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ABSTRACT
Pairwise evolutionary distances are a model-based summary statistic for a set of
molecular sequences. They represent the leaf-to-leaf path lengths of the underlying
phylogenetic tree. Estimates of pairwise distances with overlapping paths covary
because of shared mutation events. It is desirable to take these covariance structure
into account to increase precision in any process that compares or combines
distances. This paper introduces a fast estimator for the covariance of two pairwise
maximum likelihood distances, estimated under general Markov models. The
estimator is based on a conjecture (going back to Nei & Jin, 1989) which links the
covariance to path lengths. It is proven here under a simple symmetric substitution
model. A simulation shows that the estimator outperforms previously published ones
in terms of the mean squared error.

Subjects Computational Biology, Mathematical Biology, Molecular Biology, Statistics, Computa-
tional Science
Keywords Maximum likelihood, Pairwise distance, Covariance, Correlation, Alignment

INTRODUCTION
Phylogenetic trees are one of the most important representations of the evolutionary rela-

tionship between homologous genomic sequences. Their relatedness can be summarized

by a set of pairwise evolutionary distances representing the leaf-to-leaf path lengths of

the underlying tree. Such distances are usually estimated by maximum likelihood (ML)

assuming a Markovian model of character substitution (Yang, 2006).

Besides substitutions, a process of insertions and deletions of sequence fragments plays

a major role in the evolution of molecular sequences. As a consequence, homologous

characters—i.e., the ones related by substitutions only—have to be identified prior

to distance estimation. A consistent hypothesis of character homology is provided

by multiple sequence alignments (MSAs). However, they are hard to compute, with

non-trivial scoring schemes leading to NP complete problems (Wang & Jiang, 1994; Just,

2001; Elias, 2006). Alternatively, the sequences can be aligned pairwise, for instance, by

dynamic programming to obtain optimal pairwise alignments (OPAs) in quadratic time in

the length of the input sequences (Needleman & Wunsch, 1970).

Pairwise distance methods are generally faster and also simpler than likelihood based

approaches that operate directly on sequence data. For that reason, they have often been
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chosen as an input to large-scale genomic and phylogenetic analyses. Further, distance tree

methods are used to produce starting trees for ML tree estimation from MSAs (Guindon et

al., 2010; Stamatakis, 2014; Vinh & Von Haeseler, 2004; Gil et al., 2013) and guide trees in

progressive MSA methods (e.g., Löytynoja & Goldman, 2008; Katoh et al., 2005).

The speed benefits may affect accuracy due to a potential loss of information involved

in the reduction of the sequence data (Steel, Hendy & Penny, 1988). However, this idea has

recently been challenged in the context of tree estimation (Roch, 2010). Roch proposed

to take advantage of higher order information using the correlations among the pairwise

distances, which result from common mutation events on shared paths of the underlying

tree. Indeed, most current practical distance tree methods assume statistical independence

and do not account for distance covariance (Mihaescu & Pachter, 2008). The BioNJ

algorithm (Gascuel, 1997), which uses a first-order model of covariance, is a notable

exception. Generally, any process that compares or combines distance profits from a higher

precision when the covariance structure is taken into account.

Estimators for the covariance between pairwise ML distance estimates have been

proposed for certain mechanistic substitution models (Tajima & Nei, 1984; Nei & Jin, 1989;

Bulmer, 1989) and for general Markov models by Susko (2003). Susko’s estimator requires

an MSA and has a linear time complexity in the sequence length. Dessimoz & Gil (2008)

have derived an adaptation for OPAs with similar complexity. This paper introduces a

constant time estimator for general Markov models, applicable to OPAs and MSAs. To this

end, a conjecture (from Nei & Jin, 1989; Bulmer, 1989) for a simple symmetric substitution

model is proven and then extended to general models. In a simulation, the estimator is

evaluated and compared to previously published ones.

METHODS
Preliminaries
Denote A = {xi}

n
i=1 a pairwise alignment consisting of n homologous i.i.d. character-pairs

xi (e.g., nucleotides, amino acids, or codons, but no insertion–deletions). The likelihood of

having the two sequences in A separated by an evolutionary distance d is (Felsenstein, 1981)

L(A|d) =

n
i=1

p(xi,d), (1)

where p(xi,d) is the probability of the character-pair xi at d. The ML estimator of the true

distance dt is

d̂ = arg max
d≥0

L(A|d). (2)

While for simple mechanistic substitution models the maximum can be expressed

analytically, it is usually found numerically for empirical and complex mechanistic models

using the Newton–Raphson method. Let In(d) denote the Fisher information for d, i.e.,

In(d) = −nE


∂2

∂d2
log p(X,d)


, (3)
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Figure 1 Unrooted tree relating six sequences. The labeled sequences {i,j,k,l} define a subtree of
four sequences, a quartet. The δ’s indicate the branch lengths of the quartet, representing number of
character changes. Under Markovian substitution models the ML estimates of the pairwise distances
dij = δi + δm + δj and dkl = δk + δm + δl covary because of the δm common mutation events.

where X is a random variable of which the xi are realizations. The asymptotic variance of d̂

is provided by standard theory (e.g., Pawitan, 2001)

V(d̂) = In(dt)
−1. (4)

It can be estimated by evaluating the inverse of the Fisher information at d̂ (hereafter ML

variance)

V̂(d̂) = In(d̂)−1, (5)

or, alternatively, from A and d̂ by a sample average:

V̂A(d̂) = −
1

n


1

n

n
i=1

∂2

∂d2
log p(xi,d)


d=d̂

−1

= −


n

i=1

∂2

∂d2
log p(xi,d)


d=d̂

−1

. (6)

Dessimoz & Gil (2008) distinguished three topological relations relevant for covariance

estimation between any two pairwise distance estimates. First, the relation dependence,

where two distances share some common evolution (e.g., dij and dkl in Fig. 1). Second, the

similar relation triplet, where two distances additionally share a sequence (e.g., dij and djk).

Third, the case independence, where the distances are independent (e.g., dik and djl). Note

that the second case can be conceptually reduced to the first (with j = l and δj = δl = 0).

Further, we assume that mutation events on different edges of a tree are independent, thus,

the distances in the independence-case have zero covariance. Therefore, our derivations

will focus on the dependence-case without loss of generality.

General ML theory provides covariance estimates if all unknown parameters are

estimated jointly. For instance, in ML tree reconstruction, the variance/covariance matrix
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can be estimated from the observed Fisher information matrix. However, the estimation of

the pairwise distances considered here is done separately for each distance so that general

ML theory can not be applied. Susko (2003) has derived an interesting estimator for the

covariance of two distances d̂ij and d̂kl estimated from pairwise alignments which are

induced by an MSA. It is a sample average based on the following expression (hereafter

Susko-covariance)

cov(d̂ij,d̂kl) = nVijVklE


∂

∂d
log pij(X,d)


d=dt,ij

·
∂

∂d
log pkl(X,d)


d=dt,kl


. (7)

Here, dt,ij and dt,kl are the true distances, the random-variable X stands for quartets

of homologous characters (as opposed to pairs in Eq. (3)), and pij(X,d) denotes the

probability for the pair {i,j} in X at the distance d. The Susko-covariance has two

limitations. First, it requires an MSA, i.e., it is not applicable to distances derived from

OPAs (for a discussion see Dessimoz & Gil, 2008). Second, the O(n) computation time may

become prohibitive in large scale studies. Alternatively, a nonparametric bootstrap can be

used (Efron & Tibshirani, 1993), but it takes substantially longer computation times and

requires an MSA too.

Previously, two estimators have been presented do tackle the limitations. They work

with both MSAs and OPAs. The first method is a numerical approximation to the variance

of the difference between two distances involving a common sequence. It runs in constant

time with respect to the sequence-length and takes the following form (Dessimoz et al.,

2006)

V̂NUM(d̂ij − d̂jk) =
d̂φ1

ik

V̂(d̂ik)
φ2

·


V̂(d̂ij) + V̂(d̂jk)

φ3


V̂(d̂ij)V̂(d̂jk))
φ4

(d̂ij + d̂jk)
φ5

, (8)

where the φi are parameters optimised a priori for a particular substitution model. This

leads (through V(X − Y) = V(X) + V(Y) − 2cov(X,Y)) to a fast covariance estimator for

the triplet-case (hereafter referred to as triplet-covariance)

cov(d̂ij,d̂jk) =
1

2


V̂(d̂ij) + V̂(d̂jk) − V̂NUM(d̂ij − d̂jk)


. (9)

The second method is based on Susko’s theory and shares the linear time complex-

ity (Dessimoz & Gil, 2008, hereafter anchor-covariance). It was specifically designed to

bypass the problem of inconsistent homology inference between OPAs using the concept of

anchors—a globally consistent subset of aligned character pairs. In this paper, we propose

a fast and general approach we term branch-covariance. It is motivated by an analytic result

obtained under the simple r-state symmetric model.

r -state symmetric model
To obtain analytic results we will work with the r-state symmetric model, also know as

the Nr model (Neyman, 1971). It is a generalization of the Jukes–Cantor model (Jukes &
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Cantor, 1969), which has four states (r = 4), to r character-states. The Nr model assumes

a uniform distribution of states at the root, and equal rates of transitions between any two

distinct character states. The probability to observe a mutation after time t is

pm(t) = β


1 − e−
αt
β


, β =

r − 1

r
, (10)

where α is the total rate of substitution. Thus, if two sequences are separated by t, the

distance between them will be d = αt.

Because of the symmetries in the model, the number of differing sites I in a given

pairwise alignment of length n is a sufficient statistics for the pairwise ML distance

d̂ = −β ln


1 −

I

nβ


. (11)

An estimator for the variance of d̂ can be obtained by applying Eq. (4) derived from

the likelihood function. Alternatively, for models estimating distances from proportions

of differing sites, the variance can be approximated by the Delta technique. This has been

done by Kimura & Ohta (1972) for r = 4 and generalized by Tajima & Nei (1984) to

V̂(d̂) = β

(1 − β)e

2d
β + (2β − 1)e

d
β − β


/n. (12)

We are going to use the Delta technique to derive an estimator for the covariance of

two Nr ML distances dij = δi + δm + δj and dkl = δk + δm + δl in the dependence-case

(Fig. 1). Nei & Jin (1989) used an informal argument to propose the following expression

with β = 3/4:

cov(d̂ij,d̂kl) = β

(1 − β)e

2δm
β + (2β − 1)e

δm
β − β


/n. (13)

The equation originates from the assumption, that the covariance of two distance estimates

with an underlying shared path length δm, is formally equivalent to the variance (Eq. (12))

of an ML estimate of a pairwise distance δm. Indeed, Bulmer (1989) presented a proof for

β = 3/4 for the triplet-case and conjectured that Eq. (13) with j = l and δj = δl = 0 is true

for any β. To the best of our knowledge Eq. (13) has not been proven yet in its most general

form, i.e., for the dependence-case and any β.

We will first compute

cov(Iij,Ikl) = ncov(Sij,Skl) = nE

SijSkl


− nE[Sij]E[Skl], (14)

where Sij is a random variable indicating whether sequences i and j are identical (Sij = 0)

or different (Sij = 1) at a particular site. Subsequently, we will apply the Delta method to

obtain Eq. (13) from cov(Iij,Ikl). We start by noting that

E[Sij] = Pr(Sij = 1) = pm(dij). (15)
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Therefore, the problem reduces to computing

E[SijSkl] = Pr(Sij = 1 ∧ Skl = 1). (16)

In the following we will represent the quartet from Fig. 1 by the symbol , where the

terminal node of the upper left branch corresponds to i. Furthermore, we are going to

mark a branch with ⃝ if a particular site in the evolving sequence is in a different state

at the endpoints of the branch. As an example, we look at the pattern . Here, the

site in question changed its state on the branches leading to {j,k,l} but did not change

its state on the branch leading to i and on the middle branch. A particular labeling of

the nodes with characters from the alphabet of Nr for the given pattern has probability

For this pattern, there are r(r − 1)3 possible labellings, of which only r(r −

1)2(r − 2) satisfy Sij = 1 ∧ Skl = 1. Symmetrical mutation patterns, like for

example have the same number of labelings leading to Sij = 1 ∧ Skl =

1 but different mutation probabilities. We consider now all the patterns

(grouped by symmetry) and corresponding labelings for the desired condition:

Using Maple (script in Supplemental Materials) we find that the expression simplifies to

E[SijSkl] = β


1 − βe−

dij
β − βe−

dkl
β + (1 − β)e−

dij+dkl−2δm
β + (2β − 1)e−

dij+dkl−δm
β


. (19)

Plugging Eqs. (19) and (15) in (14) we obtain

cov(Iij,Ikl) = nβ


(1 − β)e−

dij+dkl−2δm
β + (2β − 1)e−

dij+dkl−δm
β − βe−

dij+dkl
β


. (20)
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We turn to the Delta method. The function d̂ij(Iij) can be approximated by a first-order

Taylor series around E[Iij] = npm(dij)

d̂⋆
ij(Iij) = d̂ij(E[Iij]) + d̂′

ij(E[Iij])(Iij − E[Iij]), (21)

where

d̂′

ij(E[Iij]) =
∂ d̂ij(Iij)

∂Iij


Iij=E[Iij]

=


n −

Iij

β

−1

Iij=E[Iij]

=
e

dij
β

n
. (22)

The covariance of d̂ij and d̂kl is asymptotically equal to the covariance of d̂⋆
ij and d̂⋆

kl

cov


d̂ij(Iij),d̂kl(Ikl)


∼ cov


d̂⋆
ij(Iij),d̂⋆

kl(Ikl))


(23)

= d̂′

ij(E[Iij])d̂′

kl(E[Ikl])cov(Iij,Ikl) (24)

= β

(1 − β)e

2δm
β + (2β − 1)e

δm
β − β


/n. � (25)

We provide a Maple program implementing all steps of the proof in Supplemental

Materials.

Covariance under general Markov models
We have derived under Nr that the covariance of two distance estimates with an underlying

shared path length δm is asymptotically equal to the variance of an ML estimate of a true

pairwise distance δm, i.e.,

cov(d̂ij,d̂kl) ∼ V(d̂|dt = δm). (26)

We conjecture now that the relationship holds for general substitution models and apply

it to derive a covariance estimator. To this end, we first discuss how the covariance can be

written in terms of a rate matrix Q, an equilibrium frequency vector π (which together

fully specify a substitution model), and δm. In the next section, we will show how δm can be

estimated from the input distances by the method of weighted least squares (WLS).

According to the conjecture and Eq. (4) we express the desired covariance by

cov(d̂ij,d̂kl) = −
1

n
E


∂2

∂d2
log p(X,d)


d=δm

−1

. (27)

The expected value expression can be written as


∀(u,v)


p(xuv,d)

∂2

∂d2
log p(xuv,d)


d=δm

=


∀(u,v)


∂2

∂d2
p(xuv,d) −


∂
∂d p(xuv,d)

2

p(xuv,d)


d=δm

, (28)

where the summation goes over all possible character pairs. In terms of a rate matrix Q

and an equilibrium frequency vector π the probability of a character pair (k = 0) and the
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derivatives (k > 0) of the probability with respect to the distance are

∂(k)

∂d(k)
p(xuv,d) = πu


QkeQd


uv

. (29)

Plugging Eqs. (28) and (29) in (27) we obtain

cov(d̂ij,d̂kl) = −
1

n


∀(u,v)

πu


Q2eQδm


uv −


QeQδm

2
uv

eQδm


uv

−1

. (30)

A plot of this expression as a function of δm can be found in Fig. S1. A covariance estimator

is obtained by substituting δm in Eq. (30) by its WLS estimate, which we derive in the next

section. To save computation time, we can discretise the distance space in the relevant

range to some desired level of accuracy, precompute the expected value expressions, and

store them in a hash table.

Topological relation and path length
Equation (30) expresses the covariance in the dependence case as a function of the shared

path length δm. To obtain a covariance estimator, we determine first whether the two

distances in question are dependent and, in case they are, estimate δm. We will do that by

WLS using the six pairwise distance estimates {d̂uv} between the four sequences i,j,k,l and

their variances {vuv}. The sequences can be related by three topological configurations:

T1 :

(i,k),(j,l)


, T2 :


(i,l),(j,k)


, T3 :


(i,j),(k,l)


,

where T1, T2 map to the dependence case and T3 corresponds to the independence case. An

argument set out in Supplemental Materials shows that the weighted sum of squares (S) for

each of the topologies can be expressed in a simple form which is fast to compute:

S(T1) =
d̂ij + d̂kl − d̂il − d̂jk

vij + vkl + vil + vjk
, S(T2) =

d̂ij + d̂kl − d̂ik − d̂jl

vij + vkl + vik + vjl
,

S(T3) =
d̂ik + d̂jl − d̂il − d̂jk

vik + vjl + vil + vjk
.

(31)

The best fitting topology is determined by argminTi
{S(Ti)}. If this results in T3 the

desired covariance is zero, otherwise we need to estimate δm. The WLS estimates are (see

Supplemental Materials):

2δ̂m(T1) =
(d̂ij + d̂kl)(vil + vjk) + (d̂il + d̂jk)(vij + vkl)

vij + vkl + vil + vjk
− (d̂ik + d̂jl), (32)

2δ̂m(T2) =
(d̂ij + d̂kl)(vik + vjl) + (d̂ik + d̂jl)(vij + vkl)

vij + vkl + vik + vjl
− (d̂il + d̂jk). (33)

Since these are the estimators for unconstrained WLS they can result in negative values, in

which case we estimate the covariance to be zero.
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Simulation settings
The performance of the various covariance estimators was evaluated with the same sim-

ulation approach as in a previous study (Dessimoz & Gil, 2008). Specifically, 100 random

quartets were sampled from a tree of life on 352 species. The tree was inferred by the

LeastSquaresTree function (Gil & Gonnet, 2009) included in the Darwin package (Gonnet et

al., 2000) using pairwise distance and variance data from the OMA project (Dessimoz et al.,

2005). A uniformly distributed U(0.5,2) expansion/contraction factor was applied on each

quartet to also explore extremer regions of the branch-length space, while preserving the

relative branch-length structure of the original tree.

For each dilated model quartet 10,000 times three random amino-acid sequences of

length m = {200,500,800} were generated and mutated along the quartet assuming the

GCB substitution model (Gonnet, Cohen & Benner, 1992). The entire simulation procedure

was run twice, once without any insertion–deletions to produce ungapped alignments

to test the methods under the true models (i.e., without the effect of alignment errors),

and once introducing gaps of Zipfian distributed length (Benner, Cohen & Gonnet, 1993).

The gapped sequences were aligned by global pairwise dynamic programming with the

Align function from Darwin to obtain OPAs. ML pairwise distances were estimated with

the EstimatePam function. The sample variance and covariance over the 10,000 samples

(hereafter Monte Carlo-variance and Monte Carlo-covariance) served as a reference values,

as they are unbiased estimators of the true values.

To test the asymptotic conjecture (Eq. (26)) the ungapped simulation was repeated with

very long sequences (10,000 amino-acids). Then, the length δm of the middle branch of

each model quartet was extracted. Subsequently, 10,000 random sequences were generated,

and mutated each with a distance δm according to the GCB model. Finally, the ML distance

and ML variance between each resulting pair of sequences, and the Monte Carlo-variance

were computed.

RESULTS AND DISCUSSION
Evaluation of basic components of branch-covariance
We have tested the validity of the conjecture in Eq. (26), which was derived under the Nr

model, and the accuracy of the ML variance (Eq. (5)) in a simulation under the GCB model

with long sequences (10,000 amino-acids).

A plot of the Monte Carlo-variance of the ML estimate of a pairwise distance δm versus

the Monte Carlo-covariance between the ML estimates of two pairwise distances in the

dependence case with a shared path of length δm corroborates the conjecture and suggests

that the result is valid in general (Fig 2A). The branch-covariance relies on the ML variance

to approximate the true variance. A comparison with the Monte Carlo-variance shows

that it underestimates the variance for large samples and with correct alignments (Fig 2B).

Therefore, we expected the branch-covariance to inherit the negative bias.
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Figure 2 Components of branch-covariance for sequence-length 10,000 amino-acids. Error-bars indi-
cate 95% confidence intervals. (A) Monte Carlo covariance versus Monte Carlo variance shows that the
relationship derived under the Nr model also holds for the empirical substitution model tested here. (B)
Monte Carlo variance versus mean of the ML variance shows that the ML variance is negatively biased.

Evaluation of estimators
To evaluate and compare the various estimators under ideal conditions we have carried out

two types of simulations: one without introducing indel events (ungapped simulation),

and one with indel events (gapped simulation).

The gapped simulation did not require explicit alignment; the MSA is trivial without

gaps. This situation corresponds to the model assumed by the Susko-, branch-, and

triplet-covariance. Note that in practice with real data, there are usually gaps in an MSA

estimate. In this case, the distance and covariance estimators are applied assuming the MSA

to be correct. Gaps are either excluded from the analysis, or treated as unknown characters.

The ungapped simulation required alignment which was carried out by OPA. Here, the

Susko-covariance can not be applied; it requires an MSA. The setting corresponds to the

model assumed by the anchor-covariance, which is an adaptation of the Susko-covariance,

specifically designed to bypass the problem of inconsistent homology inference between

OPAs. The triplet- and branch-covariance are applicable to OPAs, as these estimators

operate directly on the distances and not on the alignments (but the assumption of a

gap-free and correct underlying alignment is violated).

Ungapped simulation
This section presents the performance of the branch-covariance under the true model

and compares it with the Susko- and triplet-covariance (Fig. 3). To this end, the three

topological cases—dependence, independence, and triplet—are treated separately.

In the dependence case the Susko-covariance is unbiased. The branch-covariance lies

in most cases within the 95% confidence interval of the Monte Carlo covariance; when

it lies outside then it underestimates. The negative bias confirms the prediction from

the previous section. In the independence case, where the true covariance is zero, both

estimators have a positive bias of comparable magnitude, though the branch-covariance
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Figure 3 Ungapped simulation. Comparison of Suko-covariance (red), branch-covariance (green) and triple-covariance (blue) with their Monte
Carlo counterpart for sequence lengths of {200, 500, 800} amino-acids. Error-bars indicate 95% confidence intervals.
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Table 1 Ungapped simulation. Average MSE, median MSE (italic), and average of ratios between MSE
of branch-covariance and MSE of Susko-covariance (bold). A ratio of 0.16, for instance, indicates that the
MSE of the branch-covariance was—on average—16% of the MSE of the Susko-covariance. Dependence
(D), triplet (T) and independence (I) case for sequence lengths 200, 500 and 800 amino-acids.

200 500 800

D T I D T I D T I

Branch Avg 39.89 255.86 2.37 3.13 16.95 0.12 0.71 4.73 0.03

Median 17.94 72.63 0.45 1.29 5.37 0.01 0.33 1.35 0.00

Susko Avg 215.96 420.72 125.59 12.74 22.47 8.06 2.76 5.19 1.87

Median 112.93 121.81 61.47 6.67 7.65 3.54 1.56 2.00 0.79

Avg ratio 0.16 0.80 0.07 0.17 0.70 0.01 0.27 0.78 0.02

appears to have a lower bias with increasing sequence length. For the anchor-covariance

the negative bias is no surprise; it returns by construction non-negative values. For the

triplets, as in the dependence case, Susko’s estimator appears to be unbiased and the

branch-covariance shows a minor negative bias. The triplet-covariance has a positive

bias of comparable magnitude to the one of the branch-covariance. Although the lack of

bias is an attractive feature of an estimator, it does not guarantee a low total error, the sum

of systematic and random error. Therefore, it is instructive to look at the mean square error

(MSE). Indeed, the branch-covariance has a lower standard deviation and MSE than the

Susko-covariance under all three topological relations (Fig. S2, Table 1).

Gapped simulation
The branch-, anchor-, and triplet-covariance have been tested on distances derived from

OPAs.

The branch-covariance has a lower bias than the anchor-covariance for all three

topological relations (Fig. 4). In the dependence case the differences are minor, though

the branch-covariance has a consistently higher correlation with the Monte Carlo

covariance. A big difference is visible for the two other topological relations (independence

and triplet), where the anchor-covariance’s bias is up to twice the branch-covariance’s.

The superiority of the branch-covariance is also reflected by the MSEs (Table 2). The

triplet-covariance has a greater bias than the branch-covariance for sequences of length

200; for length 500 the two estimators have quantitatively a similar bias, but in opposite

directions; and for length 800 the triplet-covariance has clearly a smaller systematic error.

Note that the anchor- and triplet-covariance have been evaluated under the same simu-

lation conditions in a previous work (Dessimoz & Gil, 2008). They have been reproduced to

evaluate the branch-covariance. The results on the triplet- and anchor-covariance reported

here are in agreement with our previous results.

CONCLUSION
A fast and general method to estimate the covariance of pairwise ML distances estimates

has been presented. The estimator is based on a conjecture (going back to Nei & Jin,

1989) which links the covariance to path lengths on the underlying phylogenetic tree.
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Figure 4 Gapped simulation. Comparison of anchor-covariance (red), branch-covariance (green) and triplet-covariance (blue) with their Monte
Carlo counterpart for sequence lengths of {200, 500, 800} amino-acids. Error-bars indicate 95% confidence intervals.
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Table 2 Gapped simulation. Average MSE, median MSE (italic), and average of ratios between MSE of
branch-covariance and MSE of anchor-covariance (bold). A ratio of 0.22, for instance, indicates that the
MSE of the branch-covariance was—on average—22% of the MSE of the anchor-covariance. Depen-
dence (D), triplet (T) and independence (I) case for sequence lengths 200, 500 and 800 amino-acids.

200 500 800

D T I D T I D T I

Branch Avg 36.19 170.04 3.63 3.99 27.23 0.21 1.38 9.68 0.06

Median 19.13 110.60 1.23 1.95 6.26 0.03 0.48 1.88 0.00

Anchor Avg 159.07 242.56 95.79 11.60 95.62 7.68 3.19 42.87 2.09

Median 102.13 170.27 59.02 6.66 12.30 3.51 1.67 4.55 0.92

Avg ratio 0.22 0.67 0.06 0.22 0.36 0.06 0.20 0.34 0.04

It has been proven here under a simple symmetric substitution model and formulated

for general models. The estimator is applicable to distances estimated from parametric

as well as empirical substitution models, and works with both MSAs and OPAs. A

simulation has shown that the estimator has a lower total error than previously published

estimators operating directly on the sequence data. Moreover, in contrast to these linear

time complexity methods, the estimator runs in constant time in the sequence-length,

provided that the pairwise distance information has been precomputed (as in the initial

all-against-all pairwise comparison, customary to most pairwise distance approaches).

The evaluation under the correct model conducted here is an important baseline. How-

ever, ideal conditions are never met when working with real data, so that as future work

the various estimators should be compared in situations where the model-assumptions

are violated. Under such conditions, it is conceivable that estimators operating directly on

the sequence data outperform the method presented here. The rationale being that they

extract information from the data at hand—for instance, the actual frequencies of aligned

character pairs, as opposed to the ones assumed in the substitution model—and by being

more adaptive, they could be more robust to model violations.
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