

temporal

Circadian activity, seasonal changes in activity patterns, and predator-prey relationships of free-ranging mammals revealed by camera traps (#25740)

1

First submission

Editor guidance

Please submit by **6 May 2018** for the benefit of the authors (and your \$200 publishing discount).

Structure and Criteria

Please read the 'Structure and Criteria' page for general guidance.

Raw data check

Review the raw data. Download from the location [described by the author](#).

Image check

Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files

Download and review all files from the [materials page](#).

9 Figure file(s)

4 Table file(s)

Structure your review

The review form is divided into 5 sections.
Please consider these when composing your review:

- 1. BASIC REPORTING**
- 2. EXPERIMENTAL DESIGN**
- 3. VALIDITY OF THE FINDINGS**

4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready [submit online](#).

Editorial Criteria

Use these criteria points to structure your review. The full detailed editorial criteria is on your [guidance page](#).

BASIC REPORTING

- Clear, unambiguous, professional English language used throughout.
- Intro & background to show context.
Literature well referenced & relevant.
- Structure conforms to [PeerJ standards](#), discipline norm, or improved for clarity.
- Figures are relevant, high quality, well labelled & described.
- Raw data supplied (see [PeerJ policy](#)).

EXPERIMENTAL DESIGN

- Original primary research within [Scope of the journal](#).
- Research question well defined, relevant & meaningful. It is stated how the research fills an identified knowledge gap.
- Rigorous investigation performed to a high technical & ethical standard.
- Methods described with sufficient detail & information to replicate.

VALIDITY OF THE FINDINGS

- Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where rationale & benefit to literature is clearly stated.
- Data is robust, statistically sound, & controlled.

- Conclusions are well stated, linked to original research question & limited to supporting results.
- Speculation is welcome, but should be identified as such.

Standout reviewing tips

3

The best reviewers use these techniques

Tip

Support criticisms with evidence from the text or from other sources

Give specific suggestions on how to improve the manuscript

Comment on language and grammar issues

Organize by importance of the issues, and number your points

Please provide constructive criticism, and avoid personal opinions

Comment on strengths (as well as weaknesses) of the manuscript

Example

Smith et al (J of Methodology, 2005, V3, pp 123) have shown that the analysis you use in Lines 241-250 is not the most appropriate for this situation. Please explain why you used this method.

Your introduction needs more detail. I suggest that you improve the description at lines 57- 86 to provide more justification for your study (specifically, you should expand upon the knowledge gap being filled).

The English language should be improved to ensure that an international audience can clearly understand your text. Some examples where the language could be improved include lines 23, 77, 121, 128 - the current phrasing makes comprehension difficult.

1. Your most important issue
2. The next most important item
3. ...
4. The least important points

I thank you for providing the raw data, however your supplemental files need more descriptive metadata identifiers to be useful to future readers. Although your results are compelling, the data analysis should be improved in the following ways: AA, BB, CC

I commend the authors for their extensive data set, compiled over many years of detailed fieldwork. In addition, the manuscript is clearly written in professional, unambiguous language. If there is a weakness, it is in the statistical analysis (as I have noted above) which should be improved upon before Acceptance.

Circadian activity, seasonal changes in activity patterns, and predator-prey relationships of free-ranging mammals revealed by camera traps

Anthony Caravaggi ^{Corresp., 1, 2}, **Maria Gatta** ³, **Marie-Claire Vallely** ^{2, 4}, **Kayleigh Hogg** ¹, **Marianne Freeman** ¹, **Erfan Fadaei** ^{1, 5}, **Jaimie TA Dick** ^{1, 2, 5}, **Neil Reid** ^{1, 2, 5}, **Ian Montgomery** ^{1, 2, 5}, **David G Tosh** ^{1, 6}

¹ Quercus, School of Biological Sciences, Queen's University Belfast, United Kingdom

² School of Biological Sciences, Queen's University Belfast, United Kingdom

³ School of Animal, Plant and Environmental Sciences, University of Witwatersrand, South Africa

⁴ Northern Ireland Environment Agency, United Kingdom

⁵ Institute of Global Food Security (IGFS), Queen's University Belfast, United Kingdom

⁶ National Museums of Northern Ireland, United Kingdom

Corresponding Author: Anthony Caravaggi

Email address: ar.caravaggi@gmail.com

Endogenous circadian and seasonal activity patterns facilitate the effective utilisation of the environment and resources by organisms. Activity patterns are shaped by several environmental factors including weather, ecological competition, human disturbance and predator-prey interactions. Remote sensing camera traps allow the collection of occurrence data throughout the 24-hour period, and for an almost indefinite period of time. Here we collate data from three camera trap surveys, of deer, hare, and squirrel, to describe activity patterns and seasonal occurrence of ten small-to-large mammal species, and predator-avoidance behaviour (via lagged regression) in three predator-prey pairs, in Northern Ireland. 8,761 detections were recorded. Badger ($n = 947$), fox ($n = 645$), pine marten ($n = 966$) and wood mice ($n = 816$) were largely nocturnal; hares ($n = 751$; two species) were crepuscular; fallow deer ($n = 591$) and rabbits were cathemeral; and squirrels were diurnal. All species exhibited significant seasonal variation in activity relative to sunrise/sunset. In particular, foxes became increasingly crepuscular from spring to autumn and hares increasingly diurnal. Lagged regression analyses of predator-prey activity patterns between foxes and hares, foxes and rabbits, and pine marten and squirrel revealed significant annual and seasonal cross-correlations. We found highly synchronised activity patterns between foxes and lagomorphs in spring and summer (to a lesser extent in hares than rabbits) and temporal predator avoidance behaviour by squirrels relative to pine marten in most seasons. These results demonstrate the capacity of camera trap surveys to provide fundamental ecological data for a wide range of species, which may improve our understanding of species' ecologies, inform subsequent research efforts and

facilitate effective management and/or conservation efforts.

1 Original Article

temporal

2 **Circadian activity, seasonal changes in activity patterns, and predator-prey relationships of
3 free-ranging mammals revealed by camera traps**

4 Anthony Caravaggi^{1,2*}, Maria Gatta³, Marie-Claire Vallely^{2,4}, Kayleigh Hogg⁵, Marianne
5 Freeman¹, Erfan Fadaei^{1,5}, Jaimie Dick^{1,2,5}, Neil Reid^{1,2,5}, David G Tosh^{1,6}

6

7 ¹ *Quercus*, School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.

8 ² School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.

9 ³ School of Animal, Plant and Environmental Sciences, University of the Witwatersrand,
10 Johannesburg, South Africa

11 ⁴ Northern Ireland Environment Agency, Klondyke Building, Cromac Avenue, Gasworks
12 Business Park, Belfast, BT7 2JA

13 ⁵ Institute of Global Food Security (IGFS), Queen's University Belfast, Belfast, BT9 5BN, UK.

14 ⁶ National Museums of Northern Ireland, 153 Bangor Road, Holywood, Co Down, BT18 0EU.

15

16

17 * Corresponding author: ar.caravaggi@gmail.com

18

19 **Keywords:** co-occurrence, camera traps, behavioural ecology, behaviour, citizen science, wildlife,
20 fundamental ecology, activity patterns

21

22 **Word count:**

23 **Abstract**

24

25 Endogenous circadian and seasonal activity patterns facilitate the effective utilisation of the
26 environment and resources by organisms. Activity patterns are shaped by several environmental

27 factors including weather, ecological competition, human disturbance and predator-prey
28 interactions. Remote sensing camera traps allow the collection of ~~occurrence~~ presence data throughout the

29 24-hour period, and for an almost indefinite period of time. Here we collate data from three camera trap surveys, ~~of deer, hare, and squirrel~~ to describe ~~activity patterns and seasonal occurrence of~~ circadian and seasonal presence of ten ~~small-to-large mammal species~~, and ~~predator-avoidance~~ behaviour (via lagged regression) in three predator-prey pairs, in Northern Ireland. 8,761 detections were recorded. Badger ($n = 947$),

33 fox ($n = 645$), pine marten ($n = 966$) and wood mice ($n = 816$) were largely nocturnal; hares ($n =$

34 751; two species) were crepuscular; fallow deer ($n = 591$) and rabbits were cathemeral; and

35 squirrels were diurnal. All species exhibited significant seasonal variation in activity relative to

36 sunrise/sunset. ~~In particular, foxes became increasingly crepuscular from spring to autumn and~~ were more

37 ~~more~~ hares increasingly diurnal. Lagged regression analyses of predator-prey activity patterns between

38 foxes and hares, foxes and rabbits, and pine marten and squirrel revealed significant annual and

39 seasonal cross-correlations. We found ~~highly~~ synchronised activity patterns between foxes and

40 ~~lagomorphs in spring and summer~~ (to a lesser extent in hares than rabbits) and temporal predator

41 avoidance behaviour by squirrels relative to pine marten in ~~most~~ seasons. ~~These~~ results

42 demonstrate the capacity of camera trap surveys to provide fundamental ecological data for a wide

43 range of species, ~~which may improve our understanding of species' ecologies, inform subsequent~~

44 research efforts and facilitate effective management and/or conservation efforts.

Sentence from
line 29-32 is
too long
communicatin
g different
ideas. Please
break

46 **Introduction**

47 It is critical for the survival of individuals that their activities are **temporally** appropriate (Enright,
48 1970). **Circadian** (i.e. **recurring every 24 hours**) and **seasonal** patterns of activity are adaptive
49 behavioural traits which allow species to effectively exploit their environment and the resources
50 contained therein (Phillips et al., 2013). **The activity patterns of species are shaped by a variety of**
51 **environmental pressures, including food availability** (Larivière et al., 1994), **foraging efficiency**
52 **(Lode, 1995)**, **predator/prey activity** (Middleton et al., 2013), **human disturbance** (van Doormaal
53 et al., 2015; Wang et al., 2015), **mate availability and activity** (Halle & Stenseth, 2000), **light/dark**
54 **and temperature cycles** (McElhinny et al., 1997), and **ecological competition** (Rychlik, 2005).

55 **Mammals exhibit a great diversity and flexibility in their various activity patterns.** A recent
56 study of 4,477 mammal species **classified 69% as nocturnal** (i.e. night-active, e.g. European
57 hedgehogs, *Erinaceus europaeus*; Rautio et al., 2016), 20% diurnal (i.e. day-active, e.g. eland,
58 *Taurotragus oryx*; Shrestha et al., 2014; Jones et al., 2009), 8.5% cathemeral (i.e. active throughout
59 the 24-hour cycle, e.g. cougar, *Puma concolor*; Gómez et al., 2005) and 2.5% crepuscular (i.e.
60 dawn- and/or dusk-active, e.g. lesser mouse deer, *Tragulus kanchil*; Ross et al., 2013; Bennie et
61 al., 2014). Furthermore, there is evidence for **intraspecific variation of activity patterns** (e.g.
62 Ashby, 1972, McElhinny et al., 1997, Refinetti, 2004). For example, half of captive laboratory
63 degus (*Octodon degus*), a nocturnal species in their native range, were found to become active
64 during the light phase (lights-on), while the other half became active during the dark phase (lights-
65 off) (Refinetti, 2006). Indeed, circadian activity patterns are frequently related to daily oscillation
66 in illumination (i.e. changes in sunrise/sunset; Halle & Stenseth, 2000), and, hence, the time(s) of
67 the day during which species are active may vary according to **climatic ??** **season**.

68 Recording and quantifying daily activity patterns of wild, free-ranging mammals presents
69 significant challenges, including overcoming the observer effect whereby the presence of an
70 observer influences the behaviour of the subject (Stewart et al., 1997), and collecting sufficient
71 data to address scientific and conservation questions (*sensu* Cagnacci et al., 2010). A number of
72 methodological techniques have been used to overcome such challenges, with varying degrees of
73 success (Bridges & Noss, 2011). Radio-tracking has been successfully employed in a number of
74 activity-based studies of wild animals. However, such studies have inherent limitations, including
75 periodic (i.e. non-constant) sampling (e.g. Lovari et al., 1994) and the application of considerable
76 survey effort (Palomares & Delibes, 1991; Reid, McDonald & Montgomery, 2010). Furthermore,
77 they may result in small sample sizes (Bridges & Noss, 2011), capture a limited proportion of the
78 population (Sadlier et al., 2004), and may be subject to signal-based error and/or omission
79 (Cagnacci et al., 2010) or alter the behaviour of tagged animals (e.g. Wilson et al., 2011). Live
80 trapping has been used to investigate activity patterns of small mammals, where each successful
81 capture (i.e. the presence of an animal in a trap) is taken as indicating activity. This has been
82 successfully applied to a number of species, including common voles (*Microtus arvalis*; e.g.
83 Hoogenboom et al., 1984), bank vole (*Myodes glareolus*) and wood mice (*Apodemus sylvaticus*;
84 e.g. Elton et al., 1931), and the antelope ground squirrel (*Citellus leucurus*; e.g. Bradley, 1967).
85 However, live trapping requires considerable time and effort, is relatively inefficient, may have
86 implications with regards to animal welfare (Torre et al., 2010), and is subject to species- and trap-
87 specific variations in capture probability (Leso & Kropil, 2010).

88 Remote-sensing camera traps are of increasing popularity in conservation and ecological
89 studies due to their non-invasive nature, continuing technological improvements and decreasing
90 costs (Tobler et al., 2008a). They have been used in studies investigating population parameters

91 (e.g. Trolle & Kéry, 2003, Karanth et al., 2006, Caravaggi et al., 2016), behaviour (e.g. Maffei et
92 al., 2005), ecosystem biodiversity (e.g. Silveira et al., 2003, Tobler et al., 2008b), and site
93 occupancy of rare or cryptic species (e.g. Linkie et al., 2007). Camera traps afford researchers the
94 means to conduct surveys while minimising ~~survey effort~~ and disturbance of the focal species, and
95 over a longer period of time than may otherwise be feasible. As such, data derived from camera
96 trap surveys of sufficiently common species and/or conducted at high camera densities are well
97 suited to investigations of wildlife activity patterns (e.g. Di Cerbo & Biancardi, 2013, Carabajal-
98 Borges et al., 2014). ~~The size of camera trap survey arrays are limited only by the cost of~~
99 ~~equipment, with time *in-situ* restricted by available memory, battery life and the possibility of~~
100 ~~mechanical failure. Furthermore, remote camera surveys may be less biased than other methods~~
101 ?
102 ?
103 due to their non-invasive nature (Kays & Slauson, 2008). However, camera trap surveys are not
104 without their problems. These include equipment failure, false-triggers (i.e. detections triggered
105 by non-target stimuli, such as vegetation; *sensu* Gregory et al., 2014), equipment theft, and poor
106 performance due to, e.g. user skill, environmental conditions, and damage by animals (Swann et
107 al., 2004, Kucera & Barrett, 2011). There is also a trade-off between the proximity and angle of
108 cameras with regards to targets, and the likelihood of detecting and identifying species of varying
109 size (Hofmeester et al., 2017). Downward-facing cameras, for example, are more efficient at
110 detecting small mammals, while those in close proximity to bait stations are more likely to detect
111 species which are drawn to the bait (De Bondi et al., 2010). These potential weaknesses can,
112 however, be mitigated against by regular checks of equipment, field-tests (i.e. pilot studies), and
the development of an appropriate species- or community-specific methodology (e.g. Gregory et
al., 2014).

113 Most studies of mammals tend to focus on distributions, current statuses and population

114 estimates of a focal species, but few focus on quantifying activity patterns. Here, we demonstrate

temporal (circadian and seasonal)

115 the utility of camera traps in elucidating mammalian activity patterns and seasonal variations in

116 activity relative to sunrise/sunset. In addition, we use camera trap data to investigate interspecific

117 relationships, specifically predation risk, between activity patterns of paired predators and prey.

118 We hypothesise that prey species will exhibit temporal avoidance of predators.

119 **Materials and methods**

120 Data were collected from camera trapping studies of deer, squirrels, and hares in Northern Ireland.

121 The climate was temperate with localised variation, most notably with regards to annual
122 precipitation (Met Office, 2016). The landscape was largely comprised of agricultural fields (EEA,

123 2010), and human activity was variable depending on location. A total of 1,164 individual cameras

124 deployments were used across the study periods, at 431 locations (defined herein as broad study

125 areas, rather than individual camera placements) across Northern Ireland (Fig. 1). Deer surveys

126 ran from June 2013 to November 2016, squirrel surveys from January to March in 2014 and

127 January to May in 2015 and hare surveys from April 2013 to August 2015, non-intrusive. Ten

128 commonly-detected target species were identified for the purposes of the current study, *a priori*:129 i) European badger (*Meles meles*, Linnaeus 1758); ii) fallow deer (*Dama dama*, Linnaeus 1758);130 iii) Red fox (*Vulpes vulpes*, Linnaeus 1758; hereafter 'fox'); iv) Irish hare (*Lepus timidus*131 *hibernicus*, Bell 1837); v) European brown hare (*L. europaeus*, Pallas 1778); vi) pine marten132 (*Martes martes*, Linneus 1758); vii) European rabbit (*Oryctolagus cuniculus*, Linnaeus 1758); viii)133 Eurasian red squirrel (*Sciurus vulgaris*, Linnaeus 1758); ix) North American grey squirrel (*S.*134 *carolinensis*, Gmelin 1788); x) wood mouse (*Apodemus sylvaticus*, Linnaeus 1758). There was no

135 evidence of intrageneric variation in the activity patterns of hare (Fig. S1) and squirrel (Fig. S2)

136 species, and, hence, both were grouped (i.e. 'hares' and 'squirrels') for the purposes of the current

137 study.

138

139 *Deer surveys*

140 Data from four deer studies (DS1 – 4) were included in our analyses. DS1 – 2 were conducted over
141 grids 15 1 km² squares with an average of 10 cameras per km and 5 additional 1 km² squares set at a
142 higher density of 20 camera traps per km. In total 38 camera traps were deployed over 255
143 individual camera trap placements using a combination of Bushnell Trophy Cam (119467),
144 Bushnell Trophy Cam HD (119477), Reconyx (HC600) and Scoutguard Camera (SG560P-8M).
145 Camera traps were set at a height of 30cm, perpendicular to the ground. Cameras were set to
146 capture the maximum photographs per trigger (3-10 photographs depending on camera model) and
147 no delay between triggers. Cameras were left for at least 14 days before being collected and
148 relocated. DS3 surveyed smaller areas of 0.05 km², 0.02 km² and 0.04 km² using 10 Bushnell
149 Trophy Cam HD (119677) at each site. Each camera was set at a height of 40cm from the ground
150 and set to capture bursts of 3 still pictures and a 60-second video per trigger, with a delay of one
151 second between triggers. Cameras were left *in situ* for 7 days. DS4 was focussed on areas of 0.05
152 km² and 0.02 km² and used Bushnell Trophy Cam HDs (119477, 119577, 119676, 119677).
153 Cameras were set at a height of 40cm and set to capture either 3 still pictures or a 30s video,
154 depending on the camera model, with a one second delay between triggers. Cameras were left in
155 situ for 7 days. In all deer surveys, cameras were equipped with fitted with 8 GB HDSD cards,
156 secured with Python security cables, motion detectors were set to medium sensitivity, each capture
157 was stamped with the date and time, and images were described as independent when separated
158 by one hour.

159

160 *Hare survey*

161 Hare surveys were conducted over a total of ~~twenty-three~~²³ 1km² squares. Each square
162 contained twenty randomly placed Bushnell Trophy Cam HD (119477) camera traps fitted with 8
163 GB HDSD cards, which were positioned on vertical aspects of linear features (i.e. trees in
164 hedgerows, fence posts), to a total of 460 camera locations (Table 1). Cameras were attached using
165 python cables at a height of 30cm from the ground, at a 45° - 90 ° angle away from the linear
166 feature, with a 10-15° downward tilt. Cameras were set to record date-and-time-stamped videos,
167 with motion detectors set to medium sensitivity, for a period of 60 seconds with a 60 second delay
168 between triggers. ^{videos} Cameras were left *in-situ* for 7 days. The use of video footage allowed the
169 detection of closely-associated conspecifics, while the 60 second delay gave some measure of
170 mitigation against re-detecting the same individual. For full details, see Caravaggi et al. (2016).

171

172 *Squirrel and pine marten surveys*

173 Data from two squirrel and pine marten surveys are used in this study. The first survey was
174 undertaken in 2014, within 63 forested areas > 5ha in size within Co. Fermanagh. A total of 16
175 Bushnell Trophy Cameras (119438) were deployed by 7 citizen scientists and 1 scientist during a
176 3-month period. Cameras were attached to trees at a height of ~~3-4m~~^{3.4m}, opposite a wooden squirrel
177 feeder (Northumbrian Wildlife Trust design) baited ~~with~~^{peanuts and sunflower seeds}. Cameras
178 were left *in-situ* for a minimum of 7 and maximum of 24 days. The second survey was conducted
179 in 314 forested areas > 5ha in size across Northern Ireland by 70 citizen scientists and 1 scientist
180 during a 5-month period in 2015. A total of 65 Bushnell Trophy Cameras (119438; 119577;
181 119676) were deployed during this time for a ~~minimum of 6 and maximum of 33 days~~^{minimum of 6 and maximum of 33 days}. Cameras
182 were deployed at head height (~~1.5 -zm~~^{1.5 -zm}) on a tree opposite either a wooden (as in 2014) or metal

183 squirrel feeder (CJ Wildlife Product code 12335). Cameras were secured using python locks to
184 trees. In both years, cameras were set to take photos with 3 photos per trigger and an interval of 1
185 – 20 seconds per trigger and images were recorded on 8GB HDSD cards.

186

187 *Activity analysis*

188 We assumed that ~~temporar~~ detection frequency was a true reflection of circadian activity
189 patterns of the focal species. Prior to analysis, all species data were grouped according to one-hour
190 time intervals, beginning at the hour mark (e.g. 11:00 – 11:59). ~~Detections of animals which~~
191 occurred at either side of the hour mark were both retained. In cases where a group of individuals
192 of the same species (e.g. fallow deer) were detected_{in a single camera photo} a single event was recorded. Detection
193 frequencies were normalised to ease plot interpretation using the formula $z_i = \frac{x_i - x_{min}}{x_{max} - x_{min}}$, where z_i
194 = normalised detection frequency at the i th interval, and $x = (x_1, \dots, x_n)$.

195 Due to the Earth's axial tilt, non-equatorial regions experience variations in day length
196 throughout the year. This has direct consequences for wildlife. For example, a nocturnal species
197 may be more likely to remain active well into twilight, or even daylight hours during the summer
198 months due to shortening nights; unavoidable to meet its energetic requirements (Schai-Braun et
199 al., 2012). To investigate intra-annual variation in activity relative to sunrise/sunset (i.e. whether
200 nocturnal/diurnal activity differed between seasons; solar cycle historical data obtained from the
201 HM Nautical Almanac Office, 2016), data were grouped according to season: spring (March –
202 May); summer (June – August); autumn (September – November); and winter (December –
203 February). Detections between 00:00 and 11:59 were offset relative to sunrise; detections between
204 12:00 and 23:59 were offset relative to sunset. All daytime offsets were converted to positive

205 integers, night-time to negative. For example, a detection ~~timed~~ at 22:10, with sunset at 20:00,
206 would have an offset value of -2 hours and 10 minutes, indicating nocturnal activity. **Intraspecific**
207 **differences in seasonal offsets were investigated via one-way Analysis of Variance (ANOVAs)**
208 **with post-hoc Tukey tests.**

209 Overlap metrics and lagged regression cross-correlation functions (CCFs) **were** used to
210 examine **annual and seasonal** relationships between predator-prey pairs (i.e. autocorrelation),
211 specifically: **fox and hare; fox and rabbit; and pine marten and squirrel**. Data were restricted to
212 **locations** where both species in each pair were detected, **thus negating false inference**. The degree
213 of overlap between each species pair on **an annual basis and for each season** was calculated using
214 the *overlap* package (Meredith & Ridout, 2017). Data were resampled 1,000 times per pair, per
215 category, to generate 95% Confidence Intervals (CI). Sample CCFs facilitate the identification of
216 lags in the *x* variable which may be predictive of *y*. Positive lag (*h+*) is the result of a correlation
217 between x_{a+i} and y_a , where a = time. Conversely, negative lag (*h-*) is the result of a correlation
218 between x_{a-i} and y_a . Significant correlations describe a non-random association between species
219 detections at interval(s) h_i . Lagged regressions **were** calculated using the *ccf* function in the core
220 library of R (R Core Team 2016). The CCF function does not, however, return quantified measures
221 of significance. The significance of the correlation coefficient, r , therefore, was established by
222 calculating the t value, where $t = r \sqrt{\frac{n-2}{1-r^2}}$ and where the critical t value ($p = 0.05$, 22 degrees of
223 freedom, one-tailed) = 1.72. All statistical analyses were carried out in R 3.4.3 (R Core Team,
224 2017).

226 **Results**

227 A total of 8,761 detections of the ten target species were recorded. Squirrel sightings ($n = 2,870$;
228 Fig. 2g) comprised 33% of all records, rabbits 13% ($n = 1,175$; Fig. 2f), pine marten 11% ($n = 966$;
229 Fig. 2e), badger 11% ($n = 947$; Fig. 2a), hares 9% ($n = 751$; Fig. 2d), woodmice 9% ($n = 816$; Fig.
230 2h), fox 7% ($n = 645$; Fig. 2d), and fallow deer 7% ($n = 591$; Fig. 2b; Table 2). Seasonal variations
231 in the number of detections recorded reflected the time and duration of the constituent studies:
232 47% in spring, 24% in summer, 18% in autumn, and 11% in winter (Table 2).

233

234 ***Species-specific activity patterns***

235 Foxes exhibited a largely nocturnal activity pattern, with some irregular diurnal activity. Nearly
236 three-quarters of all fox activity (73%) occurred between 21:00-07:00 (Fig. 3a). There were
237 significant differences in offsets across seasons ($F_{3,641} = 23.36$, $p < 0.0001$); winter was
238 significantly different from all other seasons due to decreased activity during daylight and
239 Start on next paragraph
239 crepuscular periods (Fig. 4c). The activity pattern of hares was bimodal, demonstrating
240 predominantly crepuscular behaviour. 71% of all activity occurred between the hours of 20:00-
241 23:00 (24%) and 04:00-08:00 (47%). Diurnal detections (09:00-19:00) accounted for 18% of all
242 activity (Fig. 3a). Seasonal offsets differed significantly ($F_{3,747} = 19.33$, $p < 0.0001$), specifically
243 between spring and summer ($p < 0.0001$) and summer and autumn ($p < 0.001$; Fig. 4d); hares
244 Start on next paragraph
244 exhibited more diurnal activity both in spring and in autumn. Rabbits exhibited a catemeral
245 activity pattern with a peak around dawn and two smaller peaks in the evening. 35% of all
246 detections occurred between 04:00-08:00; 32% between 17:00-23:00 (Fig. 3a). There were
247 significant differences in offsets across and between seasons ($F_{3,1171} = 12.93$, $p < 0.0001$ (Fig. 4f).

248 Pine marten activity was largely nocturnal, with 70% of all detections occurring between
249 21:00 and 06:00 (Fig. 3b). Significant differences were observed across and between all seasons
250 ($F_{3,962} = 86.28$, $p < 0.0001$), except spring-autumn. Squirrels were diurnal, being active from dawn
251 to dusk. Fewer than 5% of triggers occurred between 19:00 and 05:00 (Fig. 3b). There were
252 significant differences across seasons ($F_{3,2866} = 76.52$, $p < 0.0001$; Fig. 4g). All between-season
253 comparisons were significant at the $p > 0.0001$ level, except for winter-autumn and summer-
254 spring.

255 Badgers were nocturnal with a unimodal pattern of activity; the number of detections
256 increased rapidly after dusk and decreased rapidly around dawn. Fewer than 15% of all badger
257 detections were recorded between 06:00-19:00 (Fig. 3c). There were significant differences in
258 offsets across seasons ($F_{3,943} = 32.54$, $p < 0.0001$) and all between-season comparisons were
259 significantly different ($p > 0.0001$) except for winter-autumn and summer-spring. Fallow deer
260 exhibited a cathemeral activity pattern, with peaks of activity during early morning, late afternoon,
261 and early evening with a lull around midday and after midnight (Fig. 3c). There were significant
262 differences in offsets across seasons ($F_{3,587} = 16.7$, $p < 0.0001$), specifically between spring and
263 autumn ($p > 0.0001$) and summer and autumn ($p > 0.0001$; Fig. 4b). Wood mice were nocturnal
264 (Fig. 3c; 4h); activity peaked between 01:00 and 04:00, during which time 41% of captures were
265 recorded, and declined rapidly thereafter (Fig. 3h). Offsets were significantly different across
266 seasons ($F_{3,812} = 39.31$, $p > 0.0001$), with diurnal activity increasing in summer (Fig. 4h).

267

268 **Predator-prey relationships**

269 There was evidence of correlative relationships between all predator-prey pairs both **annually and**
270 **between seasons.** Fox and hare annual activity patterns showed **73% overlap** (CI 68% - 77%, Fig. 271 Table 3) and were significantly positively correlated with a peak at -2hrs (peak lag = pl , hereafter; 272 $r=0.663$, $t_{22}=4.15$, $p<0.0005$, Fig. 5ai, Table 4). The degree of overlap peaked in spring at 75% (CI 273 64% - 84, Table 3; $pl = 1\text{hr}$, $r = -0.554$, $t_{22} = 3.12$, $p < 0.005$, Fig. 5aii, Table 4), **with the degree of**
274 **temporal separation suggesting increased predation risk.** There were significant correlations in the 275 summer (Fig. 5aiii, Table 4) but a lack of hare detections meant there were insufficient data 276 available to conduct analyses for winter ($n = 9$, Fig. 5av). Annual activity patterns of foxes and 277 rabbits overlapped by 80% (CI 75% - 83%, Table 3) and were significantly correlated, with a peak 278 at -1hr ($pl = -1\text{hr}$, $r = 0.661$, $t_{22} = 4.13$, $p < 0.0005$, Fig. 5bi, Table 4). Overlap was greatest during 279 spring at 89% (CI 86% - 98%, Table 3; $pl = 1\text{hr}$, $r = 0.701$, $t_{22} = 4.61$, $p < 0.0005$, Fig. 5bii, Table 280 4) and lowest during winter (51%, CI 31% - 71%, Table 3). Seasonal activity patterns **between the**
281 **species** were positively correlated during spring and summer (Table 4), but there were no 282 significant correlations evident during the rest of the year (Fig. 5biv - 5bv). Fox and wood mouse 283 annual activity patterns overlapped by 81% (CI 75% - 87%; Table 3). **Seasonal activity was high**
284 **in all seasons but was greatest in summer with at 85%** (CI 81%-92%, Table 3). Annual activity 285 **was significantly correlated** ($pl = 1\text{hr}$, $r = 0.754$, $t_{22} = 5.39$, $p \leq 0.0001$, Fig 5ci, Table 4), **with similar**
286 **peaks in cross-correlation coefficients in spring** (Fig5 cii, Table 4) and autumn, **with greatest**
287 **correlation occurring in summer** ($pl = 0\text{hrs}$, $r = 0.761$, $t_{22} = 5.50$, $p \leq 0.0001$, Fig 5ciii, Table 4).

288 Pine marten and wood mouse annual activity patterns were correlated with a 71% (CI 64%-
289 74%) overlap ($pl = 0\text{hrs}$, $r=0.536$, $t_{22}=2.98$, $p \leq 0.05$, Fig. 6ai, Table 4). Overlap was greater than
290 50% for all seasons with a peak of 77% (CI 66%-93%) occurring in winter months (Table 3).
291 Activity patterns were significantly correlated in spring ($pl = 10\text{ hrs}$, $r=-0.44$, $t_{22}=2.29$, $p \leq 0.05$,

292 Figure 6aii, Table 4) and winter ($pl = 3$ hrs, $r=-0.503$, $t_{22}=2.73$, $p \leq 0.05$, Figure 6aiv). No
293 correlations were observed between pine marten or wood mouse activity patterns in autumn
294 (Figure 6). Pine marten and squirrel annual patterns overlapped by 40% (CI 33% - 41%, Table 3)
295 and their activity was significantly correlated ($pl = 2$ hrs, $r = -0.621$, $t_{22} = 3.72$, $p < 0.001$; Fig. 6bi,
296 Table 4). Seasonal overlap peaked during summer at 54% (CI 41% - 60%) but was almost entirely
297 absent during winter (Table 3). Significant correlations between seasonal activity patterns were
298 observed in all seasons except during autumn: spring, $pl = 1$ hr, ($r = -0.625$, $t_{22} = 3.76$, $p > 0.001$,
299 Fig. 6bii); summer, $pl = -2$ hrs ($r = -0.512$, $t_{22} = 2.79$, $p < 0.001$, Fig. 6biii); and winter, $pl = -1$ hr (r
300 $= -0.665$, $t_{22} = 4.18$, $p < 0.0005$, Fig. 6bv, Table 4).

301

303 **Discussion**

304 All ten species included in this study were found to change their activity patterns in relation to
305 sunrise/sunset. Some species were found to markedly change their activity during a specific
306 season. For example, foxes exhibited more nocturnal behaviour in winter and rabbits were more
307 diurnal in the summer months. In contrast, the seasonal activity patterns of badgers, hares, pine
308 marten, squirrels and wood mice were found to be distinct between most seasons. Fallow deer had
309 consistent the most temporally consistent activity pattern, possibly due to the absence of predators, though
310 they did exhibit some variability, particularly during autumn. Similarly, predator-prey
311 relationships were also found to vary throughout the year. The temporal overlap between the
312 activity patterns of foxes and lagomorphs (rabbits and hares), were high during the spring and
313 summer and declined later in the year with an increase in hours of darkness. Pine marten and
314 squirrels exhibited substantially less overlap throughout most of the year with the notable
315 exception of summer, during which time there was a considerable increase in marten activity. Pine marten and
316 squirrels exhibited substantially less overlap throughout most of the year with the notable
317 interspecific overlap exceeded 50%.

318 Badgers were almost exclusively nocturnal, a finding in accordance with the literature (e.g.
319 Neal & Cheeseman, 1986; Gorman, 2008; Fedriani et al., 1999). Nearly half (49%) of their total
320 activity occurred in the hours around midnight (22:00-02:00). Diurnal activity, while uncommon,
321 is not unknown, occurring in rural areas with relatively limited presence (Harris, 1982; Neal &
322 Cheeseman, 1996). In the present study, where data were collected from a sparsely populated
323 agricultural landscape, diurnal activity accounted for less than 15% of all captures, in accordance
324 with the findings of Fedriani et al., (1999). Fewer captures were recorded in autumn and winter (n
325 = 68) than in spring and summer (n = 282). While badgers are largely inactive in winter, torpor

326 (Fowler & Racey, 1988) does not explain the low number of autumn captures which may instead
327 be explained by spatial variation in badger density or occurrence, variations in the way the animals
328 used the landscape and/or spatio-temporal variation in survey effort. Maybe the animals were not just detected
because some of the studies had cameras
positioned way high above the ground???
329 Fallow deer were ~~found to be~~ active throughout the 24-hour period (*sensu* Chapman &
330 Chapman, 1997). Activity was lowest during late morning through to early afternoon (~~13%~~ of
331 ~~detections occurred between~~ 09:00-12:00), and in the hours around midnight (~~8%~~ between 23:00-
332 01:00). Sunrise/sunset offsets described largely diurnal and cathemeral activity. It has been
333 suggested that fallow deer are sensitive, and exhibit facultative behavioural responses to
334 anthropogenic disturbance, such as an increase in nocturnal activity (Putman, 2008). Contributing
335 factors such as disturbance, however, remain unquantified and data were not evenly spread such
336 that inter-location pattern differences were sufficiently evident.

337 Foxes were ~~found to be~~ largely nocturnal; their activity increased during dusk and
338 decreased at dawn, although some activity occurred during daytime. The bimodal activity pattern
339 suggested by previous studies (e.g. Reynolds & Tapper, 1995) was not evident. As with fallow
340 deer (although to a considerably lesser extent) rural fox activity may be influenced by
341 anthropogenic disturbance; diurnal activity is more common where disturbance is low (e.g. Díaz-
342 Ruiz et al., 2016; Gorman, 2008). In the present study, however, diurnal activity may have been
343 facilitated, not by a lack of disturbance, but by the timing of the disturbance. Foxes are subject to
344 nocturnal lethal control (i.e. shooting, facilitated by high-powered spot-lamps, and other methods)
345 across Northern Ireland, such that nocturnal disturbance is likely to be considerably greater than
346 that which occurs during the day, albeit periodically. However, the most abundant and commonly
347 taken prey animals are nocturnal (e.g. small rodents) or crepuscular (e.g. lagomorphs). Thus,
348 activity periods of prey may dictate that of rural foxes in Northern Ireland.

349 Hares were active throughout the night, with peaks of activity occurring between 20:00
350 and 23:00 (24%), and 04:00 and 08:00 (47%). Diurnal activity was most commonly ~~recorded~~ in
351 the summer ~~months~~, ~~when nights are shortest~~. These findings agree with previous observations of
352 hare behaviour (e.g. Flux & Angermann, 1990, Holley, 1992, Langbein et al., 1999). Mean offset,
353 however, was lower in summer ~~when compared to~~ autumn and winter. This may be explained in
354 terms of **decreased hare detectability** due to vegetation growth. This study is the first to quantify
355 activity patterns of the Irish hare, which exhibited the same bimodal crepuscular-nocturnal
356 behaviour as the European hare. The Irish hare is a subspecies of mountain hare which is endemic
357 to Ireland. The European hare was introduced to Ireland in the mid-to-late 1800s (Barrett-
358 Hamilton, 1898); **a remnant population exists in Mid-Ulster (Reid & Montgomery, 2007; Reid,**
359 **2011)**. Given that the species are ecologically equivalent (Caravaggi et al., 2015) and exhibit the
360 same activity patterns, **strong interspecific competition is likely where they occur in sympatry**
361 **and** **where resources are limiting.**

362 Rabbits ~~were found to be~~ catemeral with crepuscular peaks of activity; activity ~~declined~~ **being low**
363 ~~markedly~~ around midday and midnight. **There was a suggestion of underlying bimodularity,**
364 **though evening activity was somewhat irregular and inconsistent.** Activity patterns of rabbits in
365 Northern Ireland were similar to those in the Mediterranean region (**Monteroso et al., 2013**),
366 **though the second, evening peak was weak in our dataset.** The ~~irregularities~~ observed may be the
367 **result of sampling artefacts; data were compiled from several (sub-)populations, each of which is**
368 **undoubtedly subject to locally-distinct factors (e.g. human activity, predator density and/or**
369 **activity, weather), and variations thereof.** In this context, future studies focusing on rabbit activity
370 **patterns should investigate activity pattern differences between study sites.**

371 Pine marten were predominantly nocturnal exhibiting **sporadic** periods of activity,
372 behaviour which agreed with previous studies of the species in mainland Europe (e.g. Monterroso
373 et al., 2013; Zalewski, 2007; Zielinski et al., 1983). ~~Nocturnal detections accounted for 70% of all~~
374 ~~observations~~. Previous studies have suggested that pine marten activity patterns may be linked to
375 those of prey species (Zielinski et al., 1983), ~~and that there may be intra-individual seasonal~~
376 ~~(Zielinski et al., 1983) and sexual (Zalewski, 2001) variation in behaviour~~. Although, individual
377 identity and associated factors (e.g. sex, age) were unknown, our study supports pine marten
378 activity in Ireland being ~~linked to~~ that of prey. Pine marten activity overlapped significantly with
379 that of the wood mouse in spring, summer and winter. This reflects findings ~~of contemporary~~
380 ~~studies~~ from Ireland that indicate the importance of wood mice to pine marten diets (Lynch &
381 McCann, 2007; O'Meara et al., 2013). Seasonal comparisons of diet, in particular, show that wood
382 mice are the primary food source in all seasons ~~bar~~ autumn which is reflected in the correlation of
383 activity reported here (Twining et al., 2018). Seasonal offsets showed ~~an increase in~~ **higher**
384 and diurnal activity from late spring until early autumn. However, in contrast to of Zielinski et al.
385 (1983), pine martens in this study did not become predominantly diurnal during warmer months,
386 but rather demonstrated irregular activity throughout the 24-hour diel cycle.

387 Squirrel activity peaked several hours after dawn and ceased before sunset. The species
388 were ~~observed to be almost~~ exclusively diurnal, with detections occurring throughout the day, in
389 accordance with previous studies (Tonkin, 1983, Gurnell & Hare, 2008). There was some
390 evidence of temporal variation in circadian patterns, ~~with~~ **between seasons** detections suggesting a bimodal pattern
391 in the summer, and a unimodal pattern in the winter. **The bimodularity observed in summer was**
392 **due to low** ~~caused by decrease in~~ activity around midday, possibly in response to increased temperatures.

394 Gurnell & Hare, 2008). Sunrise/set offsets revealed some crepuscular/nocturnal activity, behaviour
395 which has not been reported in other populations. Foraging animals balance the risk of predation
396 against the benefits of energy gains (Dammhahn & Almelung, 2012). The amount of risk an animal
397 is willing to take is dependent on a number of factors including local predator density/impact,
398 individual boldness, and its inherent ability to detect and respond to danger. The acuity of squirrel
399 eyesight is known to improve considerably in brighter conditions (Jacobs, Birch & Blackeslee,
400 1982). Thus, squirrels which are active in low or poor lighting conditions are seemingly at a distinct
401 disadvantage. This may be a response to local predator activity, thus rendering an apparently
402 suboptimal strategy contextually advantageous (Dammhahn & Almelung, 2012). However, the
403 overlap between squirrels and pine martens was at its highest in summer (~~>50%, though note that~~
404 ~~few martens were detected [n = 73]~~). The drivers of this behaviour are unknown and are worthy
405 of further study.

406 Wood mice were exclusively and consistently nocturnal, although there was some diurnal
407 activity recorded during summer when shorter nights may provide insufficient foraging time for
408 wood mice to meet their daily energetic requirements. The species has previously been ~~described~~
409 as exhibiting ~~temporal~~ variability in activity patterns between seasons (Miller & Elton, 1955,
410 Wolton, 1983). This study also found high variability between seasons, with all seasonal
411 comparisons but spring-autumn comparison significantly different from each other. It should be
412 noted that the sample size in summer ~~was small (n = 57)~~, thus our summer data lack resolution.
413 All wood mouse detections were opportunistic; none of the camera trap projects which comprise
414 this study specifically focussed on small mammals. The presented pattern of activity, therefore, is
415 highly unlikely to truly represent that of this species. Given an appropriate methodological
416 approach (e.g. cameras placed in optimum locations and set at optimum angles; e.g. De Bondi et

417 al., 2010), there is no doubt that camera trap surveys of small mammals would be extremely
418 effective. It is no surprise, however, that studies of medium-to-large terrestrial mammals, the next-
419 smallest of which is more than an order of magnitude larger than the wood mouse (rabbits, which
420 can weight up to 2kg, compared to 27g for wood mice), should return poor (non-target) small
421 mammal data.

422 Anti-predator behaviours, which include ~~direct~~ avoidance (e.g. Curé et al., 2013), facilitate
423 the survival of the prey ~~population~~ by mitigating against ~~the impacts of predators~~ ^{ion} (Sih &
424 Christensen, 2001). In the current study, foxes consistently occurred in sympatry with hares and
425 rabbits, both of which are prey species (Reynolds & Aebischer, 1991). Both predator-prey annual
426 cross-correlations showed a relationship which indicates that foxes and lagomorphs are likely to
427 be active simultaneously. This correlation was maintained in spring and summer, but not for the
428 rest of the year. While both lagomorphs exhibited similar behaviours, hare peak correlations
429 (annual and summer) were typically found 2 hours before those found in rabbits, indicating perhaps
430 a higher predator-avoidance behaviour in hares. Overlap estimates were ~~smaller~~ for hares than for
431 rabbits, both annually and across seasons. In temperate zones, foxes typically mate in late
432 winter/early spring; litters may contain up to 12 cubs, with food availability being a significant
433 factor (Larivière & Pasitschniak-Arts, 1996). Here we describe foxes as becoming increasingly
434 crepuscular in late-spring and summer, thus increasing the potential for ~~spatiotemporal~~ overlap
435 with both species of lagomorph. This suggests that predation of these species may increase during
436 the fox breeding season. Indeed, lagomorphs may become increasingly important as the cubs grow,
437 particularly if the vixen has many offspring, as both lagomorphs are amongst the most substantial
438 meals available to a medium-sized terrestrial predator in Northern Ireland. We can be reasonably
439 confident, therefore, that the behavioural repertoires of both hares and rabbits in Northern Ireland

440 include fox-specific anti-predator behaviours. Pine marten and squirrels showed a ~~direct~~ negative
441 correlation in the annual comparison, as well as during spring, summer, and winter. Thus, predator
442 and prey activity are simultaneously different (i.e. when pine martens are most active, squirrels are
443 least active and vice-versa). Squirrels are also subject to predation by diurnal birds of prey (e.g.
444 Petty et al., 2003); by avoiding nocturnal predators, the animals become diurnally vulnerable.
445 However, while squirrels have relatively poor nocturnal vision (Arden & Silver, 1962); their
446 spatial acuity improves under brighter conditions (Jacobs, Birch & Blackeslee, 1982). Foraging
447 during the night thus greatly increases the risk of predation.

448 It was not possible to optimise the present study *a priori*, comprising, as it does, several
449 individually-designed surveys. For example, there was considerable variation in the effective
450 densities of camera trapping arrays. Detection probability and temporal resolution increase as a
451 function of camera array and focal species densities. Higher array densities increase the chances
452 of capturing an animal in-transit, being placed near a resting site (i.e. sett, drey, form, etc.), and
453 capturing the focal species if it occurs at low densities. Camera trap surveys, therefore, would
454 ideally consistently use high-density arrays to return an abundance of data. This is rarely feasible,
455 however, given time, personnel, and financial constraints, all of which were limiting factors to the
456 contributing surveys. Nevertheless, it is clear that even at relatively low densities, camera traps
457 return important and useful ecological data. The utility and efficiency of camera trapping as an
458 ecological survey tool is demonstrated by the fact that we were able to produce multiple analyses
459 of temporal occurrence for a wide range of species, four of which were opportunistically captured,
460 and which are largely in agreement with the published literature. It should be noted, however, that
461 no cameras were set to effectively survey very small terrestrial mammals such as wood mice. Even
462 though our data are limited, we have demonstrated that opportunistic 'bycatch' data captured by

463 camera traps may broadly describe a species' temporal niche (e.g. nocturnal behaviour). **However**,
464 it is certain that surveys utilising a more appropriate focal methodology would yield greater and
465 more accurate small-mammal data.

466 In contrast to terrestrial animals which move on a 2D plain, arboreal animals move within
467 3D space, thus decreasing the likelihood of a random capture in transit. Squirrels were enticed to
468 specific locations for image capture by the use of baited stations. While baiting is certainly
469 effective, it is not without its problems. For example, animals may identify bait stations as a
470 reliable source of food, and thus frequently revisit them, thereby inflating counts (Rowcliffe &
471 Carbone, 2008). Moreover, feeding animals may spend a considerable amount of time in front of
472 the camera if undisturbed than those captured in transit, again affecting interpretations. The degree
473 of uncertainty increases considerably where the focal species does not exhibit individually-
474 identifiable colouration or markings. Captures from baited stations, therefore, may only represent
475 one, or a handful of individuals (Trolle & Kéry 2003, Weckel et al., 2006). **However**, the present
476 study is only concerned with activity, and, hence, the detection of any individual during a given
477 time period was assumed to be representative of the species as a whole.

478 Understanding the activity patterns of wildlife, and seasonal variations thereof, is of
479 considerable benefit in furthering our understanding of species ecologies and informing future
480 research (e.g. the development and application of efficient ecological surveys), thus paving the
481 way for the development of appropriate management policies and/or conservation programmes.
482 Knowing when a species is most or least likely to be active can lead to considerable methodological
483 improvements, including potentially reducing the probability of achieving false-negatives,
484 particularly for scarce or cryptic species. Camera trap surveys seeking to investigate circadian and
485 intra-annual species activity patterns should, ideally, be conducted over the course of an entire

486 year, focussing on areas which the focal species are known to frequent, and employing a large
487 number of traps. Furthermore, climate and habitat data may further inform interpretations and
488 facilitate the application of statistical models. While the temporal distribution of data herein are
489 arguably suboptimal due to the application varied (i.e. non-standardised) methodologies, and
490 environmental data are lacking, **they are nevertheless of great utility in describing fundamental**
491 **aspects of species' ecologies.**

492

493 **Conclusions**

494 Certainly, camera traps have enormous potential for surveying a wide range of species and
495 providing data which may be of great utility in informing subsequent investigations and/or
496 answering important ecological questions. In the present study, we draw together several disparate,
497 and very different camera trap surveys to describe fundamental behavioural parameters of ten
498 mammalian species, only six of which were the focal subjects (fallow deer, hares, pine marten,
499 and squirrels). We conclude **that camera traps provide an effective means of describing circadian**
500 **activity patterns of small-to-large mammals, seasonal variations in temporal activity, and have**
501 **utility in investigating temporal aspects of interspecific interactions.** **These data serve as a proof-**
502 **of-concept study; further studies are required to 'fill-in-the-blanks' and provide circa-annual data.**

503

504 **Acknowledgments**

505 Both squirrel studies were funded under the Northern Ireland Challenge Fund and supported by
506 the Northern Ireland Environment Agency's Natural Heritage Research Partnership. Hare surveys

507 were commissioned and funded by the Natural Heritage Research Partnership (NHRP), between
508 the Northern Ireland Environment Agency (NIEA) and *Quercus*, Queen's University Belfast
509 (QUB) with part-funding from the People's Trust for Endangered Species (PTES). Deer surveys
510 were part of Department of Environment, Agriculture and Rural Affairs (DAERA) or Department
511 for the Economy (DfE) funded PhD studentships.

512 Thanks to the great many support staff, fieldworkers and landowners who were involved in the
513 surveys which contributed to this manuscript.

514 AH undertook fieldwork, compiled data, carried out statistical analyses, and wrote the manuscript.
515 MG contributed to statistical analyses and text. MCV compiled data, carried out preliminary
516 analyses, and contributed to the manuscript. KH, MF, EF undertook fieldwork, provided
517 substantial data and contributed to the manuscript. DT conceived the study, undertook fieldwork,
518 provided substantial data and contributed to the manuscript. JTAD and NR were academic
519 supervisors of much of original survey work, contributing to conceptual development of survey
520 designs, managed resourcing with NR editing the final manuscript.

521 **References**

522 Arden GB Silver PH. 1962. Visual thresholds and spectral sensitivities of the grey squirrel (*Sciurus*
523 *carolinensis leucotis*). *The Journal of Physiology*. 163:540-57.

524 Ashby KR. 1972. Patterns of daily activity in mammals. *Mammal Review* 1:171–185.

525 Barrett-Hamilton G. 1898. Notes on the Introduction of the brown hare into Ireland. With
526 additional remarks on other introductions of hares, both brown and blue, in the British Isles. *Irish*
527 *Naturalist's Journal* 7: 69–76.

528 Bennie JJ Duffy JP Inger R Gaston KJ. 2014. Biogeography of time partitioning in
529 mammals. *Proceedings of the National Academy of Sciences*. 111:13727-13732.

530 Bradley WG. 1967. Home range, activity patterns, and ecology of the antelope ground squirrel in
531 southern Nevada. *The Southwestern Naturalist*. 12: 231–251.

532 Bridges AS, Noss AJ. 2011. Behaviour and activity patterns. In: O'Connell AF, Nichols JD,
533 Karanth eds) *Camera traps in animal ecology: Methods and analyses*. 57–69. Springer, New York.

534 Cagnacci F, Boitani L, Powell RA, Boyce MS. 2010. Animal ecology meets GPS-based
535 radiotelemetry: a perfect storm of opportunities and challenges. *Philosophical Transactions of the*
536 *Royal Society B: Biological Sciences*. 365: 2157–2162.

537 Caravaggi A, Montgomery WI, Reid N. 2015. Range expansion and comparative habitat use of
538 insular, congeneric lagomorphs: invasive European hares *Lepus europaeus* and endemic Irish hares
539 *Lepus timidus hibernicus*. *Biological Invasions*. 17: 687–698.

540 Carbajal-Borges JP, Godínez-Gómez O, Mendoza E. 2014. Density, abundance and activity
541 patterns of the endangered *Tapirus bairdii* in one of its last strongholds in southern Mexico.
542 *Tropical Conservation Science*. 7:100–114.

543 Chapman D, Chapman N. 1997) *Fallow deer: their history, distribution and biology*. Coch-y-
544 Bonddu Books, Machynlleth.

545 Curé C, Antunes R, Alves AC, Visser F, Kvadsheim PH, Miller PJO. 2013. Responses of male
546 sperm whales (*Physeter macrocephalus*) to killer whale sounds: implications for anti-predator
547 strategies. *Scientific Reports*. 3.

548 Dammhahn M, Almeling L. 2012. Is risk taking during foraging a personality trait? A field test for
549 cross-context consistency in boldness. *Animal Behaviour*. 84: 1131–1139.

550 De Bondi N, White JG, Stevens M, Cooke R. 2010. A comparison of the effectiveness of camera
551 trapping and live trapping for sampling terrestrial small-mammal communities. *Wildlife Research*.
552 37: 456.

553 Di Cerbo AR, Biancardi CM. 2013. Monitoring small and arboreal mammals by camera traps:
554 effectiveness and applications. *Acta Theriologica*. 58:279–283.

555 Díaz-Ruiz F, Caro J, Delibes-Mateos M, Arroyo B, Ferreras P 2016). Drivers of red fox (*Vulpes*
556 *vulpes*) daily activity: prey availability, human disturbance or habitat structure?. *Journal of*
557 *Zoology*. 298: 128-138.

558 EEA. 2010. Corine Land Cover 2006 raster data. Available at: <https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012>. (Accessed 13 March 2016).

560 Elton C, Ford EB, Baker JR, Gardner AD. 1931. The health and parasites of a wild wood mouse
561 population. *Proceedings of the Zoological Society, London*. 101: 657-721.

562 Enright JT 1970. Ecological aspects of endogenous rhythmicity. *Annual review of ecology and*
563 *systematics*. 1: 221-238.

564 Fedriani JM, Palomares F, Delibes M. 1999. Niche relations among three sympatric Mediterranean
565 carnivores. *Oecologia*. 121:138-148.

566 Flux JEC, Angermann R. 1990. The hares and jackrabbits. In: Chapman JA, Flux JEC, eds. *Rabbits, hares and pikas: status survey and conservation action plan*, 76-78. IUCN/SSC
567 Lagomorph Specialist Group, Oxford.

568 Fowler PA, Racey PA. 1988. Overwintering strategies of the badger, *Meles meles*, at 57N. *Journal*
569 *of Zoology*. 214: 635-651.

570 Gómez H, Wallace RB, Ayala G, Tejada R. 2005. Dry season activity periods of some
571 Amazonian mammals. *Studies on Neotropical Fauna and Environment*. 40:91-95.

572 Gorman M. 2008. Carnivores: Order Carnivora. In: Harris S, Yalden, eds. *Mammals of the British*
573 *Isles*, 407-436. The Mammal Society, Southampton.

574 Gregory T, Carrasco Rueda F, Deichmann J, Kolowski J, Alonso A. 2014. Arboreal camera
575 trapping: taking a proven method to new heights. *Methods in Ecology and Evolution*. 5: 443-451.

576 Gurnell J, Hare EJ. 2008. Rodents. In: Harris S, Yalden DW, eds. *Mammals of the British Isles*,
577 54-199. The Mammal Society, Southampton.

578 Halle S, Stenseth NC. 2000. Introduction. In: Halle S, Stenseth NC, eds. *Activity patterns in small*
579 *mammals - an ecological approach*, 3-17. Springer, Berlin.

580 Harris S. 1982. Activity patterns and habitat utilization of badgers (*Meles meles*) in suburban
581 Bristol: a radio tracking study. *Symposia of the Zoological Society of London*. 301-323. Academic
582 Press, London.

583 HM Nautical Almanac Office. 2016. HM nautical almanac office: on-line data. Available at
584 <http://astro.ukho.gov.uk/nao/online/>. (Accessed 17th February 2016).

585 Hofmeester TR, Rowcliffe JM, Jansen PA. 2017. A simple method for estimating the effective
586 detection distance of camera traps. *Remote Sensing in Ecology and Conservation*. 3:81-89.

588 Holley AJF. 1992. Studies on the biology of the brown hare (*Lepus europaeus*) with particular
589 reference to behaviour.

590 Hoogenboom I, Daan S, Dallinga JH, Schoenmakers M. 1984. Seasonal change in the daily timing
591 of behaviour of the common vole, *Microtus arvalis*. *Oecologia*. 61:18–31.

592 Jacobs GH, Birch DG, Blakeslee B. 1982. Visual acuity and spatial contrast sensitivity in tree
593 squirrels. *Behavioural Processes*. 7:367–75.

594 Karanth KU, Nichols JD, Kumar NS, Hines JE. 2006. Assessing tiger population dynamics using
595 photographic capture-recapture sampling. *Ecology*. 87:2925–2937.

596 Kays RW, Slauson KM. 2008. Remote cameras. In: Long RA, MacKay P, Zielinski WJ, Ray JC,
597 eds. *Noninvasive survey methods for carnivores*, Island Press, Washington DC.

598 Kucera TE, Barrett R. 2011. A history of camera trapping. In: O'Connell AF, Nichols JD, Karanth
599 KU, eds. *Camera traps in animal ecology: methods and analysis*, 9–26. Springer, New York.

600 Langbein J, Hutchings MR, Harris S, Stoate C, Tapper SC, Wray S. 1999. Techniques for assessing
601 the abundance of brown hares *Lepus europaeus*. *Mammal Review*. 29:93–116.

602 Larivière S, Huot J, Samson C. 1994. Daily activity patterns of female black bears in a northern
603 mixed-forest environment. *Journal of Mammalogy*. 75: 613–620.

604 Larivière S, Pasitschniak-Arts M. 1996. *Vulpes vulpes*. *Mammalian species*: 1–11.

605 Leso P, Kropil R. 2010. Influence of some methodological modifications on trapping efficiency
606 and mortality of small terrestrial mammals (Rodentia). *Lynx*. 41:167–173.

607 Linkie M, Dinata Y, Nugroho A, Haidir IA. 2007. Estimating occupancy of a data deficient
608 mammalian species living in tropical rainforests: Sun bears in the Kerinci Seblat region, Sumatra.
609 *Biological Conservation*. 137:20–27.

610 Lode T. 1995. Activity pattern of polecats *Mustela putorius* L. in relation to food habits and prey
611 activity. *Ethology*. 100:295–308.

612 Lovari S, Valier P, Lucchi MR. 1994. Ranging behaviour and activity of red foxes (*Vulpes vulpes*:
613 Mammalia) in relation to environmental variables, in a Mediterranean mixed pinewood. *Journal*
614 *of Zoology*. 232:323–339.

615 Lynch AB, McCann Y. 2007. The diet of the pine marten (*Martes martes*) in Killarney National
616 Park. *Biology and Environment: Proceedings of the Royal Society of Ireland*. 107B:67–76.

617 Maffei L, Noss AJ, Cuéllar E, Rumiz DI. 2005. Ocelot (*Felis pardalis*) population densities, activity, and
618 ranging behaviour in the dry forests of eastern Bolivia: data from camera trapping. *Journal of*
619 *Tropical Ecology*. 21:349–353.

620 McElhinny TL, Smale L, Holekamp KE. 1997. Patterns of body temperature, activity, and
621 reproductive behavior in a tropical murid rodent, *Arvicanthis niloticus*. *Physiology & Behavior*.
622 62:91–96.

623 Meredith M, Ridout M. 2017. overlap: Estimates of Coefficient of Overlapping for Animal
624 Activity Patterns. R package version 0.3.0. Available at: <https://CRAN.R-project.org/package=overlap> (Accessed 07 January 2018).

626 Met Office. 2016. Northern Ireland: climate. Available at:
627 <https://www.metoffice.gov.uk/climate/uk/regional-climates/ni> (Accessed 23 March 2017).

628 Middleton AD, Kauffman MJ, McWhirter DE, Jimenez MD, Cook RC, Cook JG, Albeke SE,
629 Sawyer H, White PJ. 2013. Linking anti-predator behaviour to prey demography reveals limited
630 risk effects of an actively hunting large carnivore. *Ecology Letters*. 16:1023–1030.

631 Miller RS, Elton C. 1955. Activity rhythms in the Wood Mouse, *Apodemus sylvaticus* and the
632 Bank Vole, *Clethrionomys glareolus*. *Proceedings of the zoological Society of London*. 125:505–
633 519.

634 Monterroso P, Alves PC, Ferreras P. 2013. Catch me if you can: diel activity patterns of
635 mammalian prey and predators. *Ethology*. 119:1044–1056.

636 Neal E, Cheeseman C. 1996. *Badgers*. T&A Poyser, London.

637 O'Meara D, Sheehy E, Turner PD, O'Mahony D, Harrington AP, Denman H, Lawton C,
638 MacPherson J, O'Reilly C. 2013. Non-invasive multi-species monitoring: real-time PCR
639 detection of small mammal and squirrel prey DNA in pine marten (*Martes martes*) scats. *Acta
640 Theriologica*. 59:111–117.

641 Palomares P, Delibes M. 1991. Assessing three methods to estimate daily activity patterns in radio-
642 tracked mongooses. *Journal of Wildlife Management*. 55:698–700.

643 Petty SJ, Lurz PW, Rushton DIK. 2003. Predation of red squirrels by northern goshawks in a
644 conifer forest in northern England: can this limit squirrel numbers and create a conservation
645 dilemma? *Biological Conservation*. 111:105–114.

646 Phillips AJK, Fulcher BD, Robinson PA, Klerman EB. 2013. Mammalian rest/activity patterns
647 explained by physiologically based modeling. *PLoS Computational Biology*. 9:e1003213.

648 Putman RJ. 2008. Ungulates: fallow deer. In: Harris S, Yalden DW, eds. *Mammals of the British
649 Isles*, 595–603. The Mammal Society, Southampton.

650 R Core Team. 2017.. R: A language and environment for statistical computing. R Foundation for
651 Statistical Computing, Vienna, Austria. Available at: <https://www.R-project.org/> (Accessed 07
652 February 2018).

653 Rautio A, Isomursu M, Valtonen A, Hirvelä-Koski V, Kunnasranta M. 2016. Mortality, diseases
654 and diet of European hedgehogs (*Erinaceus europaeus*) in an urban environment in Finland.
655 *Mammal Research*. 61:161–169.

656 Refinetti R. 2004. Daily activity patterns of a nocturnal and a diurnal rodent in a seminatural
657 environment. *Physiology & Behavior*. 82:285–294.

658 Refinetti R. 2006. Variability of diurnality in laboratory rodents. *Journal of Comparative
659 Physiology A*. 192:701–714.

660 Reid N. 2011. European hare (*Lepus europaeus*) invasion ecology: implication for the conservation
661 of the endemic Irish hare (*Lepus timidus hibernicus*). *Biological Invasions*. 13:559–569.

662 Reid N, McDonald RA, Montgomery WI. 2010. Homogeneous habitat can meet the discrete and
663 varied resource requirements of hares but may set an ecological trap. *Biological Conservation*.
664 143:1701–1706.

665 Reid N, Montgomery WI. 2007. Is naturalisation of the brown hare in Ireland a threat to the
666 endemic Irish hare? *Biology and Environment: Proceedings of the Royal Irish Academy*.
667 107B:129–138.

668 Reynolds JC, Aebsicher NJ. 1991. Comparison and quantification of carnivore diet by faecal
669 analysis: a critique, with recommendations, based on a study of the fox *Vulpes vulpes*. *Mammal
670 Review*. 21:97–122.

671 Reynolds JC, Tapper SC. 1995. Predation by foxes *Vulpes vulpes* on brown hares *Lepus
672 europaeus* in central southern England, and its potential impact on annual population growth.
673 *Wildlife Biology*. 1:145–57.

674 Ross J, Hearn AJ, Johnson PJ, Macdonald DW. 2013. Activity patterns and temporal avoidance
675 by prey in response to Sunda clouded leopard predation risk. *Journal of Zoology*. 290:96–106.

676 Rowcliffe JM, Carbone C. 2008. Surveys using camera traps: are we looking to a brighter future?
677 *Animal Conservation* 11:185–186.

678 Rychlik L. 2005. Overlap of temporal niches among four sympatric species of shrews. *Acta
679 Theriologica*. 50:175–188.

680 Sadlier LM, Webbon CC, Baker PJ, Harris S. 2004. Methods of monitoring red foxes *Vulpes
681 vulpes* and badgers *Meles meles*: are field signs the answer? *Mammal Review*. 34:75–98.

682 Schai-Braun SC, Rödel HG, Hackländer K. 2012. The influence of daylight regime on diurnal
683 locomotor activity patterns of the European hare (*Lepus europaeus*) during summer. *Mammalian
684 Biology*. 77:434–440.

685 Shrestha AK, van Wieren SE, van Langevelde F, Fuller A, Hetem RS, Meyer L, de Bie S, Prins
686 HHT. 2014. Larger antelopes are sensitive to heat stress throughout all seasons but smaller

687 antelopes only during summer in an African semi-arid environment. *International Journal of*
688 *Biometeorology*. 58:41–49.

689 Sih A, Christensen B. 2001. Optimal diet theory: when does it work, and when and why does it
690 fail? *Animal Behaviour*. 61:379–390.

691 Silveira L, Jácomo ATA, Diniz-Filho JAF. 2003. Camera trap, line transect census and track
692 surveys: a comparative evaluation. *Biological Conservation*. 114:351–355.

693 Stewart PD, Ellwood SA, Macdonald DW. 1997. Remote video-surveillance of wildlife—an
694 introduction from experience with the European badger *Meles meles*. *Mammal Review*. 27:185–
695 204.

696 Swann DE, Hass CC, Dalton DC, Wolf SA. 2004. Infrared-triggered cameras for detecting
697 wildlife: an evaluation and review. *Wildlife Society Bulletin*. 32:357–365.

698 Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G. 2008a. An evaluation
699 of camera traps for inventorying large- and medium-sized terrestrial rainforest mammals. *Animal*
700 *Conservation*. 11:169–178.

701 Tobler MW, Carrillo-Percastegui SE, Leite Pitman R, Mares R, Powell G. 2008b. Further notes
702 on the analysis of mammal inventory data collected with camera traps. *Animal Conservation*.
703 11:187–189.

704 Tonkin JM. 1983. Activity patterns of the Red squirrel (*Sciurus vulgaris*). *Mammal Review*. 13:99–
705 111.

706 Torre I, Guixe D, Sort F. 2010. Comparing three live trapping methods for small mammal sampling
707 in cultivated areas of NE Spain. *Italian Journal of Mammalogy*. 21:147–155.

708 Trolle M, Kéry M. 2003. Estimation of ocelot density in the Pantanal using capture-recapture
709 analysis of camera-trapping data. *Journal of mammalogy*. 84:607–614.

710 Twining JP, Tosh DG, Montgomery WI, Marks N, Scantlebury DM. 2018. Seasonal and habitat
711 effects on diet of a recovering native predator in Ireland: the European pine marten (*Martes*
712 *martes*). Manuscript in preparation.

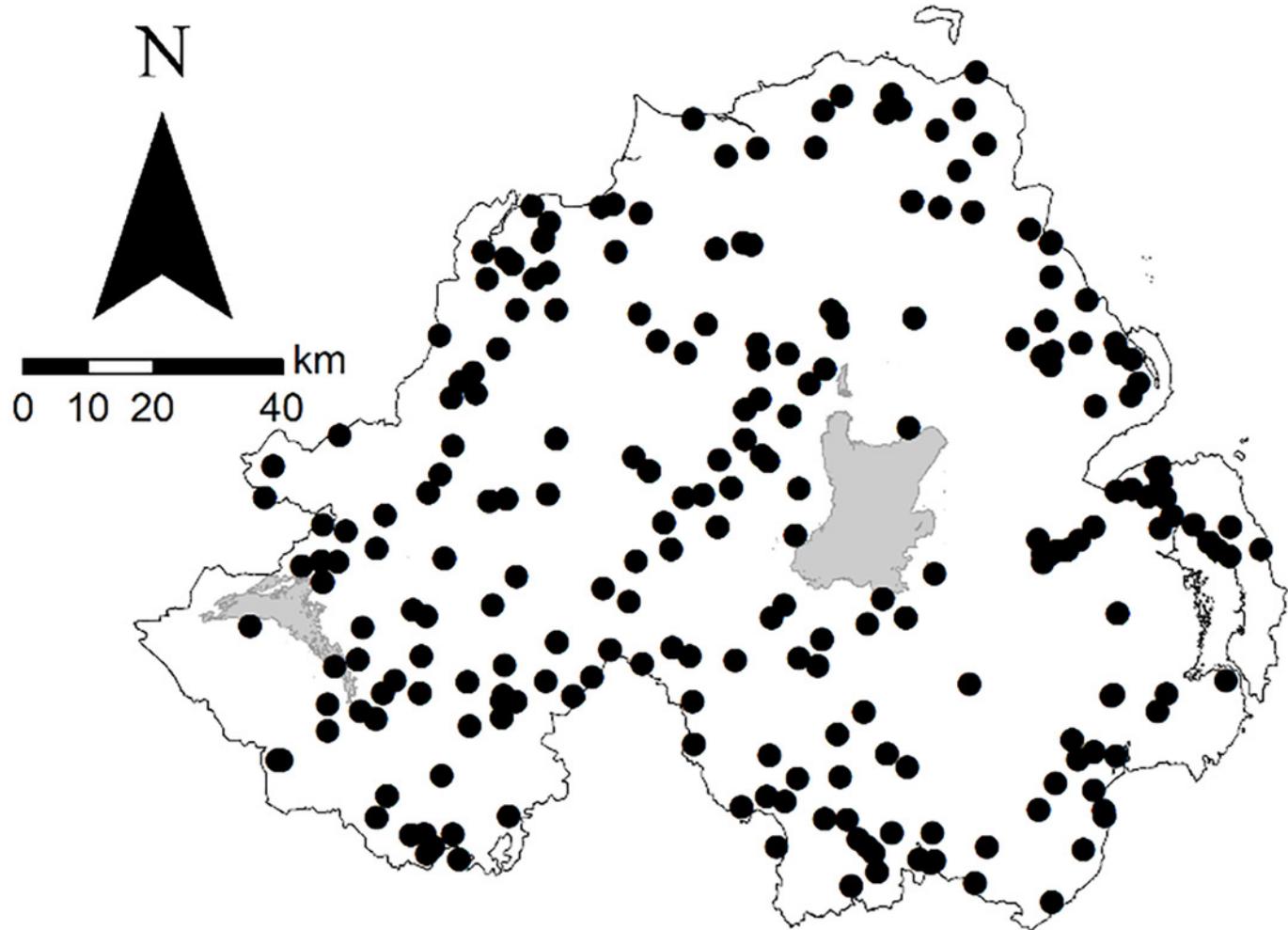
713 van Doormaal N, Ohashi H, Koike S, Kaji K. 2015. Influence of human activities on the activity
714 patterns of Japanese sika deer (*Cervus nippon*) and wild boar (*Sus scrofa*) in Central
715 Japan. *European journal of wildlife research*. 61:517-527.

716 Wang Y, Allen ML, Wilmers CC. 2015. Mesopredator spatial and temporal responses to large
717 predators and human development in the Santa Cruz Mountains of California. *Biological*
718 *Conservation*. 190:23-33.

719 Weckel M, Giuliano W, Silver S. 2006. Jaguar (*Panthera onca*) feeding ecology: distribution of
720 predator and prey through time and space. *Journal of Zoology*. 270:25-30.

721 Wilson CD, Arnott G, Reid N, Roberts D. 2011. The pitfall with PIT tags: marking freshwater
722 bivalves for translocation induces short-term behavioural costs. *Animal Behaviour*. 81:341-346.

723 Wolton RJ. 1983. The activity of free-ranging wood mice *Apodemus sylvaticus*. *The Journal of*
724 *Animal Ecology*. 52: 781–794.


725 Zalewski A. 2007. Does size dimorphism reduce competition between sexes? The diet of male and
726 female pine martens at local and wider geographical scales. *Acta Theriologica*. 52:237-50.

727 Zielinski WJ, Spencer WD, Barrett RH. 1983. Relationship between food habits and activity
728 patterns of pine martens. *Journal of Mammalogy*. 64:387-96.

Figure 1

Locations of sites used in camera trap wildlife studies in Northern Ireland from 2013 - 2016.

For species-specific maps, see Fig. S3.

Figure 2

Camera trap images of eight mammal species detected in Northern Ireland between 2013-2016

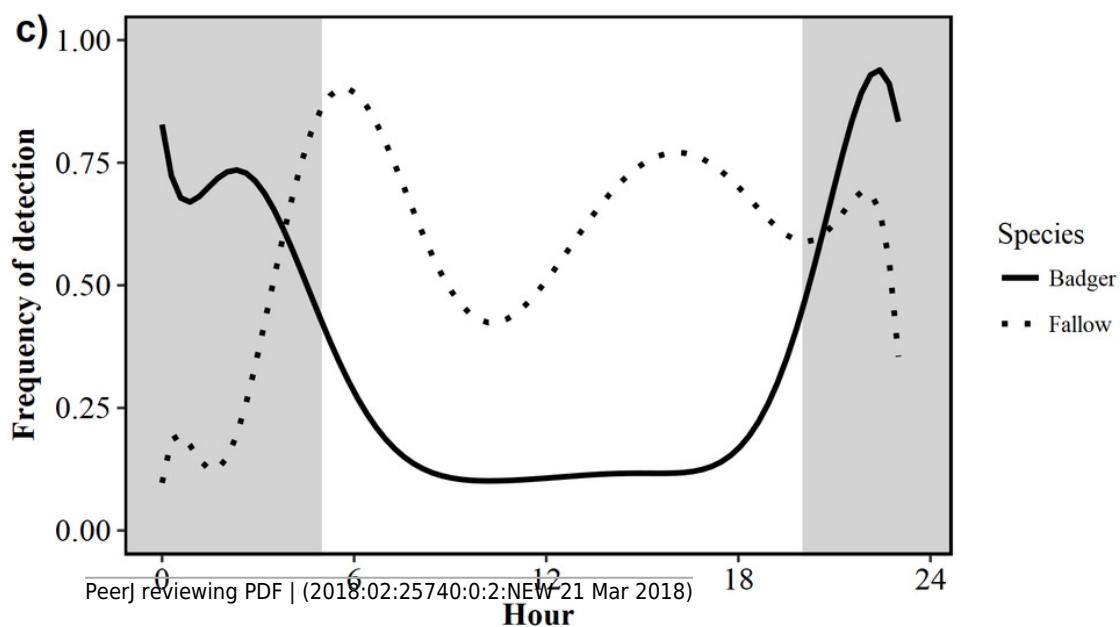
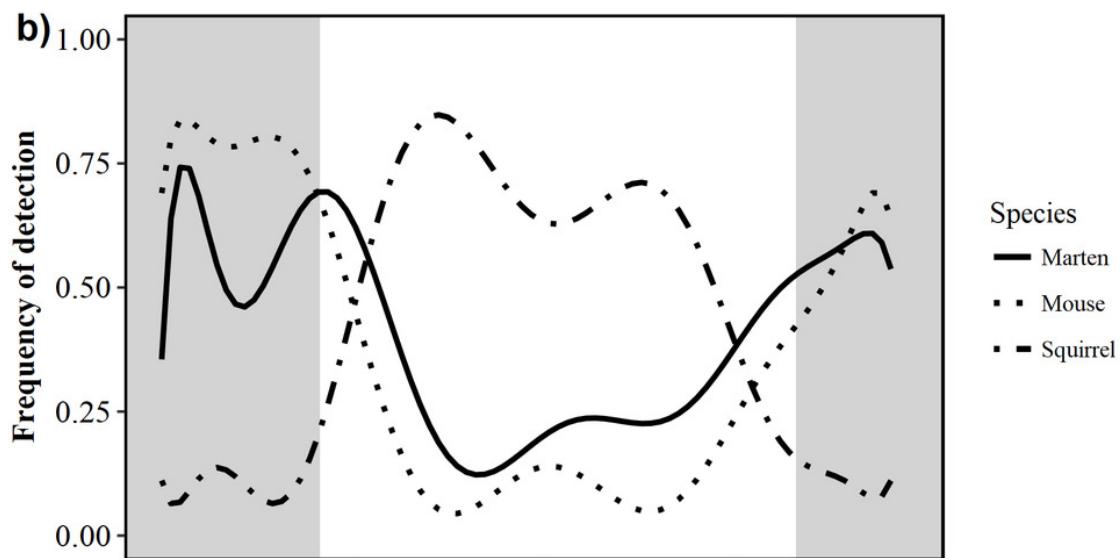
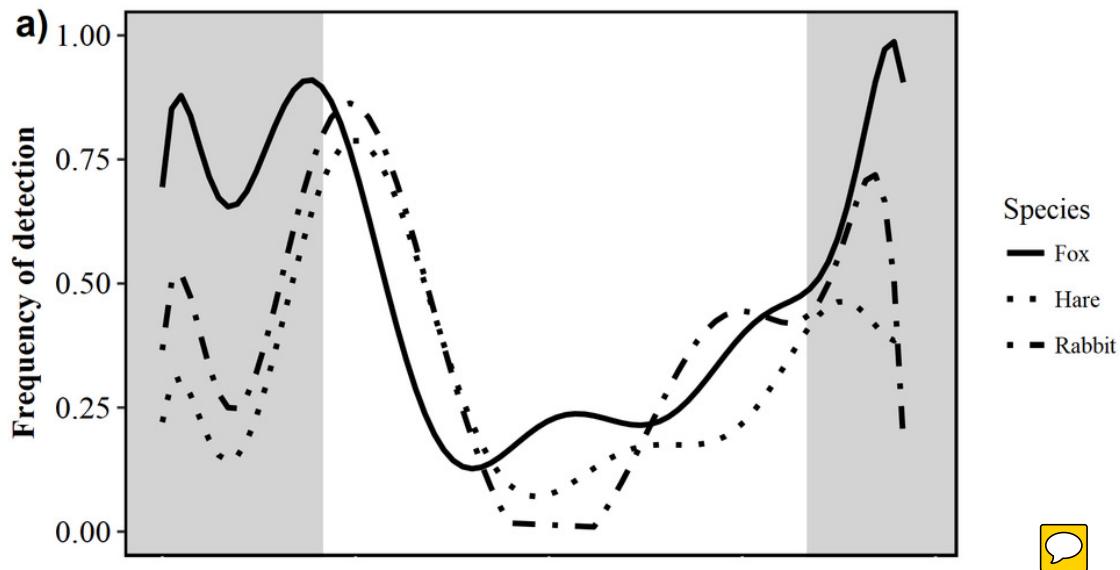



(a) badger, **(b)** fallow deer, **(c)** fox, **(d)** hare (here, an Irish hare), **(e)** pine marten, **(f)** rabbit, **(g)** squirrel (here, a red squirrel), and **(h)** wood mouse (circled).

Figure 3

Circadian activity patterns of ten mammal species.

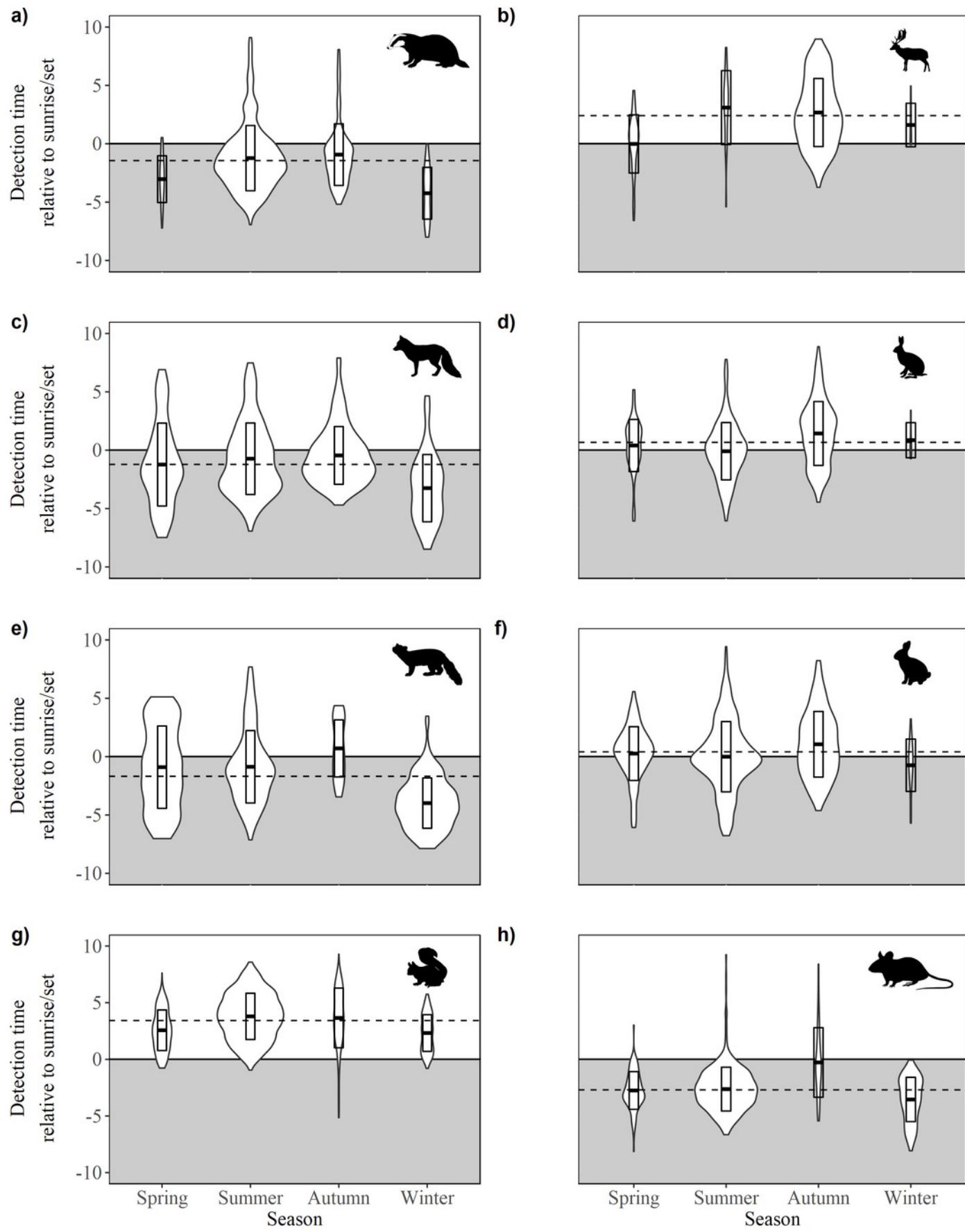

(a) fox (*Vulpes vulpes*) hare (Irish hare, *Lepus timidus hibernicus*, and European hare, *L. europaeus*; see Fig. S1) and rabbit (*Oryctolagus cuniculus*); **(b)** pine marten (*Martes martes*), wood mouse (*Apodemus sylvaticus*) and squirrel (grey squirrel, *Sciurus californicus*, and red squirrel, *Sciurus vulgaris*; see Fig. S2); **(c)** badger (*Meles meles*) and fallow deer (*Dama dama*). Shaded areas represent night time.

Figure 4

Time of detection relative to sunrise/sunset during spring, summer, autumn, and winter for ten mammal species observed during camera trap surveys in Northern Ireland between 2013 – 2016

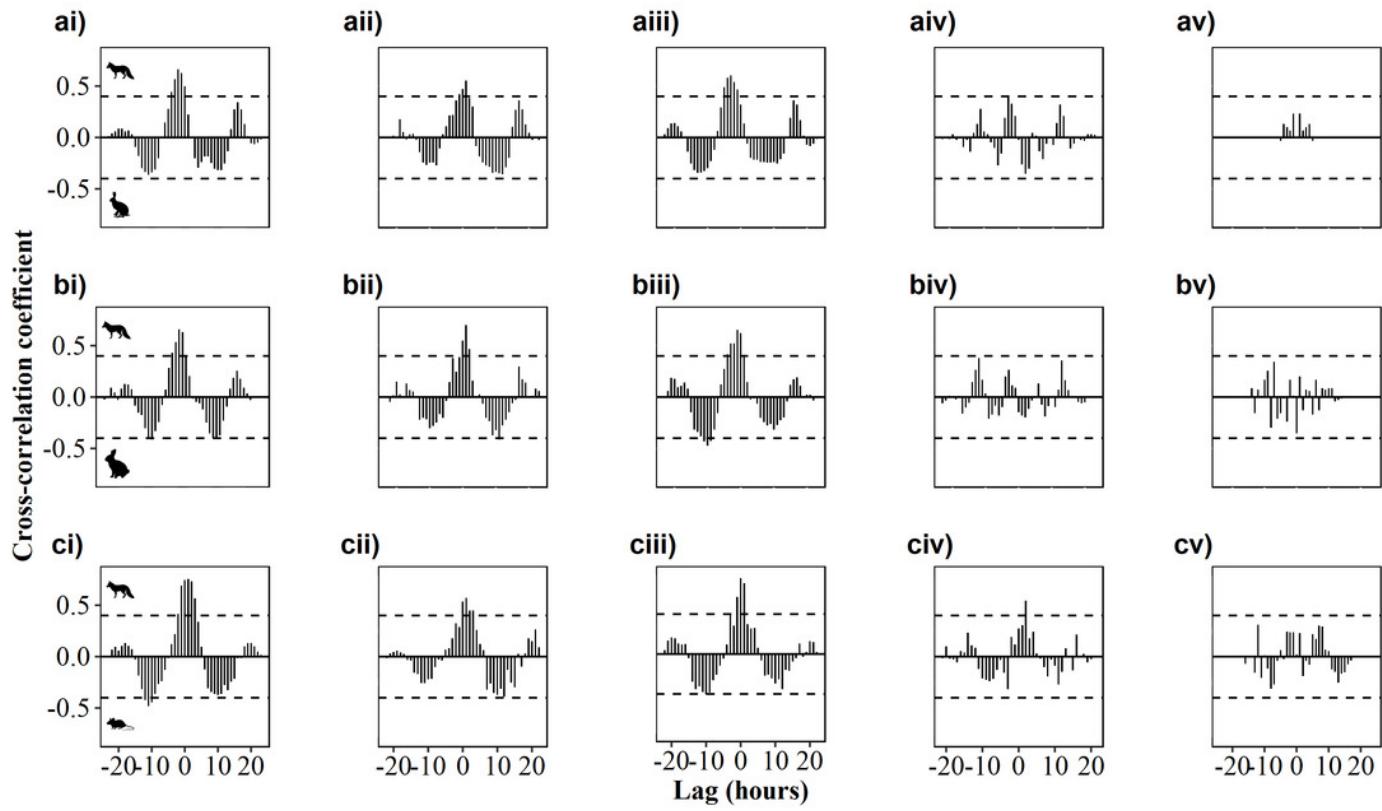

(a) badger, **(b)** fallow deer, **(c)** fox, **(d)** hare (Irish hare and European hare), **(e)** pine marten, **(f)** rabbit, **(g)** squirrel (grey squirrel and red squirrel), and **(h)** wood mouse. The upper, unshaded area denotes daytime, the lower, shaded area denotes night. Dashed lines indicate mean annual offset. Boxes represent the mean \pm Standard Deviation. Violin plots represent the density and spread of all contributing data points.

Figure 5

Cross-correlated paired circadian activity patterns of predator (fox) and prey (hare, rabbit, mouse) species.

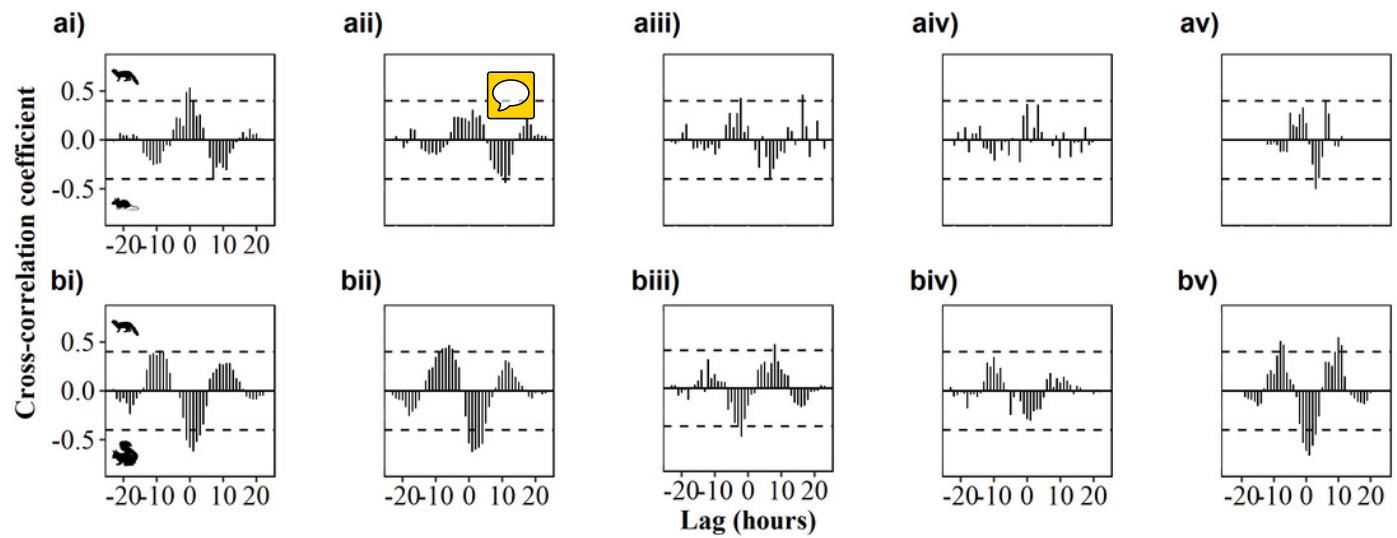

Data were derived from camera trap surveys in Northern Ireland from 2013 - 2016. **(a)** Foxes and hares, **(b)** foxes and rabbits, and **(c)** foxes and wood mice. Plots describe **(i)** annual, and **(ii - v)** seasonal data: **ii)** spring; **iii)** summer; **iv)** autumn; and **v)** winter. Lag is the result of a correlation between $x_{a\pm i}$ and y_a , where a = time. Correlations which extend beyond the dotted lines (highlighted) are significant at the $p \leq 0.05$ level.

Figure 6

Cross-correlated paired circadian activity patterns of predator (pine marten) and prey (wood mouse, squirrel) species.

Data were derived from camera trap surveys in Northern Ireland from 2013 – 2016. **(a)** pine marten and wood mice, **(b)** pine marten and squirrels. Plots describe **(i)** annual, and **(ii – v)** seasonal data: **ii)** spring; **iii)** summer; **iv)** autumn; and **v)** winter. Lag is the result of a correlation between $x_{a\pm i}$ and y_a , where a = time. Correlations which extend beyond the dotted lines (highlighted) are significant at the $p \leq 0.05$ level.

Table 1(on next page)

Number of remote-sensing camera traps deployed (i.e. 'camera locations') by mammal studies carried out in Northern Ireland between 2013-2016.

Contributory studies were independent, thus methodologies were not standardised; study locations (size, shape) and camera array densities varied considerably. For more information, see the main Methods section. * = not all cameras were deployed at each location. Squirrel surveys were focussed on presence and did not attempt to quantify the effective survey area of all camera placements.

Focal species	Year	Total survey area (km²)	Active cameras	Deployments	Total camera locations
Deer*	2013-14	20.00	38	23	255
Deer	2015	0.05	10	4	40
Deer	2015	0.02	10	2	20
Deer	2015	0.04	10	2	20
Deer	2015	0.05	17	1	17
Deer	2015	0.02	21	1	21
Hares	2013-14	17.00	20	17	340
Hares	2015	6.00	12	6	72
Squirrels	2014	n/a	16	63	63
Squirrels	2015	n/a	65	314	314

Table 2(on next page)

Total number of species detections during camera trap surveys in Northern Ireland from 2013 – 2016

Hare = Irish hare (*Lepus timidus hibernicus*) and European hare (*L. europaeus*); squirrel = grey squirrel (*Sciurus carolinensis*) and red squirrel (*S. vulgaris*).

Species		Season				Total detections
Common name	Latin name	Spring	Summer	Autumn	Winter	Σ
Badger	<i>Meles meles</i>	618	225	36	68	947
Fallow deer	<i>Dama dama</i>	38	484	61	8	591
Fox	<i>Vulpes vulpes</i>	198	183	149	115	645
Hare	<i>Lepus sp.</i>	301	339	105	6	751
Pine marten	<i>Martes martes</i>	251	73	356	286	966
Rabbit	<i>Oryctolagus cuniculus</i>	492	417	238	28	1175
Squirrel	<i>Sciurus sp.</i>	1798	317	462	293	2870
Wood mouse	<i>Apodemus sylvaticus</i>	449	57	119	191	816

Table 3(on next page)

Annual and seasonal overlap (%, with 95% Confidence Intervals, CIs) in the activity patterns of five predator-prey pairs.

Animals were detected during camera trap surveys in Northern Ireland between 2013 – 2016.

Hare = Irish hare (*Lepus timidus hibernicus*) and European hare (*L. europaeus*); squirrel = grey squirrel (*Sciurus carolinensis*) and red squirrel (*S. vulgaris*). Few hares were detected during winter. Activity data were resampled 1,000 times per pair, per category, to generate CIs.

Species		Annual*	Season			
Predator	Prey		Spring	Summer	Autumn	Winter
Fox	Hare	73 (68-77)	75 (64-84)	67 (60-73)	48 (31-52)	-
Fox	Rabbit	80 (75-83)	89 (86-98)	78 (71-85)	52 (38-55)	51 (31-71)
Fox	Wood mouse	81 (75-87)	78 (67-89)	85 (81-92)	69 (57-74)	68 (65-98)
Marten	Squirrel	40 (33-41)	28 (16-30)	54 (41-60)	40 (32-41)	5 (0-5)
Marten	Wood mouse	71 (64-74)	69 (57-82)	71 (56-82)	63 (52-66)	77 (66-93)

Table 4(on next page)

Temporal (dis)associations between activity patterns of five predator-prey pairs.

cut extra space

Data were derived from camera trap studies conducted in Northern Ireland between 2013-2016. Lag range and peak lag were calculated using cross-correlation functions (ccfs). $t = t$ value, where the critical value ($p = 0.05$, $df = 22$) = 1.72. r = correlation coefficient. **Positive** values indicate that detections of predators preceded/succeeded those of prey species. **Negative** values indicate the opposite. Statistical significance is indicated by asterisks, where: * ≤ 0.05 ; ** ≤ 0.001 ; *** ≤ 0.0001 . See Figs 5 & 6 for ccf results along all paired time series.

Predator	Prey	Season	Lag (hrs)					t	r
			From	To	Peak lag				
Fox	Hare	Annual	-4	0	-2			4.15	0.663**
Fox	Hare	Spring	-2	3	1			3.12	-0.554*
Fox	Hare	Summer	-5	0	-3			3.54	0.602**
Fox	Hare	Autumn	-3	-1	-3			2.08	0.405*
Fox	Rabbit	Annual	-10	-8	-9			2.13	0.413*
Fox	Rabbit	Annual	-3	1	-1			4.13	0.661**
Fox	Rabbit	Annual	8	11	10			2.10	-0.409*
Fox	Rabbit	Spring	-1	2	1			4.61	0.701***
Fox	Rabbit	Spring	-	-	11			2.14	-0.415*
Fox	Rabbit	Summer	-12	-9	-4			2.52	-0.473*
Fox	Rabbit	Summer	-4	1	-1			4.06	0.654**
Fox	Mouse	Annual	-12	-10	-11			2.56	-0.48*
Fox	Wood mouse	Annual	-2	3	1			5.39	0.754***
Fox	Wood mouse	Spring	-2	3	1			3.26	0.57*
Fox	Wood mouse	Summer	-10	-9	-10			2.09	-0.407*
Fox	Wood mouse	Summer	-1	1	0			5.50	0.761***
Fox	Wood mouse	Autumn	0	2	2			3.04	0.544*
Pine marten	Squirrel	Annual	-12	-7	-9			2.15	0.416*
Pine marten	Squirrel	Annual	-1	4	1			3.72	-0.621**
Pine marten	Squirrel	Spring	-10	-4	-6			2.50	0.47*
Pine marten	Squirrel	Spring	0	5	1			3.76	-0.625**
Pine marten	Squirrel	Summer	-4	-1	-2			2.79	-0.512*

Pine marten	Squirrel	Summer	-	-	8	2.46	0.464*
Pine marten	Squirrel	Winter	-9	-7	-8	2.79	0.511*
Pine marten	Squirrel	Winter	-2	3	-1	4.18	-0.665**
Pine marten	Squirrel	Winter	9	11	10	3.11	0.553*
Pine marten	Wood mouse	Annual	-1	1	0	2.98	0.536*
Pine marten	Wood mouse	Spring	7	11	10	2.29	-0.44*
Pine marten	Wood mouse	Summer	3	-2	-2	2.24	0.431*
Pine marten	Wood mouse	Summer	-	-	8	2.46	0.464*
Pine marten	Wood mouse	Winter	2	4	3	2.73	-0.503*
Pine marten	Wood mouse	Winter	6	7	6	2.05	0.4*