of promoters in a genomic sequence 

65 mainly by identifying the –10 and –35 regulatory sequences (for e.g, de Jong et al. 

66 (2012)), but very few tools are available to predict the strength of such sequences. One 

67 tool provides qualitative predictions ('strong' or not) of promoter strength based on the 

68 occurrence of a triad pattern (Dekhtyar et al., 2008), and is available as a macro. Here 

69 we present a two-step approach to the predictive modelling of the strength of σ70 core 

70 promoters, and a companion web-based platform and Python standalone tool that 

71 implement our method along with the option to dynamically include user data into the 

72 prediction model. Our implementation is the first freely available tool/web-server for 

73 the quantitative prediction of promoter strength. 
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74 METHODS 

75

76 Generative model of promoter sequences. A generative model of the –10 and –35 

77 promoter sequences is constructed using two Position Weight Matrices (PWM–10 and 

78 PWM–35) in the following manner. A comprehensive set of σ70-binding promoter 

79 sequences was extracted from the RegulonDB (Gama-Castro et al., 2016). For each 

80 promoter sequence, we extracted a –35 region of 13 nucleotides centered at –35 

81 position, and a –10 region of 13 nucleotides centered at the –10 position, to allow for 

82 uncertainties in the precise position of occurrence of the hexamers. For each –35 region, 

83 we used FIMO  (Grant et al., 2011) to find the best match to the consensus –35 motif, 

84 and similarly for the –10 regions, to obtain a dataset of –35 and –10 hexamer 

85 sequences. This dataset was then filtered for only significant hits to the consensi motifs 

86 (p-value < 0.05) and the resulting dataset was used to determine the weights of each 

87 nucleotide at each position of the –35 and –10 hexamers.  Nucleotide-wise counts at 

88 each position of the hexamer motifs were augmented by a pseudo-count prior to correct 

89 for E. coli GC content of 50.8% and the resulting frequency matrices were converted into 

90 log-odds matrices. Biopython routines (www.biopython.org) were used.

91

92 Linear modelling of promoter strength. Following Berg and von Hippel (1987), 

93 we modelled the relationship between the promoter sequences and the ln of the 

94 promoter strength using multiple linear regression. The training set of 18 promoters is 

95 drawn from the Anderson library of  activator-independent plasmid tet promoter 

96 variants maintained at the Registry of standard biological parts 

97 (http://parts.igem.org/Promoters/Catalog/Anderson). Each promoter sequence is 

98 scored with respect to the generative models of the    –10 and –35 motifs (i.e., the PWM–

99 10 and PWM–35 matrices) and the two scores obtained formed the feature space of the 

100 regression modelling. The regression coefficients to be determined represent the 

101 weights of the -10 and -35 regions in the regression analysis.  The Anderson library 

102 provided promoter strengths spanning two orders of magnitude and normalized in the 

103 range 0.00 to 1.00 with respect to the strongest (i.e, reference) promoter. It was noted 

104 that the normalisation step would not affect a linear relationship, altering only the 

105 constant of the regression. The normalised strength values were log-transformed to 

106 obtain the required response variable values. Since the ln function rapidly descends 

107 towards – Inf with decreasing promoter strength, we capped the infimum of promoter 

108 strength at 0.0001 prior to log-transformation. The least-squares cost function was 

109 minimized using iterative gradient descent. The model parameters were assessed using 

110 t-statistics, and the overall model was assessed using F-statistic and the adjusted 

111 multiple coefficient of determination given by:

112 Adj. R2 =  1 – {(1-R2)*[(n-1)/(n-m-1)]} …(1)
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113 where m is the number of features and n is the number of instances. The adjustment is a 

114 penalty for increasing model complexity. 

115 Model validation. The model of promoter strength was validated in three ways:

116 (i) The model was validated using leave-one-out cross-validation (LOOCV) .

117 (ii) We generated 100 sets of 100 randomly generated promoter sequences each, using 

118 the sample function in Python. From the obtained sampling distribution of mean 

119 strengths of random promoter sequences, we calculated the estimate of the true mean 

120 strength of a random promoter sequence, together with its standard error.

121 (iii)  We further validated our model on independent datasets of characterized 

122 promoters available in Davis et al. (2011), Dekhtyar et al,(2008), and Dayton et al, 

123 (1984) .

124 RESULTS 

125 The entire datasets of 1004 –35 hexamers and 1046 –10 hexamers parsed out of 

126 RegulonDB are available as Supplementary Information. The conservation profiles of 

127 the extracted –35 and –10 hexamer sequences of the promoters in the RegulonDB were 

128 visualized and shown in Fig. 1.  Based on these PWMs, the site scores of each promoter 

129 sequence in the Anderson library were regressed on the corresponding ln of the 

130 promoter strength. A summary of this process with the training data, log-

131 transformation of the promoter strength and predicted response values is presented in 

132 Table 1. The modelling process converged within 105 iterations by tuning the gradient 

133 descent  to a learning rate (α) of 0.015, and the following model was obtained:

134 ln (promoter strength) = -5.1046 + 0.4271*(PWM–35) + 0.2726*(PWM–10) …(2)

135 We derived an independent solution of the multiple regression using R (www.r-

136 project.org) and obtained a correlation coefficient of 0.998 between the fitted values of 

137 the two models.  The interval estimates of the coefficients of the regression were 

138 computed in R using confint(fit, level=0.95), and obtained the following 95% 

139 confidence intervals: 

140

141 Intercept :  (-6.4974449, -3.7118421)

142 PWM_35  :     (0.2445358, 0.6095848)

143 PWM_10 :       (0.1434939, 0.4017307)
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144 The interval estimates did not include zero, and this implied that the coefficients were 

145 significant at the 0.05 level. In fact, all the three estimates were significant at a p-value 

146 of 1E-3. The F-statistic of the overall regression was significant at a p-value of 2E-4 and 

147 adj. R2 was ≈ 0.65. The plane of best fit corresponding to the above model is visualized 

148 in Fig. 2. 

149 The model was then cross-validated using a 18-fold LOOCV (similar to jack-knife). 

150 Cross-validation yielded a correlation coefficient of ~0.76 (Table 2). We sought to 

151 benchmark our model on a negative test set by generating random –35 and –10 

152 hexamer sequences. To this end, we applied our model to 100 sets of 100 random 

153 promoter sequences each (available in Supplementary Information) and estimated the 

154 true mean of the sampling distribution as 0.00055. The standard error of the estimate 

155 was 1.04E-7. The low predicted strength along with the very small standard error 

156 indicated that the model predicted these instances to be non-promoter sequences with 

157 good certainty. This affirmed the specificity of our model for true promoters.

158 To validate our model further on true promoter sequences and experimentally 

159 characterized promoter strengths, we used datasets available in the literature and 

160 compared the predicted strength with the experimental results and examined their 

161 concordance. The following results were obtained:

162 (i) For the 10 promoters discussed by Sauer and colleagues (2011), we ranked the 

163 promoters in Table 1 of the same reference according to their strengths and observed a 

164 1000-fold span of promoter strengths, 1E-3 to 1 (Table 3). Promoters 2 and 3 were 

165 identically strong, hence we took the average of their predicted strengths in ranking the 

166 promoters. With this arrangement, we found that the predicted order of promoters in 

167 terms of strength exactly reproduced the experimentally characterized order. Despite 

168 the fact that Anderson library and these promoters were characterized and normalized 

169 using different systems, the model was able to predict surprisingly well across a 

170 promoter strength spectrum spanning three orders of magnitude.

171 (ii) Next, we applied our model to the set of 13 strong promoter candidates of T. 

172 maritima discussed in Dekhtyar et al, (2008). Using the hexamer sequences provided in 

173 Fig. 5 of the same reference , we applied our model and obtained quantitative 

174 predictions of promoter strengths (Table 4). Almost all the promoters had predicted 

175 strengths > 0.38 and promoters with canonical hexamers even had strengths > 1.00. 

176 One promoter (TM0032) was predicted as 'weak' with a strength ~0.056 and seemed to 

177 point to an apparent anomaly in the relationship between promoter sequence and 

178 strength, possibly highlighting the need for further experimentation on this promoter. 

179 Our observations were corroborated by Fig. 4 in the same reference that showed the 

180 least and greatly reduced expression from this particular promoter. These results taken 

181 in conjunction with the results on random promoter sequences affirmed the ability of 
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182 our model to discriminate between promoters at opposite ends of the strength 

183 spectrum.

184 (iii) We also applied our model on the five promoters discussed in Dayton et al, (1984). 

185 Of these, the first three are known as “major” promoters that are active even at low 

186 concentrations of the polymerase, whereas the last two are “minor”, less strong 

187 promoters that are only active when the polymerase is present at high concentrations. 

188 We applied our model on the promoter sequences found in Fig. 5 of the same reference 

189 and found the predictions in line with the nature of these promoters (Table 5). The 

190 activity of the least strong “major” promoter is about two times more than the activity of 

191 the strongest “minor” promoter. Hence our modelling approach was able to 

192 discriminate between major and minor promoters. 

193

194 DISCUSSION

195 In addition to the independent contributions of –35 and –10 sites to promoter strength, 

196 we were interested in exploring if any interactions between them could contribute to 

197 promoter strength. To this end, we examined the following model in R:

198 lm(logStrength ~ PWM35 * PWM10)

199 where PWM35 and PWM10 represent the corrresponding site scores. This model 

200 resulted in a lower adj. R2 value than that without any interactions. Further, the p-value 

201 of the PWM10 score dropped below significance (0.31), and the interaction term turned 

202 out to be totally insignificant (p-value: 0.97),  thus discounting any interaction between 

203 the sites in the present dataset. On this basis, the null hypothesis of absence of any 

204 interaction could not be rejected, and we concluded that there is little evidence for 

205 interaction between the –35 and –10 sites in contributing to promoter strength.

206 Our model assumed that both the predictors carried independent information about the 

207 promoter strength, and together they are able to provide sufficient information about 

208 the strength. The basis of this assumption was probed to determine if both predictors 

209 are necessary to the model. Could one predictor provide sufficient information about the 

210 promoter strength in the absence of the other? There are at least three angles to address 

211 this question, and all of them were considered to interpret the model better. 

212 (1) Comparing the raw, unadjusted R2 with the adjusted R2. The corresponding values 

213 were:

214 R2 ≈  0.69

215 Adj. R2 ≈ 0.65
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216 Since there is not much difference between R2 and adj. R2, we could say that both 

217 predictors contribute substantially to the response variable (promoter strength) and 

218 account for about 65% of its variance.

219 (2) Since the p-values of both predictors are significant, it would be interesting to 

220 observe their effect on the response variable in more detail. This was performed using 

221 the effects package in R:

222 library(effects)

223 fit = lm(logStrength~ PWM35+ PWM10, data)

224 plot(allEffects(fit))

225 The results are shown in Fig. 3 where the PWM scores are plotted against the level of 

226 confidence in the predicted response. Confidence in the effect of –35 site increases with 

227 the score from 0 to about 7, and then is susceptible to edge effects as the score reaches 8.  

228 Confidence in the effect of the –10 site increases with the score from -4 to about 5, and 

229 then is susceptible to edge effects as the score reaches 10. 

230 (3) Another way to address the question is to compute the correlation coefficients 

231 between all the variables of interest, including a variable with the combined effects of –

232 35 and –10 sites. This is shown in Table 6. Three features were used, namely PWM—10 

233 score, PWM—35 score, and the combined score (i.e., PWM—10 + PWM—35). These feature 

234 variables were correlated with two response variables, namely promoter strength and its 

235 corresponding log transformation. It was first observed that the PWM—10 and PWM—35 

236 scores were anti-correlated with each other (correlation coefficient = -0.37), thus 

237 supporting the hypothesis that they are two independent features that could compensate 

238 for each other in determining promoter strength. It was significant that the each feature 

239 was better correlated with the log of the strength than the strength itself. We tried to 

240 regress the strength on the PWM scores, but the model had a very low adj. R2 (≈0.40) 

241 and the intercept term was not significant at the 0.05 level. Further, the highest 

242 correlation between the features and response variable was observed between the 

243 combined score and log of the promoter strength (~0.79), but the combined score 

244 showed only a moderate correlation with the promoter strength prior to log 

245 transformation (~0.63). This was in keeping with similar observations for the strength 

246 of σE promoters (Rhodius and Mutalik, 2010).  and underscored the logarithmic 

247 dependence between the promoter strength and sequence.

248 Finally, the assumptions of linear modelling were investigated with reference to our 

249 problem. Model diagnostics of four basic assumptions were plotted (shown in Fig. 4). 

250 Specifically:
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251 Plot A: The residuals were plotted against the fitted values. No trend was visible in the 

252 plot, indicating the residuals did not increase with the fitted values and followed a 

253 random pattern about zero. This validated the assumption that the errors were 

254 independent.

255 Plot B: The square root of the relative error (standardized residual) was plotted against 

256 the fitted value. An almost flat trend was observed, indicating that the standardized 

257 residual did not vary with the fitted value.  This further validated the assumption that 

258 the errors were independent. 

259 Plot C: To test the assumption that the errors were normally distributed, the 

260 standardized residuals were plotted against the theoretical quantiles of a normal 

261 distribution. The residual distribution closely followed the theoretical quantiles, except 

262 for minor deviations towards the tails of the distribution. . 

263 Plot D: Since the least-squares cost function is sensitive to outliers, the number of 

264 outliers should be kept to a minimum. This was investigated by plotting the 

265 standardized residual against the corresponding instance's model leverage. This plot 

266 showed that there were no significant outliers in the dataset that could exert an undue 

267 influence on the regression parameters. 

268 An alternative univariate regression model using only the combined score of the PWMs 

269 found the coefficient of regression and the F-statistic significant (both p-values ≈ 10-4). 

270 However, the adj. R2 of the model (≈0.59) was much lower than that for eq. (2), so the 

271 original multiple linear regression model was retained for the estimation of the 

272 promoter strength. 

273 In summary, our model performed equally well on datasets of strong promoter 

274 sequences and datasets of weak random promoter sequences. Our model was consistent 

275 in detecting promoter strengths across a 1000-fold span of promoter strengths in E. coli 

276 as well as the promoter strengths of a different species, T. maritima. The model was 

277 further able to discriminate between the major and minor promoters of bacteriophage 

278 T7.

279 Based on these results, an open-access open-source web server and standalone tool 

280 offering the prediction service have been implemented .  Since the linear modelling 

281 results are dependent on the dataset, our implementation provides a facility to augment 

282 the learning based on user-provided inputs.  The web interface is based on Python web 

283 module (web.py) and nginx server. The computational layer is based on numpy, 

284 Biopython and matplotlib. The user is provided with an option to add any number of 

285 promoter instances with –10 and –35 sequences and the corresponding strengths to 

286 augment the training data of the supervised model. The measurement of promoter 

287 strength could be done in the manner of Kelly, et al. (2009), where the GFP (reporter 
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288 gene) synthesis rate is measured per unit biomass, and this could be normalized relative 

289 to the reference promoter. In order to assess the goodness of fit of the updated model, 

290 the R-squared value is re-computed, along with the 3D plot of the regression surface. 

291 This would enable the user to decide whether the data added to the model has improved 

292 its performance for further experiments with the software. Based on the trained model, 

293 the user could predict the strength of an uncharacterised promoter given its –10 and –

294 35 hexamers. 

295 CONCLUSION

296 The following important conclusions were drawn from our study. (1) Sequence-based 

297 modelling yielded a non-linear, logarithmic dependence between promoter strength and 

298 sequence. (2) The model was able to discriminate equally well between strong/major 

299 promoters and weak/minor/random promoter sequences, indicating successful learning 

300 of the essential features of promoter strength prediction. (3) The combined score 

301 (PWM–35 + PWM–10) emerged as the single most important predictor of the promoter 

302 strength. Our model yielded robust quantitative prediction across a 1000-fold span of 

303 promoter strengths. It is straighforward to extend our methodology to the study of new 

304 promoter classes of other σ factors. Our implementation and web service could be useful 

305 in characterizing promoters identified in genome sequencing projects as well in 

306 engineering promoters for the design of finely-tuned genetic circuits in synthetic 

307 biology. The dynamic feature of our implementation would enable users to incorporate 

308 their own data into the model and obtain more reliable estimates of promoter strength. 

309 The service will be periodically updated based on the availability of new training 

310 instances, user input data and/or models for promoters of other σ factors. 

311
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Figure 1

Sequence logos of the –35 and –10 hexamers of the selected RegulonDB promoters.

Figure was made using WebLogo (Crooks et al., 2004).
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Figure 2(on next page)

The regression surface of the estimated model with the training data points(red).

X- and y-axes represent PWM scores and the z-axis (vertical) represents the predicted

ln(promoter strength).
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Figure 3

Effects plots of –35 and –10 promoter sites on promoter strength.
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Figure 4

Model diagnostics plots for investigating the assumptions underlying linear modelling.
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Table 1(on next page)

Summary of promoter information.

The promoter activities (strengths) are seen to span two orders of magnitude in the range

[0.0, 1.0]. The promoters follow the naming in the Anderson dataset.

PeerJ reviewing PDF | (2018:04:27233:2:1:NEW 14 Sep 2018)

Manuscript to be reviewed



Promoter -35 hexamer -10 hexamer Promoter 

Activity

ln(Promoter 

Activity)

Predicted 

ln(Promoter 

Activity)

BBa_J23100 TTGACG TACAGT 1 0 -1.6336486579

BBa_J23101 TTTACA TATTAT 0.7 -0.35667494 0.0555718065

BBa_J23102 TTGACA TACTGT 0.86 -0.15082289 -1.0957849491

BBa_J23104 TTGACA TATTGT 0.72 -0.32850407 0.1647181133

BBa_J23105 TTTACG TACTAT 0.24 -1.42711636 -2.2871659092

BBa_J23106 TTTACG TATAGT 0.47 -0.75502258 -1.3174788735

BBa_J23107 TTTACG TATTAT 0.36 -1.02165125 -1.0266628468

BBa_J23108 CTGACA TATAAT 0.51 -0.67334455 -0.4282477098

BBa_J23109 TTTACA GACTGT 0.04 -3.21887582 -3.3693144659

BBa_J23110 TTTAGG TACAAT 0.33 -1.10866262 -3.3946866337

BBa_J23111 TTGACG TATAGT 0.58 -0.54472718 -0.3731455955

BBa_J23112 CTGATA GATTAT 0.01 -4.60517019 -3.1533888284

BBa_J23113 CTGATG GATTAT 0.01 -4.60517019 -4.2356234817

BBa_J23114 TTTATG TACAAT 0.1 -2.30258509 -2.5943689001

BBa_J23115 TTTATA TACAAT 0.15 -1.89711998 -1.5121342469

BBa_J23116 TTGACA GACTAT 0.16 -1.83258146 -1.5897942167

BBa_J23117 TTGACA GATTGT 0.06 -2.81341072 -1.1644781255

BBa_J23118 TTGACG TATTGT 0.56 -0.5798185 -0.91751654

1
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Table 2(on next page)

Cross-validation results.

In each fold of cross-validation, the instance corresponding to the fold was designated as the

test instance while the prediction model was built using the rest of the instances. This

process was repeated 18 times, once for each test instance and the cross-validation (CV)

residuals were obtained. combined, sum of the PWM scores; cvpred, predicted log strength of

the test instance; cvres, cross-validation residual.
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Fold PWM_35 PWM_10 combined logStrength cvpred cvres

1 6.5966 2.398 9 0 -1.757 1.757

2 6.9195 8.089 15.01 -0.357 0.145 -0.50

3 9.1308 0.402 9.53 -0.151 -1.3 1.15

4 9.1308 5.025 14.16 -0.329 0.286 -0.62

5 4.3854 3.465 7.85 -1.427 -2.36 0.93

6 4.3854 7.022 11.41 -0.755 -1.377 0.62

7 4.3854 8.089 12.47 -1.022 -1.027 0.00

8 4.5119 10.086 14.6 -0.673 -0.362 -0.31

9 6.9195 -4.474 2.45 -3.219 -3.463 0.24

10 4.3854 5.462 9.85 -1.109 -1.792 0.68

11 6.5966 7.022 13.62 -0.545 -0.349 -0.20

12 2.5179 3.213 5.73 -4.605 -2.847 -1.76

13 -0.0162 3.213 3.2 -4.605 -3.977 -0.63

14 2.3914 5.462 7.85 -2.303 -2.646 0.34

15 4.9255 5.462 10.39 -1.897 -1.485 -0.41

16 9.1308 -1.411 7.72 -1.833 -1.518 -0.32

17 9.1308 0.15 9.28 -2.813 -0.796 -2.02

18 6.5966 5.025 11.62 -0.58 -0.944 0.36

1
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Table 3(on next page)

Validation results: using data of Davis et al., (2011).

The promoters were ordered based on the rank of their strength, and given as input to our

model. The predicted promoter log strengths were then examined for agreement with the

actual rank and the ordering obtained matched the original ordering. The individual predicted

values for pro2 and pro3 were 0.0024 and 0.059, respectively.
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Actual rank Promoter -35 sequence -10 sequence Strength Predicted 

exp(logStrength)

Predicted 

rank

1 pro1 tttacg gtatct 0.009 0.0079073845 1

2.5 pro2 gcggtg tataat 0.017 0.0306978849 2.5

2.5 pro3 ttgacg gaggat 0.017 0.0306978849 2.5

4 proA tttacg taggct 0.03 0.0482647297 4

5 pro4 tttacg gatgat 0.033 0.0809816409 5

6 pro5 tttacg taggat 0.05 0.0867400443 6

7 proB tttacg taatat 0.119 0.1534857959 7

8 pro6 tttacg taaaat 0.193 0.2645364297 8

9 proC tttacg tatgat 0.278 0.3059490889 9

10 proD tttacg tataat 1 0.6173668247 10

1
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Table 4(on next page)

Validation with T. maritima strong promoter candidates.
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Promoter -35 sequence -10 sequence Strength Predicted 

exp(logStrength)

Predicted class

TM0373 ttgaca tataat Strong 4.6845788997 Strong

TM1016 ttgaat tttaat Strong 0.3808572257 Strong

TM1272 ttgaca tttaat Strong 1.6386551999 Strong

TM1429 ttgaca tataat Strong 4.6845788997 Strong

TM1667 ttgaaa tataat Strong 2.5859432664 Strong

TM1780 ttcata tataat Strong 0.463878289 Strong

Tmt11 ttgaat taaaat Strong 0.4665383797 Strong

TM0032 tcgaaa cataat Strong 0.0562167049 Weak

TM0477 ttgaat tataat Strong 1.0887926414 Strong

TM1067 ttgacc tattat Strong 0.7046782664 Strong

TM1271 ttgaca tataat Strong 4.6845788997 Strong

Tmt45 ttgaac tataat Strong 0.670434893 Strong

TM1490 ttgact taaaat Strong 0.8451600149 Strong

1
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Table 5(on next page)

Validation with major (A1, A2, A3) and minor (C, D) promoters.
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Promoter -35 sequence -10 sequence Strength Predicted 

exp(logStrength)

Predicted class

A1 ttgact gatact strong 0.2904988307 medium

A2 ttgaca taagat strong 0.9947607331 strong

A3 ttgaca tacgat strong 0.658183377 strong

C ttgacg tagtct minor 0.1452865585 minor

D ttgact taggct minor 0.1541996302 minor

1
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Table 6(on next page)

Correlation matrix of features and response variables.
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1 Table 2. Correlation matrix of features and response variables.  

Corr. Coef. PWM–35 PWM–10 Combined Strength Log-strength

PWM–35 1 -0.3715610 0.3401672 0.4558838 0.5153622

PWM–10 -0.3715610 1 0.7466500  0.3025062 0.4115533

Combined 0.3401672 0.7466500 1 0.6330488 0.7861173

Strength 0.4558838 0.3025062 0.6330488 1 0.8665495

Log-strength 0.5153622 0.4115533 0.7861173 0.8665495 1

2
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